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1. Introduction

Most of us know the power of social media and its importance
in making people more connected. Indeed, the new century’s first
decade has seen a vast rise of modern social media. What was
formerly restricted to college campuses now easily achieve over
millions of people with astonishing media uploading and sharing
rates. For instance, Youtube claims that one hour of video is
uploaded to their computers per second or more than 86 thousand
hours of video per day (c.f., http://www.youtube.com/t/press_-
statistics). More importantly, Youtube has more than four billion
video views per day which shows that content is not only being
uploaded but also consumed.

Such shear amount of data has brought to us challenges never
imagined before. For example, within such massive amount of data
it is common that several documents are duplicates or near-
duplicates of one another. While it is straightforward to find exact
duplicates among available media, that does not hold true when
media objects undergo small modifications. It is fairly common
small changes to occur during the redistribution, usually without
interfering on their semantic meaning. This is what we call near-
duplicate media objects. These modifications can include, among
others, A/D or D/A conversions, (de)-coding, transmission noise,

and small editing/corrections such as brightness adjustments, or
cropping.

The identification of near-duplicates has received particular
attention during the past few years and [1–3] are just some
examples in this area. However, a challenging task which has been
vastly overlooked until recently, arises when we need to identify
which document is the original within a set of digital related
objects, and the structure of generation of each of them. In this
case, we need to go beyond the identification of near-duplicate
documents. We have to consider a population of multimedia
objects as a whole to study the relationships among objects and
their past history, as a result from the way they have been
generated and manipulated overtime.

Although most of the changes related to near-duplicate
multimedia objects are natural and not necessarily harmful,
sometimes the distribution itself might cause copyright infringe-
ment or even represent a criminal action [4,5]. In some situations,
the spreading pattern of an image or video can help companies to
understand demographics and effectiveness of an ad campaign or a
product. The identification of the original image posted online can
help the analysis of a copyright infringement complaint. The
original image is also the best candidate for a forensic authenticity
analysis [6].

These scenarios motivated the dawning of a new research
subfield called Multimedia Phylogeny [4], to investigate the history
and evolutionary process of digital objects. In other words, we are
looking for the structure of modifications of multimedia objects.

Solutions to problems in Multimedia Phylogeny have many
applications:
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In the past few years, several near-duplicate detection methods appeared in the literature to identify the
cohabiting versions of a given document online. Following this trend, there are some initial attempts to
go beyond the detection task, and look into the structure of evolution within a set of related images
overtime. In this paper, we aim at automatically identify the structure of relationships underlying the
images, correctly reconstruct their past history and ancestry information, and group them in distinct
trees of processing history. We introduce a new algorithm that automatically handles sets of images
comprising different related images, and outputs the phylogeny trees (also known as a forest) associated
with them. Image phylogeny algorithms have many applications such as finding the first image within a
set posted online (useful for tracking copyright infringement perpetrators), hint at child pornography
content creators, and narrowing down a list of suspects for online harassment using photographs.
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(a) security and law-enforcement (e.g., by narrowing down a list of
suspects for online harassment);

(b) forensics (e.g., finding original documents within a set of
related ones and allowing for more advanced document
forensic analyses);

(c) copyright enforcement (e.g., traitor tracing without the
requirement of active source control solutions such as water-
marking or fingerprinting);

(d) news tracking services (e.g., document relationships can feed
news tracking services with key elements for determining the
opinion forming process across time and space [7,8]);

(e) content-based retrieval systems (e.g., showing similar photo-
graphs but of different photographers to a user without any
metadata analysis).

Only recently there have been the first attempts to go beyond
the near-duplicate identification problem to pinpoint the structure
of relationships within a set of objects [9,4,10,8,7]. However, these
early investigations are constrained to the case of image and video
near-duplicates, which are related by a set of possible transforma-
tions – e.g., cropping, affine warping (considering as special cases
resampling, rotation and translation), brightness/contrast adjust-
ment and lossy compression. The main objective of such prior work
was to identify the phylogeny tree associated with a set of near-
duplicate images or videos.

In this paper, we go beyond prior work on Near Duplicate
Images (NDI) and aim at finding the phylogeny trees within a set of
Semantically Similar Images (SSI). Prior work in the literature have
assumed the existence of relationships when analyzing a set of
images. In this paper, without assuming the existence of relation-
ships, we automatically find when images share a chain of
processing history. For a better understanding, we formally define
NDI and SSI documents in Section 2.

We expand upon state-of-the-art solutions [4,10,9] and
present a new algorithm that automatically deals with sets of
images from different sources, finding the different phylogeny
trees.

We faced this problem for the first time while performing a real
forensic analysis. On April 5th, 2009 [11], the Brazilian newspaper
Folha de São Paulo, a major news player in Brazil, published an
article about President Dilma Rousseff, back then the Brazilian
Chief of Staff and a potential candidate for the 2010s presidential
election (currently the president of that country). This article
claimed that during her participation in the resistance to the
Brazilian dictatorship, in the 60s, she engaged in violent or terrorist
activities, such as armed robberies and kidnappings. To support
this claim, the newspaper printed an alleged image of Secretary
Rousseff’s dossier from the internal files of the Repression Police
(see Fig. 1), arguing it was obtained from the Public Archive of São
Paulo, responsible for housing this collection of documents from
that period of time.

Ms. Rousseff, who always declared herself as participant
in a non-violent resistance movement, denied the allegations
in the article and hired us to perform a forensic analysis of
the image’s authenticity. The newspaper never provided us the
original printed image. Additionally, the image was virally
widespread over the internet even before the newspaper
chose to publish it – there were hundreds of copies in many
different websites and blogs. Most of the copies were not
exact but each one could have undergone additional image
processing operations such as rescaling, cropping, and color
adjustments.

That was the point where we identified that the literature
lacked a robust approach for associating related images
overtime, and the turning point for creating the multimedia
phylogeny area. We needed a technique to answer questions

such as: what image was the least modified one and, probably,
the original released online (root of the tree)? What was the
evolutionary associated tree? Could the tree’s root (possibly the
original image) be associated with auxiliary information of logs
and website collected data to point out the perpetrator? In
Section 6.4, we show the phylogeny tree associated with a few
collected images related to this case and how we could put more
effort analyzing the images on top of the tree instead of the
leaves (which represent the least important modified versions
for forensic purposes).

There are many forensic applications to image phylogeny
solutions. Consider postings on the internet of private and/or
abusive photographs of a regular person, such as in a bulling
situation. Equally disturbing are online postings with fake and
defamatory image content of celebrities or politicians (such as the
case we discussed earlier). Similarly, our algorithm could help
the fight against online child pornography (CP). Criminals use the
internet to sell and disseminate CP images, and once these images
go online, people usually redistribute them quickly using all sorts
of hiding and changing methods.

Phylogeny algorithms can help us understand the evolution-
ary process among the set of replicated images. With the use
of other metadata, and additional investigative work, it may
be possible to track down the actual individuals who initially
published the content online. Tools such as Microsoft’s
PhotoDNA [12,13] characterizes images using unique signatures
looking for modified versions in an attempt to help
law-enforcement to chase child pornographers. However,
PhotoDNA normally looks only for exact or very similar copies,
and it is not concerned about the evolutionary process among
the images. Our solutions in image phylogeny look into the
images’ ancestry relationships, and is complementary to
PhotoDNA.

Fig. 1. The questioned object: the alleged image of Repression’s Secret Police files on
the Secretary of State Dilma Rousseff in 2009 as published by the Brazilian
newspaper Folha de São Paulo.
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This paper has seven sections. Section 2 formally defines what
are near duplicate documents (NDI) and semantically similar
documents (SSI). Section 3 briefly describes the related work in the
literature while Section 4 presents the necessary background for
the understanding of this paper. Section 5 introduces our novel
image phylogeny forests algorithm, and Section 6 shows the
experiments we perform to validate the proposed method. Finally,
Section 7 concludes the paper and hints at possible future work.

2. Definitions

Two key definitions used in this paper are the concept of Near
Duplicate Images (NDI) and Semantically Similar Images (SSI).

Definition 1. A set of Near Duplicate Images (NDI) refers to a set of
images whose content is similar and that can all be obtained by a
chain of transformations from a original source image. These
transformations can be very complex, and include cropping, rota-
tion, translation, scaling, brightness/contrast adjustments, gamma
correction, lossy compression.

Definition 2. The concept of Semantically Similar Images (SSI) is a
generalization of the NDI – each image in the set can be obtained by
a chain of transformations from a group of original source images.
For instance, we might have a set of SSI comprising two sets of near
duplicates, each set rooted at a source that comes from a different
camera, or that comes from the same camera but taken from a
different point in space and time.

3. Related work

In the past decade, we have seen increasing progress on the
development of efficient and effective systems to identify the
cohabiting versions of a given document in the wild [1–3].
However, only recently there were the first attempts to go beyond
the detection of near duplicates, with attempts to identify the
structure of relationships within a set of near-duplicates.

During its lifetime, a multimedia object might undergo different
processing stages whereby each processing operator might alter
the underlying features of the object’s content in a characteristic
and detectable manner. Establishing relationships between pairs
of digital objects through the analysis of their content is
challenging due to the diversity of processing operators.

Kennedy and Chang [7] first addressed the problem of parent–
child relationships between pairs of images. Their work proposed
the detection of plausible parent–child relationships within a set of
images using a visual migration map (VMM), representing an
approximation of the history of the images. However, the authors
did not discuss how to find possible parameters for the family of
transformations that lead a parent image to its resulting offspring.

Different from the VMM approach proposed in [7], Rosa et al. [8]
proposed to detect the image dependencies within a set of images
by considering that the images’ mutual information can be
expressed as the sum of the mutual information between the
content-based components and the content-independent compo-
nents between them.

Dias et al. [9] introduced and defined the problem of Image
Phylogeny Tree reconstruction finding the structure of transfor-
mations, and their parameters, that generated a given set of near-
duplicate images. The authors presented an initial solution to the
problem constrained to a tree, i.e., all images have a single source.
This work has been expanded upon in [4] in which the authors
presented an initial solution for dealing with more than one tree
but requiring input from the user on how many trees to seek for. In

[10], the authors showed the applicability of such phylogeny tree
algorithms to the context of videos and introduced a first solution
to reconstruct the tree of evolution of a set of near-duplicate
videos.

Kender et al. [14] studied content-based relationships among
video clips downloaded from YouTube and related to the same
event. They illustrated the construction of a content-dependency
graph, whose structure is justified from a ‘‘genetic’’ standpoint by
representing how videos evolve in terms of mutations, crossover
and other operators.

Although such approaches represent an important step toward
the solution of multimedia phylogeny problems, they were
constrained to the case of finding the tree of evolution of image/
video near-duplicates. In addition, some of them required input
from the user regarding the number of trees to seek for in the
forest. In this paper, our objective is to go a step beyond and
automatically determine the forest (set of trees) within a given
collection of images.

According to [15], ‘‘Digital forensics can be defined as the
collection of scientific techniques for the preservation, collection,
validation, identification, analysis, interpretation, documentation,
and presentation of digital evidence derived from digital sources
for the purpose of facilitating or furthering the reconstruction of
events, usually of a criminal nature.’’ Since multimedia phylogeny
algorithms help us to reconstruct events associated with a set of
documents (e.g., images), it can be seen as a subfield of digital
forensics.

Multimedia Phylogeny algorithms need to take advantage of
important findings and methods developed on the last two decade
in digital forensics related areas. To determine how two images
relate to each other, we need to investigate several additional
footprints associated with them.

Device identification is one of the most studied problems – when
we want to identify if two images come from the same acquisition
device. In this sense, multimedia phylogeny could benefit from
techniques that rapidly decorrelate two near-duplicates as coming
from different acquisition sensors. Some important works in
acquisition footprint might be found in [16,5]. Digital lens reflex
footprints have been explored in [17]. Democaising artifacts were
explored in [18] while [19] explored the interpolation telltales for
forensics purposes.

Image lossy compression, such as the one found in the JPEG
image format, also leaves significant footprints. The image
compression history associated with an image has been
investigated by Mao et al. [20] and by Fan and Queiroz [21]
whereby they investigated the temporal signatures associated
with images. The first discussed an information theoretical
approach for device temporal forensics while the latter
discussed the identification compression history associated
with a bitmap image. It is common to find images, originally
stored in JPEG format, further edited and re-saved as new JPEGs.
Double JPEG compression leaves characteristic telltales, which
were vastly explored in the forensics literature [22]. Multiple
JPEG compression has been analyzed in [23]. In the case of video
coding, footprints might be related to the coding parameters
(e.g., GOP structure) [24].

Editing-based footprints can also be helpful. Image editing
operations can leave statistically identifiable artifacts that can be
explored for further correlating the temporal evolution of a pair of
images. Numerous works have investigated such footprints such as
cloning detection [25,26], resampling [27], local tampering [28],
chromatic aberration [29], camera response functions signatures
[30]. Also, several researchers have explored illumination telltales
for identifying traces of tampering [31,32]. The study of video
editing footprints, as a parallel, is still limited. An example of such
study is [24].
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Information related to acquisition, coding-based, and editing-
based footprints can be used together to devise a strong measure
of similarity between a pair of images. Here, we use only simple
geometry, pixel-based illumination adjustments (e.g., bright-
ness, contrast, gamma correction), and compression. More
information about image-related footprints can be found in
[33,5,34,35] with discussions of the state of the art as well
as connections among the currently available tools and
solutions.

4. Concepts on multimedia phylogeny

According to [4], an Image Phylogeny Tree represents the
structure of transformations and the evolution of a set of near-
duplicate images. In general, we have a tree reconstruction
algorithm that builds upon an initial set of near-duplicates and
a dissimilarity function d. This function yields small values for
ordered pairs that are likely father and son on the tree, and large
values for ordered pairs that are unlikely so. As most of the
concepts discussed in this section come from [4], the contents here
might be similar.

Let T~b be an image transformation from a family T . We can
define a dissimilarity function between two images IA and IB as
the minimum

dIA;IB ¼ min
~b
IB # T~bðIAÞ
!!!

!!!
point-wisecomparison L

; (1)

for all possible values of ~b that parameterizes T . Eq. (1)
measures the amount of residual between the best transforma-
tion of IA to IB, according to the family of operations T . We can
use any point-wise comparison method L for the final residual
analysis. Here, to calculate the dissimilarity between two
images, we uncompress both of them, estimate the possible
transformations to which they were subject with respect to each
other and calculate their point-wise dissimilarity using the
standard Minimum Squared Error (MSE) as L. Different dissimi-
larity functions could be used here, Rosa et al. [8] have
suggested the use of noise-related signatures for comparing
images.

With a set of n near-duplicate images, the first task for creating
an image phylogeny tree is to calculate the dissimilarity between
every pair of such images. In this case, we need to consider a set of
possible image transformations, T , from which one image can
generate an offspring [8,4].

An Image Phylogeny Forest represents the structure of trans-
formations and the evolution of a set of semantically similar
images. Each tree of the forest represents the structure of
transformations and the evolution of a set of near-duplicate
images. A forest comprises distinct sets of near-duplicate images
but all images are semantically similar.

5. Proposed method

As discussed in [4], there are two steps in the process of
reconstructing an image phylogeny tree from a set of near-
duplicate images: the dissimilarity function and tree-building
algorithm. The same applies for reconstructing an image
phylogeny forest with the additional challenge that we need
to automatically discover the number of trees in the forest. This
paper’s contribution is a new algorithm for finding the set of
trees related to a set of n semantically similar images such that
each tree represents the relationships between image near-
duplicates.

In a general setup, we can determine the forest associated with
a set of documents either by performing operations directly on the

dissimilarity matrix M or by changing the tree building algorithm.
In the first case, we could devise clustering algorithms to find the
number of trees in the forest automatically from the dissimilarity
matrix. In the second case, we could design a forest building
algorithm directly over a dissimilarity matrix M. In this paper, we
adopt the latter alternative and use the same setup for the
dissimilarity matrix M as in [4].

5.1. Creating the dissimilarity matrix

Following [4], for each possible pair of images IA and IB, we
estimate ~b that minimizes the dissimilarity function of Eq. (1).
Then, we follow the steps below:

1. calculate the corresponding points between images IA

and IB using the Speeded-Up Robust Features (SURF) algorithm
[36];

2. robustly estimate the affine warping transformation parameters
~b for image IA with respect to IB taking the corresponding
points into consideration and using RANSAC algorithm [37],
finding

I0A ¼ T~b ðIAÞ;

3. calculate the mean and variance of each IB’s color channel and
normalize image IA’s color channels using such measures. For
each color channel c,

I00Ac
¼ ðT~b ðIAc Þ # mAc

ÞsBc

sAc

þ mBc
;

where mAc
and mBc

are the mean value of the color channel c of

T~b ðIAÞ and IB respectively, while IAc and IBc are the standard

deviations;
4. compress the result of Steps 2 and 3 according to IB’s

quantization table (QT),

I000A ¼ compressI00A with the QT from IB:

Steps 1 and 2 find stable interest points in both images, and
then calculate the geometric distortions between each pair of
images robustly, using RANSAC [37]. With three points in each
image we can use triangulations and estimate such geometric
transformations. In Step 3, we perform pixel intensity normaliza-
tion of image IA according to the IB color channels’ mean and
variance. Step 3 analyses the color differences of a pair of images
and try to quantify them. The idea is to estimate how much color
transformation an image undergoes to generate an offspring.
Step 4 compresses image IA according to IB’s quantization table.
Finally, we uncompress both of them and calculate their point-
wise dissimilarity on the domain of the target image. We actually
consider IA’s and IB’s quantization tables. If we are estimating the
cost for compressing IA on the domain of IB, we use IB’s
quantization table. If it is the other way around, we use IA’s
quantization table. The rationale with this step is that if an image
IA generates an offspring IB, them if we want to check if IB is a
descendant of IA, we need to recompress IB using IA’s
quantization table since that is the quantization table originally
present.

Fig. 2 depicts the process of mapping one image to another
image’s domain.

5.2. Automatic reconstruction of image phylogeny forests

The algorithm used to reconstruct an image phylogeny forest is
as important as the dissimilarity matrix related to the n
semantically similar images. In Section 5.1, we explained how to
build a dissimilarity matrix from n semantically similar images

Z. Dias et al. / Forensic Science International 231 (2013) 178–189 181



taking into consideration a family of transformations. In this
section, we introduce an algorithm for the construction of Image
Phylogeny Forests based on a modified version of the algorithm
proposed by [4]. Their work aimed at finding the phylogeny tree for
a set of near-duplicate images, but requiring an input from the user
for task involving more than one tree. On the other hand, our
extension, named Automatic Oriented Kruskal, can determine the
number of trees in a forest and reconstruct such trees without any
user intervention.

Given a dissimilarity matrix M built upon a set of n semantically
similar images, our algorithm first considers that each images in
the collection is the root of a tree. Then, the algorithm starts
processing good edges (low weight) to connect trees. While the
Oriented Kruskal algorithm processes n # l edges continuously (l is
a limit asked to the user), our algorithm keeps track of the variance
of processed edges and only adds a new one to the forest if the
weight of such an edge is lower than k times the standard deviation
of the edges processed up to that point. The parameter k is
calculated a priori based on the arc-weight distribution of some
example trees. In this paper, we set up k = 2; see Section 5.4 for the
proper justification. The algorithm stops when either it discovers
that the new candidate edge to consider is much higher than the
ones it already processed and accepted or when it already
processed n # 1 edges.

Algorithm 1 presents the operations step-by-step. Lines 1–3 of
Algorithm 1 initialize the tree vector with n initial trees, each one
containing a vertex representing an image. Each position
trees[i] denotes the parent of a node with id=i. At the end,
the variable trees contains the tree(s) representations. For
instance, trees = [1, 1, 2, 4] represents a forest with two
trees, one with three nodes and one with a single node. Vertex 1 is
the root of the first tree and also the parent of vertex 2, which in
turn, is the parent of vertex 3. Finally, Vertex 4 is the root of the
second tree.

Lines 4–5 initialize the auxiliary variable nedges to count the
number of accepted edges, and x1 and x2 are used to iteratively
calculate the standard deviation of accepted edges. Line 6 sorts the
arc-weights in the dissimilarity matrix M. The for loop in Lines 7–
24 examine matrix positions in order of dissimilarity, from lowest
to highest. The for loop checks, for each position (i, j), if the
endpoints i and j do not belong to the same tree and if j is the root of
a tree. Next, we need to further investigate if the edge (j ! i)
weight is greater than k times the known standard deviation of
previously added edges plus the latest accepted edge. If so, the
algorithm stops and returns the forest it calculated. Otherwise, the
algorithm includes the new edge to the forest and updates the
number of accepted edges, standard deviation of edges in the forest
and so on. In the end, the variable trees represents all the trees in
the forest.

The algorithm’s running time depends on how we implement
the Root function. If we use a disjoint-set-forest with the union-by-
rank and path-compression heuristics, we can implement such a
function very efficiently [38] in line with the running time of the
algorithm proposed in [4]. The final complexity of the algorithm is
O(n2 log n) where n is the number of semantically similar images in
the collection.

5.3. Simulation of the algorithm for one forest

Fig. 3 depicts the execution of the proposed algorithm for a toy
example with n = 10 semantically similar images. The algorithm
initially receives a dissimilarity matrix M that contains the
dissimilarities between each pair of images.

Fig. 2. To calculate image dissimilarities between a pair of images I1 and I2, we find robust points of interest in both images and for those which are good matches (yellow stars)
we calculate an homography matrix representing the necessary parameters to transform one image to another’s domain. Once we perform the mapping, we can compare both
images pixel wise within the region of interest they overlap. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the
article.)

Algorithm 1. Automatic Oriented Kruskal (AOK).
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The algorithm starts with n = 10 trees in the forest and it starts
processing edges that are candidates to include in the forest,
connecting some of its trees into bigger trees. First, the algorithm
processes edge (4 ! 8) which has the lowest entry in the
dissimilarity matrix M and then connects nodes 4 and 8 in the
forest. Next, the algorithm test the edge (4 ! 2) but it is discarded
since 4 is not the root of a tree. The algorithm tests the next eligible
edge (1 ! 7) and selects it. At this point, the forest has two selected
edges and it is possible to calculate the current standard deviation
of such selected edges which is s ffi 1.41. Therefore, the dynamic
limit for not accepting new edges is Limit = 2s + D(1, 7) = 2 '1.41 +
24 ffi 26.83. Recall that D(1, 7) refers to the dissimilarity between
images 1 and 7.

Next, the algorithm selects the edge (9 ! 5) since it connects
two different trees, does not create a loop and its weight is smaller
than the 26.83 and updates s to ffi1.15. The algorithm proceeds by
checking each edge in order until the 20th iteration when it
evaluates the edge (7 ! 5). This edge passes the first two tests (it
connects two different trees and does not create a loop). However,
its value is above the allowed limit calculated so far for all the
previously selected edges in the forest. This edge represents a
dissimilarity of 39 but the current limit for entering in the forest is
38.58. This edge is then discarded and the algorithm stops,
returning the forest depicted on the far right of Fig. 3.

If we use the algorithm proposed in [4], it will accept two more
edges (7 ! 5) and (7 ! 2) ending up with a single tree with 10
nodes (dotted red lines in the figure on the right). Our algorithm

automatically finds the correct number of trees in the forest and
stops when it finds that the edge (7 ! 5) should not be selected for
the forest (iteration 20).

5.4. Choosing the right distribution cutoff

As discussed above, our algorithm relies on the choice of a good
threshold point that will select only edges that belong to valid
trees. If this threshold is too small, the algorithm will reject valid
edges and we will end up with a forest larger than the correct
value. If the threshold is too high, the algorithm will incorrectly
accept edges, and find a smaller number of trees in the forest than
the right solution.

To come up with a reasonable threshold, we have studied the
behavior of the dissimilarity values of valid trees and forests. As we
can observe in Fig. 4, the dissimilarities of the edges of the real trees
are reasonably described by a Log-Normal distribution

pðxÞm;s ¼
1

x
ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2
p e#ðlnx#mÞ2=2s2

(2)

with m = #5.178 and s = 0.544. In the figure, we show the behavior
of three possible thresholds, m + s, m + 2s, and m + 3s which,
according to the estimated distribution, would each reject 4.8%,
0.76%, and 0.15% of the correct edges.

Given that we want a threshold as tight as possible to avoid
incorrect tree merging, we select m + 2s as the threshold. A
Kolmogorov–Smirnov test for such Log-Normal shows a p-value of
0.0255 (confidence of 97.5%) which demonstrates it is a reasonable
choice for the problem we need to solve.

Fig. 5, depicts the Log-Normal fitting for single (OC) and
multiple (MC) cameras considering forests of different sizes (1 . . . 5
trees). Note that the Log-Normal distribution reasonably describes
the data regardless the number of trees in the forest and the type of
image capture (single/multiple cameras).

A branch of research we are further investigating is why this
choice holds and also its theoretical implications for the
multimedia phylogeny problem as a whole.

6. Experiments and validation

We follow the methodology introduced by Dias et al. [4] for the
validation of our new algorithm, and look at four different
quantitative metrics (Root Evaluation, Edges Evaluation, Leaves
Evaluation, and Ancestry Evaluation) to evaluate a reconstructed
forest in scenarios where we have Ground Truth. All the metrics are
adapted to forests and calculated according to the following

MðIPF1; IPF2Þ ¼ jS1 \ S2j
jS1 [ S2j

; (3)

Log Normal Fit
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Fig. 4. Log-Normal fitting for valid trees (1 . . . 5) and forests and possible threshold
candidates for finding the right size of forest. In this case, we are considering all
edge weights of all trees for single and multiple cameras as data from a single
distribution.

Fig. 3. Step-by-step simulation of the Automatic Oriented Kruskal (AOK) algorithm to construct an Image Phylogeny Forest with three trees and 10 images from a 10 ' 10-
Dissimilarity Matrix. D(X, Y) denotes the last accepted edge weight. For instance, in Step 6, the last accepted edge has weight 24, therefore the limit is
Limit = 2 '1.15 + 24 ffi 26.31. (For interpretation of the references to color in the text, the reader is referred to the web version of the article.)
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where M is the evaluation metric of interest (e.g., root), IPFi are the
calculated forest and the one used as reference (e.g., the forest
ground-truth), S1 is the set of elements in the first forest
corresponding to the metric (e.g., set of roots of the first forest)
and S2 is the equivalent for the reference forest. For instance, to
obtain the metric Root, we calculate the intersection of roots found
by algorithm for the first forest with respect to the roots in a second
forest (e.g., the reference or ground truth), and normalize by the
union of both sets. As an example, consider the algorithm finds
three roots S1 = (r1, r2, r3) in the first forest and two of them turn out
to be correct with respect to the reference forest S2 = (r1, r3). Then,
the root metric here yields Root = |S1\ S2|/|S1 [ S2| = 2/3 = 66.6 %.

6.1. Validation data

We validate the proposed algorithm in two rounds. In the first
round, we compare the algorithm to the one presented in [4] using
a benchmark we make freely available upon acceptance at http://
www.ic. unicamp.br/~rocha/pub/communications.html. In the
second round, we compare our method to the method devised
in [8] using its two published test benchmarks. We also show an
exemplary real case with 75 near-duplicate images.

The corpus we consider in this paper comprises forests of size
|F| 2 {1, . . ., 5} trees and with 60 semantically similar images in
each case. When creating such controlled corpus, we use three
different cameras and capture images of three different scenes

with three images per camera per scene. For each scene, we
consider a near-duplicate scenario in which we have duplicates
with different transformation parameters. There are five possible
tree topologies for the forest. With all collected images, we create
image modifications in such a way we are able to create image
descendants in a controlled way up to 60 semantically similar
images in each case.

The family of image transformations T that we consider for
applying the image transformations is the same as in [4]:
resampling, cropping, affine warping (including rotation, transla-
tion, and off-diagonal correction), brightness and contrast adjust-
ments, and lossy compression using the standard lossy JPEG
algorithm. In the image processing domain, there are other
transformations. However, we strived for accounting for the most
common and important ones as they are more frequent in real-
world scenarios.

As we aim at evaluating forests instead of single trees
(semantically similar images instead of just near-duplicate
images), we consider scenarios with a single camera capturing
the images and from multiple cameras with similar scene
semantics (same content but with small differences in the vantage
point, zoom, etc.). In the scenario with multiple cameras, one forest
might have images of the same scene with images coming from the
same camera and others from different cameras (the images have
different acquisition artifacts). Each image produces several near-
duplicates representing a tree and with the trees composing the
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forest. In the scenario with a single camera, the images
representing a scene come from a single camera, each image
producing several near-duplicates.

In total, we have 6750 forests. This number refers to two
different scenarios (single and multiple cameras), five different
forest sizes (1 . . . 5), three different scenes, three different cameras,
three images per camera, five different tree topologies, and five
random variations of parameters when applying the image
transformations for creating the image offsprings. Therefore,
6750 forests = 2 '33 ' 53.

In this paper, we deal with only the JPEG image format, the most
widely used image compression format nowadays and present in
virtually all digital cameras. In addition, in conversations with our
forensics partners in the state and federal policies, we were told
that the vast majority of photographic material they apprehend
nowadays are in JPEG format.

This controlled corpus is relevant for forensic applications, it
will allow researchers in the phylogeny field to benchmark their
algorithms and to check their effectiveness for finding the ancestry
information, roots of the trees, etc. It is also important for checking
the real accuracy of a proposed method comparing its outputs to
the ground truth (real tree ancestry relationships). In addition, it
serves as a basis for calibrating and fixing parameters for real cases
when the algorithm goes operational. In such cases, there is no
associated ground truth.

Finally, we also show an example of a resulting phylogeny tree
associated with a real case we dealt with in the past regarding a
fake and defamatory criminal police record published by the
Brazilian newspaper Folha de São Paulo.

6.2. First round

As we previously mentioned, for the first round of analysis, we
tested the algorithms with a total number of 6750 forests. The
dataset comprises forests of varying size |F| 2 {1, 2, . . ., N} trees and
with 60 semantically similar images in each case. Particularly, in
this paper, we focused on forests of size up to N = 5 trees but it can
be trivially expanded to more trees. We consider scenarios with a
single camera and from multiple cameras but with similar scene
semantics.

Table 1 shows the results for the Oriented Kruskal [4]
phylogeny algorithm considering a different number of trees per
forest. In this case, the algorithm requires the input from the user
regarding the number of trees to reconstruct. As we deal with
controlled experiments in this case, we feed the algorithm with the
correct required parameter k. The algorithm is robust to scenarios

with single and different cameras. For instance, with forests with
five trees, the algorithm can successfully find the root of such trees
in 91.7% of the cases considering a scenario with near-duplicates
from semantically similar images coming from multiple cameras.

However, the algorithm clearly has a major drawback: it
requires the number of trees to look for in the forest. Table 2 shows
that if we use the Oriented Kruskal [4] algorithm without knowing
the number of trees to reconstruct, its performance decreases with
the number of trees in the two most important metrics to consider:
roots and ancestry. For edges and leaves, normally a tree
reconstruction algorithm behaves similarly for trees and forests
since, in the case of forest, there is a difference of only a few edges.

The results shown in Table 2 motivated us to a strategy to
automatically reconstruct the forest without any user-provided
information.

Fig. 3 depicts the results for Automatic Oriented Kruskal (AOK)
algorithm with respect to the baseline proposed in [4]. For
instance, AOK is only 2% worse than the baseline when finding the
roots of the trees in a forest with five trees. In addition, the
algorithm correctly finds the ancestors of all images (parents,
grand-parents, grand-grand-parents, etc.) in ffi77% of the cases
which represents only a 0.5% decrease when compared with the

Table 1
Reconstructing a forest of size |F| 2 {1, . . ., 5} trees using the Oriented Kruskal (OK)
algorithm [4]. This algorithm requires the input from the user for the size of the
forest to reconstruct. Results are relative to the ground truth.

|F| Roots Edges Leaves Ancestry

(a) Semantically similar images from a single camera
Baseline OK(k = |F|) – single camera
1 0.942 0.815 0.806 0.798
2 0.911 0.793 0.817 0.753
3 0.910 0.822 0.826 0.800
4 0.875 0.821 0.813 0.807
5 0.900 0.786 0.816 0.766

(b) Semantically similar images from multiple cameras
Baseline OK(k = |F|) – multi camera
1 0.942 0.815 0.806 0.798
2 0.920 0.792 0.816 0.755
3 0.923 0.822 0.824 0.805
4 0.908 0.820 0.811 0.821
5 0.917 0.788 0.815 0.775

Table 2
Reconstructing a forest of size |F| 2 {1, . . ., 5} trees using the Oriented Kruskal (OK)
algorithm [4] with no information about the size of the forest to reconstruct. Results
are relative to the baseline in Table 1. The redder the value the worse the metric
while the bluer the better.

(a) Semantically similar images from a single camera.

(b) Semantically similar images from multiple cameras.

Table 3
Reconstructing a forest of size |F| 2 {1, . . ., 5} trees using the proposed Automatic
Oriented Kruskal (AOK) algorithm. Results are relative to the baseline in Fig. 1. The
bluer the value the better.

(a) Semantically similar images from a single camera.

(b) Semantically similar images from multiple cameras.
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baseline in Fig. 1. This is a major result of the proposed algorithm
since it statistically performs similar to the state-of-the-art
approach without requiring any input from the user with respect
to the number of trees in the forest. Note also that the algorithm
improves the results for finding the roots and ancestors of all trees
in the forest without sacrificing the edges and leaves metrics.

6.3. Second round

For the second round of analysis, we evaluate our method
against the one proposed in [8]. In their work, the authors propose
two controlled test cases. Each test case contains two original
images and four near-duplicates (descendants) generated through
any combination of compression, histogram stretching, rotation,
and scaling operations.

The first test (defined as easy by the authors) has two original
images (roots) which depict the same scene with a slight
difference in perspective and are acquired with different cameras.
The second test case (deemed hard by the authors) has two
original images depicting the very same visual content and are
acquired with the same digital camera. In both test cases, the
algorithm in [8] builds the same forest resulting in the metrics:
Root = 0.333, Edges = 0.875, Leaves = 1.000 and Ancestry = 0.667.
This means the algorithm finds the root in about 33% of the times
or all the ancestry connections in 66.7% of the times.

Our algorithm, in contrast, yields Root = 0.750, Edges = 0.813,
Leaves = 0.633, and Ancestry = 0.768. Note that our method is more
effective for finding the roots and the ancestry relationships

showcasing an interesting feature for forensic purposes in which
we are interested, for instance, in finding the suspects responsible
for breaking copyright laws (roots of the trees) or the chain of
suspects involved in an illegal activity (ancestry relationships).

6.4. Real case example

This section shows the resulting phylogeny tree for a total of 75
images related to the case from Section 1.

When we started to analyze the case, we discovered that the
image was virally widespread over the internet with hundreds of
copies in many different websites, blogs, etc. for at least six
months. There were many versions of the questioned image over
the internet, which slightly differed from one another. Although
these differences were not semantical (they depicted the same
content) the differences could fool even well trained detection
techniques.

The question then was how to choose the right image for
analysis? Equally important, was it possible to hint at who possibly
published the image when using associated information such as
logs, blog posts, internet provider data, etc.?

This was the turning point for devising approaches to analyze
the images and point out which ones were the most probable to be
the patient zero (original published files) and which ones were the
most probable to be the least interesting and more modified
(leaves of an evolution tree).

Using the proposed phylogeny approach, we can infer about the
evolutionary process the images underwent overtime and can

Fig. 6. Phylogeny tree associated with 75 images of the alleged criminal record file published by the Brazilian newspaper Folha de São Paulo as found by our algorithm.
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focus the authenticity analyses on fewer candidates. Later on, we
could use such tree connections (with auxiliary information not
present in the images) to also hint at who released the image
online. Fig. 6 shows an example for 75 images. Although we do not
have ground truth information for checking if the phylogeny tree is
completely correct, it gives us interesting information. For
instance, image 14, 12, 20 and 57 are so deep in the tree that
probably they have many image modifications and probably are
not the originals published online. In the same sense, images 26,
67, 7, 29 and the others at height 5 and 6, are good candidates for
being the originals since they contain less image processing
artifacts and are closer to the top of the tree.

The sub-trees themselves are also of interest since they tend to
put together images that share more history aspects (modification
parameters overtime). Consider a subtree such as 39, 8, 71, 23, 32,
72. Such sub-tree might comprise images worth looking at for
further exploration and knowledge gathering about the image
chain distribution. The images in such sub-tree might have
undergone a common image operation that rule them out from

being the candidates for root of the tree, for instance. Of course, this
is an illustrative example containing a few dozens images but
imagine the huge aid phylogeny algorithms can give when dealing
with hundreds of thousands of images.

For this particular case, we showed, with convincing argu-
ments, the published image was a fake and it did not came from the
Public Archive of São Paulo as the newspaper itself forcefully
acknowledged on June 28th, 2009 [39].

On a related case but not directly in the realm of forensics,
recently we analyzed the actual evolutionary tree of a famous 2011
photograph captured on May 1st, 2011, by the White House
photographer Pete Souza, named The Situation Room. The photo-
graph portrays the US President, along with his national security
team, receiving live updates of the Operation Neptune Spear,
which led to the Osama bin Laden’s death. Slightly after its online
publishing, this image was heavily reproduced by different
communication channels online.

For this experiment, we collected 98 near-duplicate images
through Google Images. A quick manual analysis of the images

Fig. 7. Phylogeny tree for near-duplicate images portraying the 2011 White House photographer Pete Souza’s The Situation Room. (For interpretation of the references to color
in the text, the reader is referred to the web version of the article.)
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show, at least, nine different patterns of image modifications. We
have regular near-duplicate images (ID 0*), cases of inserting
Italian soccer player Mario Balotelli (ID a*) in the center of the
image, text overlay (ID b*), watermarking (ID c*), face swap (ID d*),
insertion of elements such as joystick (ID e*), people (ID f*), hats
(ID g*), etc.

Fig. 7 depicts the resulting tree using the proposed algorithm as
well as the different patterns of modifications present in the set. As
expected, the root returned by the algorithm is indeed the original
image published online by the White House as we were able to
confirm. This image is named here as ID 0000. In addition, the
algorithm correctly finds the root of the tree and puts simple near-
duplicate images close to it (ID 0*, red ellipses). It also groups most
of the cases we discussed above. For example, there are subtrees
only containing the Balotelli case (blue ellipses) and face swaps
(xxx ellipses) which means the algorithm can reliably identify
image similarities and group them accordingly.

The phylogeny algorithm we present here allows us to focus on
different aspects of the near-duplicate evolution. In forensics, we
often concentrate our attention on the analyses of images on the
top of the tree, which supposedly have less modifications or in the
evolution structure itself. As for content retrieval, we often focus
on identifying the most modified images in the set (leaves) as well
as on grouping related modifications on images.

7. Conclusions

In this paper, we introduced a new image phylogeny forest
algorithm and compared it to state-of-the-art solutions presented
in [4,8].

While Oriented Kruskal [4] provides good results for finding the
correct trees in a forest of semantically similar images, it has a
major drawback: it needs input from the user regarding the
number of trees to seek for. Most of the times in a real scenario, we
cannot or do not have such information. The proposed method also
outperforms the one presented in [8] for forensics purposes.

Using this paper’s solution, we can successfully reconstruct a
forest of images with each tree correlating images with a common
history background (e.g., with the same original ancestor) without
any input from the user. An example of application of this
technique would be to automatically find near-duplicate trees
among a set of semantically similar images. This would allow the
user to trace back one image of interest for forensics purposes
without the need to examine too many other semantically similar
images.

Future research directions and possibilities to extend this work
include expanding our analyses for hundreds of trees in the forest,
to include other dissimilarity metrics such as the ones discussed in
[8] and other image registration techniques such as the ones
discussed in [40–42]. We plan to explore perceptual features and
hashes for calculating pixel-wise (dis)similarities between images.
We believe this step would become especially important when
constructing the phylogeny tree of video documents, where pixel-
wise distances are inappropriate.

Finally, there is room also for a deep understanding of the
theoretical implications for defining an automatic threshold for
finding the trees in a forest of semantically similar documents.
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