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Abstract—Semi-supervised Learning with Graphs can achieve
good results in classification tasks even in difficult conditions.
Unfortunately, it can be slow and use a lot of memory. The
first important step of the graph-based semi-supervised learning
approaches is the construction of the graph from the data, where
each data-point usually becomes a vertex in the graph – a
potential problem with large amounts of data. In this paper, we
present a graph construction method that uses an unsupervised
neural network called growing neural gas (GNG). The GNG
instance presents a intelligent stopping criteria that determines
when the final network configuration maps correctly the input-
data points. With that in mind, we use the final trained network
as a reduced input graph for the semi-supervised classification
algorithm, associating original data-points to the neurons they
have activated in the unsupervised training process.

I. INTRODUCTION

Traditional supervised learning algorithms fail in the clas-
sification task when there are many data-points to classify but
only a few labeled data-points for training – in the extreme
case there are fewer annotated instances than the dimension of
each data-point. These cases are hard because there is just too
little data to work with.

If we know the unlabeled data-points at training time, semi-
supervised learning (SSL) algorithms are good candidates to
successfully accomplish this task, because then can use the
unlabeled data that supervised learning cannot use [1]–[3] to
provide more information.

SSL is an hybrid between supervised and unsupervised
learning, it uses and combines concepts from both [1]–[3]
approaches. SSL can learn the topological distribution of the
data as unsupervised learning, and augment classification from
labeled data, as supervised learning does. This combination
makes SSL classification algorithms more robust than regular
classifiers in extreme conditions.

There are five types of SSL methods [2], [3]:

1) semi-supervised transductive SVMs,
2) mixture models with semi-supervised EM algorithms,
3) self-training,
4) co-training,
5) and semi-supervised graph based methods.

The main advantage of semi-supervised graph based methods
is that they are semi-supervised by essence while the others
are adaptations of supervised algorithms. Graph based methods
use the label propagation among vertices as the main intuition
to deal with classification, this propagation begins from the
labeled vertices to the unlabeled ones. An unlabeled vertex re-
ceives a label from the vertices that are highly related to it, and
then it propagates the label to other vertices. Generally graph-
based SSL has two main steps: the graph construction and
the graph regularization. The size of the graph affects directly
the complexity and space of graph-based SSL algorithms [2],
[4]. The most common graph construction techniques represent
each data-point as one vertex in the graph, so are extremely
sensitive to the size of the input data.

In this paper, we use an unsupervised learning neural
network, known as Growing Neural Gas (GNG) [5]–[7], to
introduce a new graph construction method appropriate for
use in graph-based SSL. We describe our modifications to
the GNG to obtain a stopping criteria that tell us when the
graph produced by the neural network correctly maps our
input data, and it is appropriate for use in a SSL classification
scenario. Our graph construction method can be combined
to most regularization techniques in semi-supervised learning
with graphs, and in our experiments we make a comparative
study of different graph construction methods versus our
approach combined with different regularization techniques.
The experiments section shows how our graph-construction
approach faithfully represents some set of patterns and saves
space with little loss of accuracy during the classification.

II. SEMI-SUPERVISED LEARNING WITH GRAPHS

In general SSL approaches there are three types of data:
labeled data Xl, known unlabeled data Xu, and unknown
unlabeled data Xn. An SSL method is transductive when it
does not know how to handle Xn and is only interested in
label Xu. When the algorithms labels both Xu and Xn, it
is called inductive [2]. Graph SSL are transductive by nature
and have with two main steps, the graph construction or
graph conceptualization, and the graph regularization or label
propagation. At the end of the latter stage, all data-points in
Xu should be labeled.

2013 XXVI Conference on Graphics, Patterns and Images

1530-1834/13 $26.00 © 2013 IEEE

DOI 10.1109/SIBGRAPI.2013.13

24



There are many ways to build the graph. Most methods
treat as vertices each data-point x ∈ Xl∪Xu, and for the edge
weight they use a similarity measure based on the distances
of adjacent vertices [1]–[3]. The graphs are typically either
fully connected, k-graphs, or ε-graphs. Fully connected graphs
connect each vertex to all the other vertices. In k-graphs, each
vertex connects to its k nearest vertices. Finally, in ε-graphs
each vertex connects to all the vertices that are at a distance
less than ε.

The graph regularization step aims to propagate the labels
from Xl to Xu within the graph, trying to respect two main
conditions. The first is to respect the labels of the labeled
data-points, after the regularization takes place all labeled data
should have the same labels as in the beginning. The second
condition to accomplish is that label transitions should be
smooth in the graph, that is if an edge has its adjacent vertices
with different labels, it should have the greater possible weight,
so edges with small weights should have both adjacent vertices
with the same label [2], [8]. The graph regularization problem
can be seen as an optimization problem, see Equation 1.

argmin
f

⎛
⎜⎝

loss function︷ ︸︸ ︷
Q(f) + R(f)︸ ︷︷ ︸

regularizer

⎞
⎟⎠ (1)

In Equation 1 the loss function takes over the first condition
while the regularizer takes over the second condition. Most of
the semi-supervised learning methods with graphs work with
variations of this general equation [2]. The literature presents
many ways to deal with the graph regularization step. One of
them is the use of label propagation algorithms that converge to
a solution within a number of iterations, this could take a while,
or even never converge, it depends on the graph structure. Also
there are direct analytical solutions as the use of Harmonic
functions or the use of smooth operators of the graph from
the graph Laplacian, this methods used to deal with matrix
inversion and spectral decomposition of the graph Laplacian
Δ,

Δ = D −W, (2)

where W is the adjacent matrix of the graph and the diagonal
matrix D is

Dii =

l+u∑
j=1

wij , (3)

where wij the weight of the edge between vertices i and j.

The graph Laplacian is a matrix of size (l + u)× (l + u),
so when dealing with very large datasets, unless the matrices
are sparse, inverting or decomposing this matrix would be
computationally expensive.

Also there are method for fast computation of the classi-
fication function f , this methods work with spectral approxi-
mations [9], sub-space Krylov iterations [10], EigenFunctions
of the smooth operator of the graph Laplacian [4] and the
construction of backbone graphs with less vertices than the
original graph [9], [11].

III. GROWING NEURAL GAS WITH STOPPING CRITERIA

A GNG neural network is an unsupervised incremental
algorithm that learns topological relations of a given input
data-set. This neural network can change its configuration
while it is training itself, adding and removing neurons and
connections whenever necessary [5]–[7], [12]. Unlike other
unsupervised neural networks, this behavior optimizes the
speed and memory use. And using a correct stopping criterion
for our problem, it can represents correctly at the right moment,
in the training process, a group of data-points.

This neural network can be seen as a graph G = (V,E),
where each vertex v ∈ V is a neuron and the edges e ∈ E
are the connections between the neurons. Each vertex has the
following structure: v = (p, ξ), where p are the coordinates of
the neuron v, p ∈ R

n, like the input data-points x ∈ R
n; and

ξ ∈ R is the error rate of neuron v . The edges has also a
configuration structure, each edge e = (vi, vj , wij , t), vi and
vj are the vertices adjacent to e, wij is the weight of the edge,
which could be the euclidean distance between them, and t is
the age of the edge, in number of training iterations.

The GNG begins with just two isolated neurons, randomly
disposed in the data-points space. At each iteration one data-
point x is analyzed, then the two nearest neighbors to x are
picked from V , let say vs and vt, being vs the closest vertex
to x, so vs was activated by x. Then the error rate ξs of vs
is updated as in Equation 4; where d(x, ps) is the distance
between x and vs (which is at ps coordinates), by this way
the vertices that were activated by more data-points tend to
have a bigger error ξ.

ξs = ξs + d(x, ps) (4)

After updating the error, it is created an edge est =
(vs, vt, 0, 0), if it already exists then just the age tst is set
to 0; then the coordinates ps of vs and the coordinates pm
of all of its adjacent vertices including vt are updated as in
Equations 5 and 6; εs and εm are real numbers in [0, 1], and
εs ≥ εm, those are hyper-parameters of the GNG.

ps = ps + εs(x− ps) (5)

pm = pm + εm(x− pm) (6)

Then the distance between vs and all of its adjacent vertices
vm are updated, as esm = (vs, vm, d(ps, pm), tsm). At each
iteration all the edges of the GNG connected to vs increment
their age t by one. The neural network grows when a given
number λ of input-patterns x are analyzed, λ is also an hyper-
parameter of this algorithm, it is selected the vertex vmax

with maximum internal error ξmax, and then it is selected the
adjacent vertex to vmax that has the maximum error too, so
it is created a new vertex vnew between vmax and vnmax,
pnew = 0.5(pmax + pnmax), subsequently the errors of vmax

and vnmax are decreased by ξmax = ξmax − α(ξmax) and
ξnmax = ξnmax − α(ξnmax), after this ξnew = 0.5(ξmax +
ξnmax), α is another hyper-parameter of the algorithm.

This algorithm also prune vertices and edges from the
graph, there is an hyper-parameter β, at each iteration all the
edges which ages t > β are pruned and if one vertex after this
becomes isolated it is removed too. Finally all the errors of all
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the remaining vertices are decreased by ξ = ξ − δξ, δ is the
last hyper-parameter of this algorithm.

As the literature points out, in order to get a good trained
GNG it is necessary to use another stopping criteria, different
than the number of iterations [12]. This way we optimize for
time and space, avoiding unnecessary training iterations and
the creation of unnecessary vertices.

IV. PROPOSED ALGORITHM

The main idea of this algorithm is to use the GNG with
some stopping criteria to build a graph that faithfully represents
Xl∪Xu, and immediately after this use some traditional graph
regularization algorithm in order to calculate the classification
function f over the graph G built by the GNG algorithm. But
as we are not trying to clusterize the data, a clustering index
would not be right for our purpose, it is necessary another
way that let us know when to stop the training of the neural
network.

The index that will be used to stop the GNG training has
to tell us if there are significant changes in the mapping of
the data by the graph. First we have the vertex influence index
Ivi, look Equation 7; where xi ∈ Xl ∪ Xu, l and u are the
number of elements in Xl and Xu respectively, and pxi are the
coordinates of the vertex that was the last to be activated by xi;
when each pattern xi is analyzed by the GNG, it is annotated
the vertex that was activated by it. This index is a mean of
all the distances of the data-points to their respective activated
neurons and tell us basically if there are enough vertices that
map the data, this index has to be minimized for better results,
but also depending of the topology of the input data set, this
index would reach a minimum that cannot be decreased by
any other graph configuration.

Ivi =
1

l + u

l+u∑
i=1

d(xi, pxi
) (7)

The second index that we use, is called vertex distribution
index Ivd, this index is shown in Equation 8, Adj(vi) is a
function that returns all the adjacent vertices to vi, pi and pnb
are the coordinates of vertices vi and vnb, and the distance
d(pi, pnb) between them, are obtained from winb of the edge
with vi and vnb as adjacent vertices; finally |V | represents the
number of vertices in V . The vertex distribution index is the
mean of the larger edge of each vertex in the graph, it express
if the graph is correctly distributed, this index for better results
in this problem should have the less possible value; Ivd could
reach a very low value if the graph has too many vertices, by
this it has to work with the vertex influence index for a good
performance and description of the data graph mapping.

Ivd =
1

|V |
|V |∑
i=1

argmax
vnb∈Adj(vi)

d(pi, pnb) (8)

When a graph faithfully maps the input data, Ivi ≤ Ivd,
because we are assuming that the vertices are uniformly
distributed and the original data-points are almost at the same
distance to their activated neuron, the mean of all the distances
of the data-points to their respective activated neuron cannot
be larger than the distance between vertices, from this we get

to the final graph mapping index Igm in Equation 9, which
should be maximized, but never greater than one. This index
tell us the current state of the graph with respect to the data,
every time the input patterns were analyzed by the GNG.

Igm =
Ivi
Ivd

(9)

The GNG training with stopping criteria would be done
in the same fashion as was did by D. Chavez et al. [12]
using an index error and an error factor, but replacing the SV
index by the graph mapping index, which tell us the state of
the data graph mapping at every configuration of the graph.
Each time that a quantity of input patterns are analyzed ( we
set this quantity as the size of the input-patterns set l + u
), it is calculated de Igm index for all the analyzed patterns
(Igm = 0 at the beginning), then it is calculated the error of
the Igm index which is the difference between the actual Igm
and the last Igm, the error factor is the number of times that
the error can be less than the index error before stopping the
algorithm. Another modification was made to the traditional
GNG, to insert a new vertex to the graph, not only, it has to
be satisfy the condition of the λ patterns analyzed, but also
there has to be checked if there are no more vertices than a
proportion of the input patterns, this proportion is also another
hyper parameter of the algorithm. The last modification done
to the traditional GNG was, that if, after the training process
was done, it is obtained a not connected graph, this graph is
converted to a connected graph by connecting the vertices of
different subgraphs that are the closest between them.

After the successful training of the GNG with the graph
mapping index as the stopping criteria, we have a graph where
its edge weights represent the distance between vertices, so
now we have to convert this distances into similarities, after
this the traditional graph regularization would be done over
the graph; but just before this we have to deal also with the
labels mapping. Basically a vertex would have the label that is
most common for all the data-points that activated it, if those
data-points do not have a label then the vertex either does not
have a label, or if there are more than one common label it
would be chosen randomly. After the regularization step, the
label mapping is inverted, all the data-points would have the
label of the neuron that was activated by them, but all the
data-points in Xl would keep its original label.

V. EXPERIMENTS AND RESULTS

In this section, we describe the experimental procedure
and results of this paper. We compare our method with other
graph constructions algorithms: full graphs, ε-graphs, and k-
graphs; using different graph regularization algorithms: the
harmonic function regularizer [13], the Krylov approximated
regularizer [10] and the eigenvectors of the smooth operator
of the graph Laplacian regularizer [4]. We compare graph
construction-regularization combinations in terms of accuracy
given a progressive proportion of labeled data-points in differ-
ent input data-set size instances.

We choose image content classification problem for our
evaluation: we want to classify a set of images by a concept
(for example all the images with dogs in the foreground)
from a little subset of labeled images with this concept, for
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TABLE I. ACCURACY RESULTS FROM THE 1000 DATA-POINTS GROUP.

Graph Construction Method Graph Regularization Method
Labeled Data Proportion

10% 20% 30% 40% 50%

Full Graph

Harmonic 0.578 0.597 0.656 0.714 0.758

Krylov 0.574 0.596 0.654 0.710 0.755

Smooth Operator 0.562 0.596 0.586 0.602 0.624

k-Graph (k = 2)

Harmonic 0.553 0.608 0.648 0.711 0.744

Krylov 0.553 0.606 0.643 0.710 0.743

Smooth Operator 0.548 0.585 0.604 0.604 0.623

k-Graph (k = 3)

Harmonic 0.556 0.586 0.663 0.719 0.756

Krylov 0.557 0.587 0.663 0.718 0.757

Smooth Operator 0.558 0.625 0.616 0.633 0.638

k-Graph (k = 5)

Harmonic 0.590 0.604 0.667 0.723 0.754

Krylov 0.589 0.602 0.667 0.724 0.753

Smooth Operator 0.583 0.586 0.610 0.623 0.627

k-Graph (k = 10)

Harmonic 0.570 0.600 0.658 0.722 0.747

Krylov 0.568 0.601 0.658 0.720 0.746

Smooth Operator 0.577 0.594 0.615 0.633 0.638

ε-Graph (ε = 0.1)

Harmonic 0.550 0.600 0.650 0.700 0.750

Krylov 0.550 0.600 0.650 0.700 0.750

Smooth Operator 0.500 0.500 0.500 0.500 0.500

ε-Graph (ε = 0.5)

Harmonic 0.568 0.605 0.667 0.710 0.752

Krylov 0.568 0.605 0.667 0.710 0.752

Smooth Operator 0.511 0.537 0.537 0.516 0.512

ε-Graph (ε = 1.0)

Harmonic 0.550 0.619 0.649 0.710 0.754

Krylov 0.550 0.619 0.649 0.710 0.754

Smooth Operator 0.550 0.585 0.601 0.596 0.610

GNG Graph (λ = 5)

Harmonic 0.568 0.610 0.669 0.696 0.739

Krylov 0.568 0.610 0.669 0.696 0.739

Smooth Operator 0.552 0.609 0.669 0.674 0.691

GNG Graph (λ = 10)

Harmonic 0.586 0.628 0.657 0.702 0.712

Krylov 0.585 0.628 0.657 0.702 0.711

Smooth Operator 0.573 0.599 0.628 0.681 0.649

this purpose we used in our experiments the CIFAR-10 label
set [14] with the Tiny Images data set [15]. The CIFAR-10
label set maps 60000 images from the Tiny Images data set
to ten labels (Figure 1), so each label has approximately 6000
images samples.

Fig. 1. CIFAR-10 label set.

.

The elements of the Tiny Images data set are 32x32
pixel images, in our experiments this images were described
using the GIST descriptor [16], which is a holistic descriptor
for complete scenes of 384 dimensions. Each datapoint was
projected to a 64 dimensional space using principal component
analysis, this projection maintain the 81.3 % of the original
data’s variance.

We have three groups of experiments, in all of them the
number of known positive labeled data-points (labels from the
CIFAR-10 label set) where the same as the known negative
labeled data-points. The first group of experiments were made
with just 1000 data-points, the second group was made with
4000 data-points and the third with 8000, each group with 5%
to 50% of labeled data.

As we compare the graph regularization performance with
different graph construction approaches, it is necessary to
know how each regularization method behaves with each graph
construction method by itself, in order to accomplish this, there
are the charts in Figures 2, 3 and 4. In Figure 2 we show
the performance in terms of accuracy (with 0.5 as decision
threshold, being 0 the negative labels and 1 the positive
ones) of the Harmonic regularizer with the different graph
construction methods, at a progressive amount of labeled data
(from 5% to 50%); the four graph methods were very tied
with the Harmonic regularizer, but the best performance was
obtained by the ε-graph at a 50% of labeled data, as can
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TABLE II. ACCURACY RESULTS FROM THE 4000 DATA-POINTS GROUP.

Graph Construction Method Graph Regularization Method
Labeled Data Proportion

10% 20% 30% 40% 50%

Full Graph

Harmonic 0.54725 0.60525 0.65950 0.70725 0.75000

Krylov 0.54800 0.60525 0.65850 0.70900 0.75000

Smooth Operator 0.55450 0.60725 0.61275 0.62225 0.63300

k-Graph (k = 2)

Harmonic 0.56350 0.60975 0.65550 0.71025 0.75900

Krylov 0.56300 0.60875 0.65575 0.70925 0.75850

Smooth Operator 0.56425 0.58825 0.60050 0.61600 0.62800

k-Graph (k = 3)

Harmonic 0.56075 0.60100 0.65475 0.70950 0.76450

Krylov 0.56025 0.60075 0.65500 0.70950 0.76400

Smooth Operator 0.55575 0.60375 0.60125 0.61500 0.62350

k-Graph (k = 5)

Harmonic 0.55875 0.60625 0.65375 0.70300 0.75175

Krylov 0.55625 0.60375 0.65350 0.70250 0.75175

Smooth Operator 0.56000 0.58850 0.60350 0.61050 0.62200

k-Graph (k = 10)

Harmonic 0.56675 0.61325 0.65350 0.70475 0.75850

Krylov 0.56625 0.61350 0.65400 0.70400 0.75775

Smooth Operator 0.55975 0.60125 0.62075 0.61625 0.62100

ε-Graph (ε = 0.1)

Harmonic 0.55000 0.60000 0.65000 0.70000 0.75000

Krylov 0.55000 0.60000 0.65000 0.70000 0.75000

Smooth Operator 0.50000 0.50000 0.50000 0.50000 0.50000

ε-Graph (ε = 0.5)

Harmonic 0.55450 0.60100 0.65225 0.69600 0.75250

Krylov 0.55450 0.60325 0.65275 0.69700 0.75250

Smooth Operator 0.52000 0.53050 0.54725 0.54750 0.55300

ε-Graph (ε = 1.0)

Harmonic 0.54700 0.59975 0.65175 0.69700 0.74825

Krylov 0.54700 0.59975 0.65175 0.69700 0.74825

Smooth Operator 0.55575 0.58475 0.60850 0.62175 0.63200

GNG Graph (λ = 5)

Harmonic 0.55900 0.59350 0.64650 0.67600 0.72675

Krylov 0.55900 0.59350 0.64625 0.67625 0.72675

Smooth Operator 0.55900 0.58550 0.64325 0.65925 0.67425

GNG Graph (λ = 10)

Harmonic 0.55175 0.58950 0.62500 0.64700 0.67825

Krylov 0.55175 0.58950 0.62500 0.64750 0. 67875

Smooth Operator 0.55500 0.58650 0.62075 0.60475 0.62575

be seen by this the GNG graph construction algorithm can
obtain comparable results to the traditional graph construction
algorithms but reducing the cost of the regularization and
saving memory, because it induce a new graph with less
vertices, in this case was induced a graph with 0.9(l + u)
vertices (0.9 was set as hyper parameter of the algorithm) with
a graph mapping index of 0.89, a GNG growing rate λ = 5,
index error of 0.5 and error factor of 2.

The results from the Krylov regularizer with 1000 data-
points can be seen in Figure 3, they are very similar to the
Harmonic regularizer results, all the four graph construction
methods were also tied, and the best result was obtained again
by the ε-graph at 50% with ε = 0.8, the experiments with the
Krylov method were done with 100 iterations in the MINRES
algorithm [10]. One thing that is hard to tell is which are
the better graph construction method for each instance, how
to know that an ε-graph with ε = 0.8 was the right choice,
with out many tests with different εs, or a detailed analysis
of the topology of the patterns, that is the main problem, the
literature shows that in most cases it is better to regularize
complete connected graphs, but with the drawback of the cost
of space and complexity.

In Figure 4 is shown the results from the eigenvectors of the
smooth operator regularizer with 0.3(l+u) eigenvectors, in this
case the results were different from those with the Harmonic
regularizer and the Krylov regularizer, in this experiments the

0.55

0.6

0.65

0.7

0.75

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Harmonic Regularizer

Full graph
k-graph (k=3)

 ε-graph (ε=0.8)
GNG-graph

Fig. 2. Results from the Harmonic Regularizer experiments with 1000 data-
points (percentage of labeled data vs accuracy).

GNG graph construction clearly outperforms the other three
graph construction method, this was because as the graph
induced by the GNG graph construction algorithm is smaller
(|V | < l + u), so it is 0.3|V | < 0.3(l + u), and in the
regularization we were using 0.3(l+u) eigenvectors of a graph
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TABLE III. ACCURACY RESULTS FROM THE 8000 DATA-POINTS GROUP.

Graph Construction Method Graph Regularization Method
Labeled Data Proportion

10% 20% 30% 40% 50%

Full Graph

Harmonic 0.54863 0.59713 0.64475 0.69575 0.74738

Krylov 0.54863 0.59713 0.64475 0.69575 0.74738

Smooth Operator 0.54950 0.60150 0.64100 0.67825 0.68588

k-Graph (k = 2)

Harmonic 0.55488 0.60600 0.65263 0.70125 0.74863

Krylov 0.55475 0.60600 0.65263 0.70125 0.74863

Smooth Operator 0.54050 0.60200 0.64688 0.66788 0.69013

k-Graph (k = 3)

Harmonic 0.54875 0.59863 0.65050 0.70275 0.75088

Krylov 0.54863 0.59863 0.65050 0.70275 0.75088

Smooth Operator 0.55200 0.59825 0.64863 0.67425 0.69063

k-Graph (k = 5)

Harmonic 0.54875 0.60013 0.64988 0.70013 0.75125

Krylov 0.54875 0.60013 0.64988 0.70013 0.75125

Smooth Operator 0.55288 0.59075 0.64588 0.68450 0.69763

k-Graph (k = 10)

Harmonic 0.54563 0.59313 0.64538 0.69925 0.74650

Krylov 0.54563 0.59313 0.64538 0.69925 0.74650

Smooth Operator 0.54813 0.59963 0.64175 0.68113 0.69663

ε-Graph (ε = 0.1)

Harmonic 0.55000 0.60000 0.65000 0.70000 0.75000

Krylov 0.55000 0.60000 0.65000 0.70000 0.75000

Smooth Operator 0.50000 0.50013 0.50013 0.50013 0.50013

ε-Graph (ε = 0.5)

Harmonic 0.54888 0.59725 0.65088 0.69925 0.74763

Krylov 0.54900 0.59850 0.65138 0.70050 0.74825

Smooth Operator 0.51875 0.53525 0.61450 0.57125 0.58850

ε-Graph (ε = 1.0)

Harmonic 0.54788 0.59838 0.64388 0.69863 0.74663

Krylov 0.54763 0.59850 0.64388 0.69863 0.74675

Smooth Operator 0.54500 0.59625 0.65363 0.68350 0.69950

GNG Graph (λ = 5)

Harmonic 0.53750 0.58963 0.63675 0.66950 0.69938

Krylov 0.53750 0.58963 0.63650 0.66950 0.69963

Smooth Operator 0.54563 0.59188 0.62138 0.64938 0.64788

GNG Graph (λ = 10)

Harmonic 0.54063 0.59013 0.63088 0.65375 0.65638

Krylov 0.54075 0.59025 0.63100 0.64388 0.65638

Smooth Operator 0.54738 0.58750 0.61125 0.61450 0.60150

of size |V |, so the proportion of eigenvectors in the GNG
induced graph is greater than 0.3; and by this it is shown
also that the induced graph has similar spectral decomposition
as the graph instances with l + u vertices, pointing out the
right data mapping that was accomplished by the GNG graph
construction algorithm.
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 ε-graph (ε=0.8)
GNG-graph

Fig. 3. Results from the Krylov Regularizer experiments with 1000 data-
points (percentage of labeled data vs accuracy).
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Fig. 4. Results from the Smooth Operator Regularizer experiments with 1000
data-points (percentage of labeled data vs accuracy).

The detailed results of the most meaningful experiments
are in tables I, II and III for 1000, 4000 and 8000 data-points
respectively. For 8000 data-points were induced graphs with
0.8(l+u) vertices and a error factor of 1 in order to save space
and get a faster convergence of the algorithm, and by this the
accuracy was less compared to the cases where were induced
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graphs with 0.9(l+u) vertices. But the behavior is very similar
in all instances, but as the input size increases the accuracy
decrease in all the construction-regularization combinations.

The GNG graph construction algorithm have a complexity
of O((l+u)|V |I) where I is the number of executed iterations
(by executed iterations we refer to each time the Igm index
is evaluated); most of the implementations of the other graph
construction algorithms would have a complexity of O((l +
u)2), so if |V |I < (l + u) the GNG construction algorithm
would be faster, because it would have a better best case, but
its worst case (when |V |I > (l + u)) could be much more
expensive than O((l+u)2) if the algorithm does not converge
fast or there were created too many neurons too soon and few
of them are removed in the process. It can be guarantee to
always get a best case by setting as input parameters I and
|V |, initializing them with values that enforce |V |I < (l+ u),
but if they are too small they will have a drawback in graph
mapping correctness and hence classification accuracy. In order
to solve this issues there have to be set appropriate values for
the hyper-parameters of the algorithm, and this values could
variate for each data-set.

From the final results of the experiments, it can be shown
that the Growing Neural Gas with stopping criteria graph
construction algorithm reduce the space and complexity for the
regularization step with no drawbacks in terms of classification
accuracy (as it induced a smaller graph), and as long as
the stopping criteria works, it also reduce the space in the
graph construction step. Also in order to optimize the graph
mapping index, |V | has to be very close to l + u, but not
close enough to make the GNG graph construction useless
in terms of space saving. But the main problem with GNG
construction algorithm is all the hyper-parameters it has to
deal with, mainly λ, the index error and the error factor. As
we try to make the construction as fast as possible and with
the better graph mapping index; λ has to be small (in this
case we chose a small value as 5 for λ ), by this the GNG
leaves small room for adaptation, depending on l+u; the index
error should not be too small and the error factor should not
be large, by this way the GNG would stop quickly with a
suitable number of vertices, which would not be greater than
the proportion (we used 0.9 and 0.8) of l+u specified as hyper-
parameter of the algorithm. As the proportion of maximum
allowed vertices is lesser, depending on the topology of the
data, the performance of the transductive classification could
decrease, but more memory would be saved in the process;
so it has to be choose a equilibrium between saved space and
desired performance.

VI. CONCLUSION

We have presented a new approach to graph construction
for semi-supervised learning classification, the GNG graph
construction algorithm, based in the GNG (Growing Neural
Gas) algorithm. This method faithfully maps the input pat-
terns for the graph based SSL algorithm to a smaller graph.
This allows a faster and more compact regularization step of
any graph-based SSL algorithm. The new stopping criterion
introduced in this paper, based in the graph mapping index,
allows a fast and efficient GNG graph construction. Finally,
the experiments shown that this approach does not affect
the performance of the classification task compared to the

traditional graph construction algorithms, and in some cases
it even improves it.
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