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Abstract—Kernel-based methods have experienced a substantial progress in the last years, tuning out an essential mechanism for

data classification, clustering and pattern recognition. The effectiveness of kernel-based techniques, though, depends largely on the

capability of the underlying kernel to properly embed data in the feature space associated to the kernel. However, visualizing how a

kernel embeds the data in a feature space is not so straightforward, as the embedding map and the feature space are implicitly defined

by the kernel. In this work, we present a novel technique to visualize the action of a kernel, that is, how the kernel embeds data into a

high-dimensional feature space. The proposed methodology relies on a solid mathematical formulation to map kernelized data onto a

visual space. Our approach is faster and more accurate than most existing methods while still allowing interactive manipulation of the

projection layout, a game-changing trait that other kernel-based projection techniques do not have.

Index Terms—Multidimensional projection, visualization, kernel methods

Ç

1 INTRODUCTION

KERNEL methods have emerged as a versatile mechanism
to handle generic data. The growing interest in kernels

is mainly motivated by the positive impact they have in
important applications such as data clustering and classifi-
cation. Intuitively, a kernel function corresponds to a dot
product in a feature space, that is, given a positive definite
kernel kð�; �Þ, there exits a map that embeds the data into a
feature space where the dot product between instances is
given by the kernel k [1]. Typically the embedding map and
the feature space associated to a kernel are defined only
implicitly, making it difficult to understand how a kernel
embeds the data into the underlying feature space. A clear
understanding of the mapping performed by a kernel sim-
plifies the choice and the design of kernels as well as the
fine-tuning of kernel parameters, thus improving the effec-
tiveness of kernels in specific applications.

Despite the relevance, little has been done towards devel-
oping computational tools to assist users in understanding
the behavior of kernels. Even more scarce are methods that
rely on visualization resources to perform such a task. Tech-
niques such as multidimensional scaling [2] can be used to
map kernelized data (data whose similarity is given by
a kernel function) to a visual space, but their high computa-
tional cost and lack of flexibility as to user interaction have
hampered their use as visualization tool to investigate
the action of kernels. Multidimensional projection (MP)

methods [3] developed in the context of visualization pro-
vide more user-friendly interactive mechanisms, but most
those methods demand data embedded in a Cartesian
space, which prevents their use with kernel functions. The
few interactive MP methods able to handle kernelized data
are computationally intensive, impairing user experience [4],
[5], [6], [7].

This work presents the Kernel-based Linear Projection
(Kelp), a novel technique able to map data from a kernel
defined feature space to a visual space. Kelp relies on a
solid mathematical formulation, it has low computational
cost and enables interactive resources for users to dynam-
ically interact with the resulting layout. These desirable
properties render Kelp an attractive visualization tool in
different scenarios. In fact, besides providing a compre-
hensive set of experiments that confirm the effectiveness
of Kelp as a projection technique, we show how Kelp can
support visualization tools devoted to handle kernelized
data. More specifically, we show how applications such
as data classification and image segmentation can benefit
from Kelp. Moreover, we derive a kernel-based version
of differential coordinates which allows for analysis of
change in the neighborhood structure of the original
data, due to the action of a kernel. As far as we know,
the proposed mechanism is one of the first to enable the
visual analysis of how a kernel embeds data onto a fea-
ture space.

In summary, the main contributions of this work are:

� A novel kernel-based multidimensional projection
technique called Kelp, which relies on a solid mathe-
matical formulation to provide a computational effi-
cient visualization for analyzing kernelized data.

� The use of Kelp as a visualization tool to assist ker-
nel-based applications such as data classification
and image segmentation.

� The combination of kernel differential coordinates (also
proposed in this work) with Kelp towards under-
standing how kernel functions affect neighborhood
structures during the embedding process. This novel
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mechanism is a step forward in enabling visualiza-
tion resources for users to comprehend the behavior
of kernels.

2 RELATED WORK

In order to better contextualize our contribution, we provide
an overview of multidimensional scaling and multidimen-
sional projection methods in the context of visualization.

Multidimensional scaling methods (MDS) have long
been investigated by the machine learning community as
a tool to perform dimensionality reduction. Typically,
these methods consider only distance information (dissim-
ilarity measure) between instances to embed data into a
Cartesian space. Distinct classes of methods have been
proposed to perform the embedding, spectral decomposi-
tion being a classical approach. It computes embedding
coordinates from the eigenvectors of a transformed ver-
sion of the dissimilarity matrix (symmetric matrix contain-
ing the dissimilarity between each pair of instances) [8],
[9], [10]. Spectral methods, in general, are computationally
intensive, so they do not scale well to large data sets. In
order to alleviate the computational burden, techniques
such as Landmark MDS [11], Pivot MDS [12], Fastmap [13]
and their variants [14], [15], [16] perform the spectral
decomposition only for a subset of samples, projecting
the remaining instances based on those samples. Another
common characteristic of spectral decomposition methods
is the lack of flexibility as to user interaction, which ham-
pers the effective use of those methods in visualization-
oriented applications.

First proposed by Kruskal [2], techniques based on
nonlinear-optimization comprise other important class of
MDS methods, which accomplishes the embedding into a
feature space by minimizing an energy function, usually
called stress function. Those methods are also computation-
ally expensive, even when using efficient numerical solv-
ers [17]. The approach proposed by Chalmers [18] and its
variants [19], [20] also rely on subset of samples to reduce
the computational burden. GPU implementation has
been exploited as an alternative to alleviate computational
effort [21], [22], however, this class of methods is still pro-
hibitive for interactive applications that deal with large
data sets. Milder computational times can be obtained
with the technique proposed by Pekalska et al. [23], which
first maps a subset of samples to the visual space by mini-
mizing a stress function and then places the remaining
instances using a linear mapping built from the first
mapping step.

Multidimensional projection is a particular class of multi-
dimensional scaling methods where the embedding space is
two or three dimensional, targeting mainly data visualiza-
tion. One of the main characteristics of MP methods is to
enable resources that allow users to interact with the projec-
tion layout. Least Squares Projection [24] (LSP) and its vari-
ant Piecewise Laplacian-based Projection [25] (PLP) are
typical examples of MP methods. LSP employs a two-step
procedure that first place a subset of sample points onto the
visual space and then projects the remaining instances
through a Laplacian mapping. The user can steer the projec-
tion by manipulating the sample points. Although flexible

and capable of projecting data based only on similarity
information, LSP does not scale well, as the cost to solve the
Laplace systems may become prohibitive for large data sets.
The PLP method uses a force-based scheme to place the sub-
set of samples in the visual space. The remaining data
instances are projected using local Laplacian maps, which
are built from disjoint local neighborhood graphs. MP meth-
ods such as Part-Linear Multidimensional Projection [26]
(PLMP) and Local Affine Multidimensional Projection [3]
(LAMP) among other interactive techniques [27], [28] can
handle massive data sets while still ensuring interactive
manipulation of the layout. However, PLMP and LAMP
rely on Cartesian coordinates of the data to perform the pro-
jection onto the visual space, rendering them inadequate for
applications where only the similarity between instances is
available, as the case of kernelized data.

In summary, most methods able to map data from simi-
larity information either are not flexible enough as to user
interaction or do not scale properly to large data sets.
Existing interactive and computationally efficient methods
can only handle data embedded in a Cartesian space,
which considerably restricts their applicability. The Kelp
method proposed in this paper fills this gap, since it is
computationally efficient, enables interactive manipula-
tion of the projection layouts and it is able to handle ker-
nelized data.

3 KERNEL MAPPING

The motivation to use kernel functions as measure of sim-
ilarity between data instances is that kernels provide a
way to manipulate data as if it was embedded into a
higher dimensional space. The advantage of embedding
data in a higher dimensional space is that structures hid-
den in the data can be untangled in a higher dimension,
making operations such as data classification and cluster-
ing more reliable. However, the embedding mechanism
underlying a kernel function is typically not explicitly
defined, making it difficult to understand how data and
its neighborhood structure are organized in the embed-
ded space. In order to overcome this issue, we propose a
multidimensional projection technique able to handle ker-
nelized data, thus enabling the visualization of how the
implicit embedding process underlie kernels affects the
arrangement and structure of data instances.

Similarly to most MP methods, the proposed kernel-
based projection technique comprises two main steps. In
the first step, a subset of samples is mapped to the visual
space using an energy minimization scheme. Sample points
can also be interactively laid down onto the visual space.
The samples may be picked out randomly as proposed
in [26] or chosen by the user to better reflect her/his knowl-
edge about the data. Since the subset of samples is typically
small (our method is stable even when dealing with a fairly
small number of samples), it can be quickly mapped to the
visual space even when using a costly energy minimization
approach such as the Force Scheme [29], which is the method
employed in our implementation. The whole data set is
mapped to the visual space taken as basis the position of
sample points and similarity information between instances
given by a kernel function.
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The rationale behind our development is to assume ini-
tially that we know the embedding map associated to a
given kernel, knowing therefore the image of each
instance in the embedding space (feature space). Embed-
ded instances can be mapped to the visual space using a
linear transformation which can be computed from the
sample points previously mapped. The kernel trick con-
verts the “products” between pairs of embedded instan-
ces that show up during the computation of the linear
transformation into dot products in the feature space,
thus making manageable our assumption about the
knowledge of the embedding map.

Before describing the mathematical construction that
supports our approach, we provide some basic concepts
important in the present context.

3.1 Mathematical Preliminaries

Let X ¼ fx1; x2; . . . ; xmg be a set of data instances and
k : X �X ! R be a real function that assigns a similarity
measure kðxi; xjÞ to each pair of instances xi and xj in X.
The function k is called a (positive definite) kernel if the
matrixK with entries kij ¼ kðxi; xjÞ is positive definite.

Given a kernel as defined above it is possible to construct
a map f from X to a (high-dimensional) feature space H
such that

kðxi; xjÞ ¼ fðxiÞ>fðxjÞ; (1)

where fðxiÞ>fðxjÞ is a dot product between fðxiÞ and fðxjÞ.
Equation (1) shows that a kernel corresponds to a dot prod-
uct in a feature space H (see [1] for a proof), thus the matrix
with entries kij is a Gram matrix.

Assuming for the moment that the image of X by the
mapping f is centered in the feature space, that is,
1
m

Pm
i¼1 fðxiÞ ¼ 0, the covariance matrix of the mapped data

is given by:

C ¼ 1

m

Xm
i¼1

fðxiÞfðxiÞ>; (2)

where fðxiÞ> is the transpose of fðxiÞ.
Remember that, f is defined implicitly, so the values

of fðxiÞ are unknown. Our formulation makes use of the
well known kernel trick to avoid this issue. The technical
details can be found in the supplementary material,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TVCG.2015.2464797.

A useful property for our formulation is that the eigen-
vectors ui of C can be written as a linear combination of the
embedded instances with coefficients given by the eigenvec-
tors ofK, more precisely,

ui ¼
Xm
j¼1

aijfðxjÞ; (3)

where the vectors ai ¼ ðai1; ai2; . . . ; aimÞ> are eigenvectors
of K (see supplementary material, available online, for
a proof).

Note that when dealing with kernels, the dimension of
the feature space is typically much larger than the number

of instances embedded in such space, that is, m � d. In this
scenario, the matrix C has rank at most equal to m, thus
each eigenvector associated to a nonzero eigenvalue of C
corresponds to an eigenvector ofK.

3.2 The Kelp Method

Our kernel-based multidimensional projection method
relies on a subset of samples to perform the mapping. Let
Xs � X;Xs ¼ fxs1 ; xs2 ; . . . ; xsng be a subset of samples from

X (n accounts for the number of samples whilem is the total
number of instances in X) and Ys ¼ fys1 ; ys2 ; . . . ; ysng be the

image of Xs in the visual space (Ys results from the Force
Scheme applied to Xs). Lets also denote by Ks the Gram
matrix built from Xs, that is, the entries in Ks are given by
kðxsi ; xsjÞ.

Suppose that the embedding map f associated to the ker-
nel k is known, our goal is to find a linear mapping

M : H ! R2 (R2 being the visual space) such that

MfðxsiÞ ¼ ysi : (4)

The linear transformation M should map each sample
fðxsiÞ to ysi in the visual space. The rationale behind the

construction above is that, due to linearity, the neighbor-
hood structure of each fðxsiÞ should be preserved by M.

Equation (4) can be written in matrix form as

MF ¼ Y; (5)

where

F ¼
..
. ..

.

fðxs1Þ � � � fðxsnÞ
..
. ..

.

2
664

3
775; Y ¼

..

. ..
.

ys1 � � � ysn

..

. ..
.

2
664

3
775

have dimensions h� n and 2� n respectively, and h is the
dimension of the spanffðxs1Þ; . . . ;fðxsnÞg.

Multiplying both sides of Equation (5) by F> we obtain

MFF> ¼ YF> ! nMCs ¼ YF>; (6)

where Cs is the covariance matrix as defined in Equation (2)
but computed from the subset of samples Xs. Since Cs is

symmetric it can be decomposed as Cs ¼ UDU>, where the
columns of U are the orthonormal eigenvectors ui of Cs and
D is a diagonal matrix containing the eigenvalues �i as diag-
onal elements. The pseudo inverse of Cs is given by

Cþ
s ¼ U eD�1U>, being eD�1 the inverse of nonzero diagonal

elements in D. Applying the pseudo inverse in Equation (6)
results in:

M ¼ 1

n
YF>Cþ

s ¼ 1

n
YF>ðU eD�1U>Þ:

The projection of any instance fðxÞ is so given by

MfðxÞ ¼ 1

n
YF>U eD�1U>fðxÞ: (7)

Let A be the matrix with columns formed by eigenvectors ai
of Ks (see Equation (3)) and, making an abuse of notation,
let U be now the matrix containing only the eigenvectors of
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Cs associated to nonzero eigenvalues. From Equation (3) we
can derive

U ¼ FA ) F>U ¼ F>FA ) F>U ¼ KsA (8)

and

U>fðxÞ ¼ ðFAÞ>fðxÞ ¼ A>F>fðxÞ ¼ A>kx; (9)

where kx ¼ ðkðx; xs1Þ; kðx; xs2Þ; . . . ; kðx; xsnÞÞ>.
Using the fact that the eigenvalues of Cs and Ks relate to

each other according to gi ¼ n�i (see appendix, available in
the online supplemental material), where gi are the eigen-
values ofKs, and using Equations (8) and (9) in Equation (7)
we have

MfðxÞ ¼ YKsAG
�1A>kx; (10)

where G�1 is the diagonal matrix with elements 1=gi.
Notice that the term on the right in Equation (10)

involves only known quantities. In fact, Y is the matrix con-
taining the coordinates of the samples in the visual space,
Ks is the Gram matrix built from Xs, matrix A has columns
given by eigenvectors of Ks, diagonal elements in G are the
inverse of the eigenvalues of Ks, and the vector kx is made
up of kernel values between x and xsi , where x is an

instance to be projected. Therefore, given the samples, their
image in the visual space, and the kernel kðx; xsiÞ, we project

any data instance xi from X to the visual space by simply
evaluating Equation (10) in x ¼ xi. In fact, besides Ys, only
kð�; �Þ need to be known to accomplish the projection ofX.

3.3 Centralizing Data in Feature Space

In the previous section we assumed the samples Xs cen-
tered around the origin (zero mean) in the feature space H.
Therefore, we have to center the matrix Ks and the vector
kx before starting the projection process. The procedure to
center a Gram matrix is well known from machine learning
literature [1] and consists in applying the following trans-
formation toKs:

~Ks ¼ Ks � 1nKs �Ks1n þ 1nKs1n; (11)

where 1n is the square matrix with all entries equal to 1=n

( ~Ks will be the matrix used in the projection process).
An important aspect in our approach is that the kernel

have to be evaluated only between instances and samples,
that is, only kðxi; xsjÞ have to be known, that reduces consid-
erably the amount of information to be computed. Never-
theless, the full Gram matrix have to be known to faithfully
center each vector kx, hampering the previously stated
advantage of only evaluate kðxi; xsjÞ. We get around that

issue by centering kx as to Ks rather than consider the full
Gram matrix K. Although such centering mechanism is
only an approximation, it worked well in all tests we have
carried out. In mathematical terms, the centralization of kx

is given by:

~kx ¼ kx �Ks1n � 1nkx þ 1nKs1n; (12)

where 1n is a vector with all entries equal to 1=n. The mathe-
matical justification for Equation (12) can be found in the
appendix, available in the online supplemental material.

3.4 Projecting the Samples

As already mentioned at the beginning of this section, the
subset of samples is mapped to the visual space using the
Force Scheme [29]. Since the Force Scheme has been
designed to operate on distances rather than similarity
measures, we have to convert the kernel information into
a distance function. In mathematical terms, a metric can
be defined from a dot product in H by dðxi; xjÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ>ðxi � xjÞ

q
, where xi; xj 2 H and the dot product

is the one from the feature space. Expanding the dot prod-
uct on the right and using the embedding f and the associ-
ate kernel k, we get:

dðfðxiÞ;fðxjÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðxi; xiÞ � 2 kðxi; xjÞ þ kðxj; xjÞ

q
: (13)

The distance function derived from the kernel informa-
tion is the metric to be preserved by the Force Scheme when
arranging the instances Ys in the visual space. More specifi-
cally, the force scheme computes, for each instance yi in the
visual space, the vector v ¼ yj � yi and moves yj in the

direction of v by fraction D ¼ Dðxi;xjÞ�Dmin

Dmax�Dmin
� dðyi; yjÞ, D and d

are the distances in the original and visual spaces, respec-
tively. Since M is a linear transformation it maps the origin
of the feature space to the origin of the visual space. There-
fore, we also centralize Ys after applying the Force Scheme
such that the centroid of Ys coincides with the origin of the
visual space.

3.5 Computational Aspects

The mathematical construction in Section 3.2 assumes that
the eigenvectors ui of C are orthogonal and unitary. Using
Equation (3), we have

1 ¼ ui � ui ¼
Xn
l;p¼1

ail aip fðxslÞ>fðxspÞ ¼ a>i Ksai ¼ gia
>
i ai

that is, the eigenvectors ai of Ks as defined in Equation (3)
are orthogonal but they are not normalized. However,
numerical libraries typically output eigenvectors with norm
equal to one. In order to ensure that kuik2 ¼ 1, we must
multiply the normalized eigenvectors of Ks (given by
numerical libraries) by 1=

ffiffiffiffiffi
gi

p
. Algorithm 1 summarizes the

steps to project each instance fðxiÞ.
The most costly part of Algorithm 1 is the spectral

decomposition of matrix Ks, whose complexity is Oðn3Þ,
where n is the number of samples. Although costly, the
spectral decomposition is computed only once and requires
few samples.

4 EVALUATION AND COMPARISONS

Results presented in this section were produced in an Intel
Core i7 CPU 920 2.66 GHz, with 8 GB of RAM. The pro-
posed projection method, Kelp, is implemented in Java
using the JBlas numerical library [30] to perform the eigen-
decomposition of Ks. We use a Gaussian kernel to generate
most of the results, we make clear when other kernels are
used. The subset of samples used to steer the projection has
been chosen randomly and the number of samples is set as
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n ¼ ffiffiffiffiffi
m

p
, where m is the number of instances in the data set.

Some experiments make use of a different choice of sam-
ples, which will be clear in the context.

Algorithm 1. The Kelp’s Algorithm

Require: Data setX and samplesXs

1: ProjectXs using the Force Scheme with distances defined

in Eq. (13). Compute the mean y ¼ 1
n

Pn
j¼1 ysj and set the

matrix Y as Y ¼ ½ys1 � y; ys2 � y; . . . ; ysn � y�
2: Compute the Gram matrix fromXs and centralize it

using Eq. (11), obtainingKs

3: Compute the eigenvectors a1; a2; . . . ; an and
corresponding eigenvalues g1; g2; . . . ; gn ofKs

4: Create the matrix An�n ¼ ½ a1ffiffiffiffi
g1

p ; a2ffiffiffiffi
g2

p ; . . . ;
apffiffiffiffi
gn

p �
5: Create the diagonal matrix G�1

p�p with entries G�1
ii ¼ 1

gi

6: Compute the matrix P ¼ Y Ks AG�1 A>

7: for each x 2 X do
8: Compute kx ¼ ðkðx; xs1Þ; . . . ; kðx; xskÞÞ> and centralize

it using Eq. (12)
9: Compute the mapping y ¼ P kx

10: end for

The quality of Kelp is attested through two different
sets of comparisons. The first set assesses Kelp’s perfor-
mance as to accuracy and computational time. Kelp is
compared against five existing techniques employing eight
data sets which vary considerably in terms of size and
dimensionality (see Table 1). Techniques employed in the
comparisons were chosen because they share similarities
with Kelp, namely, they also rely on a subset of samples to
perform the projection and can deal with kernelized data.
Moreover, those techniques are well known by their good
performance in terms of accuracy and/or computational
time, ensuring that the provided comparisons are fair and
encompass state-of-art projection methods. More specifi-
cally, Fastmap [13], Hybrid [19], Landmark MDS [11],
Pekalska [23], and PLP [25] are methods that present a
good performance in terms of stress/time. Regarding
computational implementation, Pekalska and PLP demand
linear system solving libraries to be properly imple-
mented. L-MDS demands an efficient implementation of
SVD, such as the LAS2 algorithm [34]. Fastmap and
Hybrid are straightforward to be coded. Similarly to Kelp,
the methods PLP and Pekalska allows for interactive
manipulation of samples in the visual space.

Accuracy has been measured based on the stress func-

tion given by 1P
ij
dij

P
ij

ðdij�dijÞ2
d2
ij

, where dij ¼ dðfðxiÞ;fðxjÞÞ
is the distance from Equation (13) and dij is the Euclidean

distance between instances xi and xj (original data) in the

visual space.
The blue box plots in Fig. 1 show the range of stress

obtained by Kelp and the other techniques when mapping
the data sets in Table 1. One can easily see that Kelp is one
of the most accurate technique, being comparable to highly
precise methods such as Landmark MDS and Pekalska. Box
plots in yellow show that Kelp also performs well in terms
of computational times, being comparable to Fastmap,
which is well known for its computational efficiency. Notice
that Kelp is almost one order of magnitude faster than
Landmark MDS and Pekalska, the two methods comparable
to Kelp in terms of accuracy.

The original-distance � projected-distance scatter plots pre-
sented in Fig. 2 allow for assessing Kelp’s accuracy visu-
ally. Notice that Kelp gives rise to nearly 45 degree
diagonal layout in almost all test cases, attesting that
neighborhoods are well preserved in the visual space.
The same is not true for other projection methods such as
Hybrid and PLP, which result in a spread distribution
around the diagonal direction.

Data sets used in the comparisons above are endowed
with instances embedded in a vector space, which allows
for employing highly accurate techniques such as
LAMP [3] to project the data. Therefore, one could sur-
mise that the proposed kernel-based method is useless
for this kind of data. Fig. 3 contradicts such reasoning,
showing that the projection resulting from a kernel has
better defined clusters than the projection generated by
mapping the data directly from its intrinsic feature space.
Figs. 3a and 3b show the projections resulting from apply-
ing Kelp and LAMP to map the Segmentation data
(see Table 1) and Figs. 3c and 3d the results of applying
Kelp and LAMP to a data set with 574 scientific articles
collected on three different subjects [24]. Projections in
Figs. 3a and 3c have been produced by kernelizing the
original data as

kðxi; xjÞ ¼ expð�d2ij=2s
2Þ;

where dij is the Euclidean distance dðxi; xjÞ computed from
the corresponding bag-of-words and s is the average

TABLE 1
Data Sets Used in the Comparisons, from Left to Right the

Columns Correspond to the Data Set Name, Size,
Dimension (Number of Attributes), and Source

Name Size Dim Source

wdbc 569 30 [31]
diabetes 768 8 [31]
segmentation 2,100 19 [31]
us-countries 3,028 14 [32]
wine 4,898 11 [31]
letter rcn 20,000 16 [31]
mammals 50,000 72 [31]
viscontest 200,000 10 [33]

Fig. 1. Box plot of stress and time for data sets in Table 1.
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variance of the data. Figs. 3b and 3d show the projection of
the same data sets but using LAMP (the bag-of-words of
each instance is used to perform the projection). Notice that

the layout generated by Kelp is less tangled, showing up
clusters and similar instances. The better quality of the lay-
out resulting from Kelp is quantitatively attested by the sil-
houette coefficient S, which assumes larger values in the
layouts produced by Kelp. The silhouette coefficient accounts
for both the cohesion and separation between grouped

instances and it is computed as S ¼ 1
m

P
i

ðbi�aiÞ
maxfai;big, where ai

is the average distance between yi (the image of xi in the

visual space) and all other instances in the same class as yi
and bi is the minimum distance between yi and all other

instances in the other groups. The silhouette ranges in the
interval ½�1; 1� and the larger the value of S the better is the
cohesion and separation of the data.

Kelp’s sensitivity with respect to user intervention is
analyzed in Fig. 4. Fig. 4a shows the projection produced
by Kelp when samples are arranged in the visual space
by the Force Scheme. The top right inset depicts the posi-
tion of the samples after applying the Force Scheme to a
subset of randomly selected samples. Figs. 4b, 4c, and 4d
show the layouts produced by Kelp, PLMP, and LAMP
respectively, after user intervention, that is, user has man-
ually grouped samples accordingly to their classes so as
to better define clusters in the visual space (see the top
right insets). Notice that the layout resulting from Kelp
has the highest silhouette value, even superior to LAMP,
which is known to be quite sensitive to user intervention.
Moreover, PLMP and LAMP require data embedded in a
Cartesian space, thus they can not be directly employed
in kernelized data.

Fig. 2. Original-distance � projected-distance scatter plots: top-left numbers account for stress and computational time (in seconds). Bold values are
the best results for each data set.

Fig. 3. Improving the cohesion and separation of groups on the final pro-
jection using a kernel. The silhouette (S) is larger for projections created
by kernel-based technique than using an Euclidean distance-based
technique such as LAMP.
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Fig. 5 shows Kelp’s behavior as to the number of samples
used to steer the projection. It is easy to see that in most case
stress stabilizes when nearly 5 percent of the data is used as
samples. The jagged behavior of the curves is due to the ran-
dom selection of sample instances, a phenomenon already
reported in the literature [26]. Notice though that the ampli-
tude of the oscillation is quite small, close to 0:05. In practice
we notice that Kelp can provide good results even with a
quite reduced number of samples, which encouraged us to
use

ffiffiffi
n

p
as the number of samples in all our experiments.

Users should start with such a reduced number of samples
and if necessary (measuring the stress error) increase the
number of samples.

We further analyze Kelp in terms of some artifacts that
may appear in multidimensional projections, namely, tears
and false neighbors. Tears happen when neighbor points in
the feature space are mapped far apart from each other.
False neighbors take place when distant point in the feature
space a mapped close to each other in the visual space. As

proposed in [35], we use a color code to represent distor-
tions: purple indicating false neighbors, green indicating
tears, black indicating that a point is a tear and a false neigh-
bor simultaneously, and white corresponding to no distor-
tion. The regions (Voronoi cells) in Fig. 6 are colored by
interpolating the color code of the corresponding site.
Notice in Fig. 6b that the green regions surrounding the
clusters indicates that tears are happening, but false neigh-
bors are only observed for points placed among the clusters.
As pointed out by in [35], this is the best on can expected,
since the projection is not creating misleading neighbors
within clusters.

5 APPLICATIONS

In this section we illustrate the usefulness of Kelp in three
distinct applications. The first application, motivated by the
issue discussed in Section 1, employs Kelp as a tool to assist
users in understanding the behavior of a kernel. More spe-
cifically, we rely on Kelp to build a tool that allows for visu-
ally analyzing how a kernel affects neighborhood relations.
The second application exploits the interactive mechanism
enabled by Kelp to assist Support Vector Machine data clas-
sification tasks. The third application shows that a kernel
based visualization process can greatly benefit from a visu-
alization assisted mechanism such as Kelp.

5.1 Kernel Induced Neighborhood Changes

As motivated in Section 1, figuring out how a kernel affects
neighborhood structures is of paramount importance for
the proper choice, design, and tuning of kernels in specific
applications. The visualization tool described in this section
is a first attempt in visualizing the behavior of kernels and
assisting users in kernel-based applications.

Our approach relies on a metric to compare neighbor-
hood structures defined in the original Cartesian space
against their counterpart in the feature space induced by
a kernel. The metric is defined as follows: let X ¼
fx1; x2; . . . ; xmg be a set of instances in a Cartesian space
(we will use the same symbol xi to represent the data and

its vector representation) and di ¼ xi � 1
#Ni

P
j2Ni

xj be the

differential coordinate of xi, where Ni accounts for the
indexes of the k-nearest neighbors of xi and #Ni is the car-
dinality of Ni. The norm kdik is a measure of how far xi is
from the centroid of its neighbors. Let now fðxiÞ be the
image of xi in a feature space induced by a kernel k.

Fig. 4. Comparing Kelp’s sensitivity as to user interaction. The upper
right insets show the position of the samples.

Fig. 5. Varying the sample size: stress stabilize nearly 5 percent of the
instances used as samples.

Fig. 6. Verifying the projection quality with CheckViz methodology:
(a) projection of an artificial data set with 150 instances and four dimen-
sions [36]; (b) purple regions indicate false neighbors and green regions
indicate tears; (c) CheckViz color map. The circle s indicates the size of
the neighborhoods considered in each point.
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The norm of the differential coordinate dfi of fi ¼ fðxiÞ in
the feature space is given by kdfik ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dfi

>dfi
q

with

kdfik2 ¼ fi �
1

#Ni

X
j2Ni

fj

 !>
fi �

1

#Ni

X
j2Ni

fj

 !

¼ kðxi; xiÞ � 2

#Ni

X
j2Ni

kðxi; xjÞ þ 1

ð#NiÞ2
X
j;s2Ni

kðxj; xsÞ:

(14)

Equation (14) shows that the norm of differential coordi-
nates in feature space can be obtained from kernel values,
making it possible to measure how far each instance fðxiÞ is
from the centroid of its neighbors in the feature space.
Notice that we are always defining neighborhoods in the
Cartesian space, because our goal is to measure how those
neighborhoods are affected by the kernel.

Figs. 7a and 7b show color maps corresponding to val-
ues of kdik and kdfik computed in each data instance (arti-
ficial data set generated from [36]) in layouts generated
by PLMP and Kelp, respectively. Red regions correspond
to large values of kdik and kdfik while blue colors repre-

sent low values, (green color accounts for intermediate
values). We choose PLMP to project the original data to
the visual space because, as Kelp, PLMP makes use of lin-
ear transformation to map the data, thus enabling a fair
visual comparison of the resulting layouts. Notice that
that after applying the kernel groups of instances
becomes even better defined.

The ratio kdik=kdfik measures changes in neighbor-
hood structures when data is embedded in a feature
space by the kernel k. Values close to 1 indicate no
changes, values close to 0 indicate that instances get far-
ther from their neighbors in a non-symmetric way, and
values greater than 1 means that, after applying the ker-
nel, instances become more centralized with respect to

their neighbors. Using a transfer function as illustrated
in Fig. 8, we can visualize the regions where neighbor-
hoods are more affected by the kernel. The background
in Fig. 7 is colored by interpolating the differential coor-
dinate ratio values from each instance to a background
regular grid. Fig. 7b tells us that the Gaussian kernel bet-
ter positions instances in terms of their neighbors within
the data groups, that is, within the well defined groups,
the Gaussian kernel tend to place instances closer to the
centroid of their neighbors. However, Fig. 7c clearly
shows that, when analyzing the ratio between the norm
of differential coordinates, red regions (corresponding to
values close to zero or greater than one) show up within
well defined groups. Since kdfik is small within well

defined groups (Fig. 7b) and the groups have not spread
out due to the kernel action, we conclude that the large
values of kdik=kdfik are due to a tighter grouping pro-

duced by the Gaussian kernel. Therefore, as expected,
a Gaussian kernel tends to better define the groups.

The experiment above involving a Gaussian kernel vali-
dates and supports the correctness of our methodology. The
same analysis can be performed with kernels other than
Gaussian, as illustrated in Figs. 7d and 7e. Fig. 7d depicts
kdfikwhen a polynomial kernel given by

kðxi; xjÞ ¼ ðx>
i xjÞ2 (15)

is used to map data to a feature space. Polynomial kernels
are less intuitive than Gaussian kernels, thus hampering
their use in practical applications. Using visualization tool,
though, one can see that the polynomial kernel Equation (15)
behaves quite similarly to the Gaussian kernel, avoiding to
push “outliers” closer to clusters while tightening instances
that lie within clusters.

As one can clearly see, differential coordinates turn
out to be quite effective to visualize neighborhood
changes induced by kernels. It is worth mentioning that,
as far as we know, this is the first time that differential
coordinates is used to measure neighborhood structures
in the context of kernelized data, thus being another con-
tribution of this work.

5.2 SVM Visualization

We take advantage of the flexibility provided by Kelp in
terms of interactive resources to support data classifica-
tion tasks, more precisely, Support Vector Machine

Fig. 7. Visualizing how a kernel affects neighborhood structures (artificial data set with 150 instances and four dimensions): differential coordinate
magnitudes in a layout generated by PLMP with Euclidean distance (a) and Kelp using Gaussian (b) and polynomial kernels (d); Magnitude ratio in
the Kelp-Gaussian (c) and Kelp-polynomial layouts (e).

Fig. 8. Color transfer function.
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classification. SVM is a linear classifier that operates in
feature space (nonlinear on input space) where the sepa-
rating hyperplane maximizes the training margin. Intui-
tively, instances away from the margins in feature space
are classified with good degree of confidence while
instances laying inside the margins are more likely to be
wrongly classified. Therefore, the typical mental model of
a SVM classifier (assuming two classes) comprises two
planar regions where data can be classified with certain
confidence and a strip bounded by two straight lines (the
margins) defining the region of uncertainty.

We can exploit the flexibility enabled by Kelp to inter-
actively change the position of sample points in the visual
space to realize the SVM mental model. Fig. 9 presents the
projection of the wdbc data set (see Table 1) using a
Gaussian kernel. The same Gaussian was used as kernel
for the SVM. Using the LIBSVM [37] to perform the SVM
classification, we get, for each instance, the probability to
belong to a class. Darker colors in Fig. 9 correspond to
instances where SVM has high confidence in terms of clas-
sification while lighter instances correspond to the ones
with low confidence and the separation line (black) corre-
sponds the region where the interpolated probability
(given by the SVM classifier) is 50 percent. Notice in
Fig. 9a that confidence regions can not be clearly defined
when the Force Scheme is applied to position sample
points in the visual space. Since the data set used in this
experiment has a reduced number of instances, we use
10 percent of the instances as sample points in order to
enable a better interaction.

However, when the sample points are interactively
arranged so as to distinguish the classes, as depicted in
Fig. 9b, the resulting layout clearly uncoveres the usual
SVM mental model, making it easier to interpret the
behavior of the classifier. Notice that even the margin
where the classification is dubious clearly shows up
when sample points are properly arranged. The back-
ground in Fig. 9 is colored by interpolating in a grid the
probability (given by the SVM classifier) of each instance
to belong to one of the classes.

It is important to say that other method devoted to visu-
alize the output of SVM classifiers [38], [39] assume as input
Cartesian data (kernel is only used in the classifier), what is
not the case with Kelp.

5.3 Kernel-Based Image segmentation

User assisted techniques comprise an important class of
image segmentation methods. In this context, most meth-
ods enable interactive resources for users to brush seeds
or regions on the image space, driving the segmentation
process from the brushes [40]. However, interactive image
segmentation methods that operate in the feature space
are not so common, although recent works have shown
the advantage of interacting directly on feature to
improve the performance of tasks such as image coloring
and retrieval [41], [42].

In the following we show how Kelp can be used to sup-
port an interactive image segmentation application that
operates directly in feature spaces. More specifically, we
build upon bilateral filtering [43] to define a kernel and use
Kelp to enable interactive resources for users to brush
regions in the feature space induced by the kernel.

Let I be an input image and I its filtered counterpart
generated by the bilateral filter:

I p ¼ 1

W

X
q2Np

Ip Gs1 kIp � Iqk
� �

Gs2 kp� qkð Þ

with W ¼
X
q2Np

Gs1 kIp � Iqk
� �

Gs2 kp� qkð Þ;

where GsðxÞ ¼ expð�x2=2s2Þ. The values Ip and I p are the
color intensities in CIE-Lab color space for a pixel p in I and

I , respectively, s2 is the variance typically used in Gaussian
filters and Np is a square pixel neighborhood centered in p.

Let k be a kernel defined as follows:

k p; qð Þ ¼ Gs kIp � I qk
� �

: (16)

Fig. 10b shows the mapping of each pixel in Fig. 10a using
the kernel defined in Equation (16) with the Kelp tech-
nique. The color assigned to each mapped point is the
color of the corresponding pixel in the original image.
Notice that (Figs. 10c and 10d) in the mapping produced
by Kelp the yellow background is clearly separated from
the yellow part of the banana. Moreover, the user can
interactively define clusters in the projection layout,
which is equivalent to picking out regions in the feature
space and back in the original image, as illustrated in
Figs. 10e and 10f.

The image segmentation application described above
shows that Kelp can, in fact, assist in the construction of
kernels for specific purposes. The kernel defined in
Equation (16) is only one example.

6 DISCUSSION AND LIMITATIONS

Comparisons and results presented in Section 4 clearly
show the effectiveness of Kelp, which presented a good
trade-off between accuracy and computational time. The
solid mathematical foundation supporting Kelp’s formula-
tion ensures distance preserving and versatility towards
incorporating user knowledge into the projection process.
In fact, among techniques able to dealing with kernels and
that enable user intervention, Kelp turned out to be one of
the best alternatives. Simplicity as to computational

Fig. 9. Realizing the mental model of a SVM classifier by interactively
arranging the sampling points in the visual space with the separation line
(black): (a) initial projection of classified data where the separation line is
unclear and (b) projection after layout manipulation. The upper right cor-
ner image shows the sampling points position.
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implementation is another strength of Kelp, which essen-
tially requires a numerical eigendecomposition library.
The need for kernel values only between instances and sam-
ples is another positive aspect of Kelp, as storage is pushed
down from Oðm2Þ to OðmnÞ, where n, the number of sam-
ples, is much smaller than m, the number of instances in the
whole data set.

Another interesting aspect of our technique is that it is
inherently incremental and parallelizable. Only the left
most term kx in Equation (10) changes when projecting dis-
tinct data instances. Therefore, once the matrix Ks is built
and its eigendecomposition performed, one can project
instances x independently from each other, that is, the prod-

uct of the matrix YKsAG
�1A> by the vector kx can be done

in parallel for each instance.
Although simple, the application devoted to visualize

neighborhood changes induced by kernels has tuned out
to be quite interesting and it opens a multitude of possible
visualization alternatives. In the provided application we
have just exploited the norm of differential coordinates
as a measure of neighborhood changes, but many other
metrics could also be employed. We are currently investi-
gating more sophisticated visualization mechanisms
towards further understanding how kernels act on data
sets. Moreover, the other two applications, namely, inter-
active image segmentation and SVM space visualization,
prove that Kelp can support a variety of applications.

An issue that is not properly related to our formulation
but impacts directly on its results is how to set the parame-
ters that control a kernel. For instance, it is well known that
the parameter s used in Gaussian kernels affects the result
and effectiveness of SVM classifiers and Kernel PCA
dimensionality reduction techniques [1]. Finding the appro-
priate value of s to reach the best result is difficult. In our
tests we used the average variance of the data to set s, but
such an automatic mechanism did not work properly for
certain data sets, which demanded a manual fine tune of s.
We believe that Kelp can also be a very useful tool to assist
the task of setting the parameters controlling the behavior
of kernels, being this one interesting aspect to be explored
in a future work.

7 CONCLUSION

In this work we proposed a novel projection technique
designed specifically to map kernelized data to a visual
space. Called Kelp, the proposed method has a solid mathe-
matical foundation and it outperforms state-of-art techni-
ques with regard to accuracy and computational times.
The potential use of Kelp to support kernel-based applica-
tions with visualization resources opens new possibilities
which could not be efficiently addressed until now. There-
fore, flexibility, effectiveness, and ease of implementation
render Kelp one of the most attractive multidimensional
projection methods for handling kernelized data.
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[19] F. Jourdan and G. Melançon, “Multiscale hybrid MDS,” in Proc.
Inform. Vis., 2004, pp. 388–393.

[20] A. Morrison, G. Ross, and M. Chalmers, “A hybrid layout algo-
rithm for sub-quadratic multidimensional scaling,” in Proc. IEEE
Symp. Inform. Vis., 2002, pp. 152–158.

[21] Y. Frishman and A. Tal, “Multi-level graph layout on the GPU,”
IEEE Trans. Vis. Comput. Graph., vol. 13, no. 6, pp. 1310–1319, Nov.
2007.

[22] S. Ingram, T. Munzner, and M. Olano, “Glimmer: Multilevel MDS
on the GPU,” IEEE Trans. Vis. Comput. Graph., vol. 15, no. 2,
pp. 249–261, Mar. 2009.

[23] E. Pekalska, D. de Ridder, R. P. W. Duin, and M. A. Kraaijveld, “A
new method of generalizing Sammon mapping with application
to algorithm speed-up,” in Proc. Annu. Conf. Adv. School Comput.
Imag., 1999, pp. 221–228.

[24] F. V. Paulovich, L. G. Nonato, R. Minghim, and H. Levkowitz,
“Least square projection: A fast high-precision multidimensional
projection technique and its application to document mapping,”
IEEE Trans. Vis. Comput. Graph., vol. 14, no. 3, pp. 564–575, May
2008.

[25] F. V. Paulovich, D. M. Eler, J. Poco, C. P. Botha, R. Minghim, and
L. G. Nonato, “Piecewise Laplacian-based projection for interac-
tive data exploration and organization,” Comput. Graph. Forum,
vol. 30, no. 3, pp. 1091–1100, 2011.

[26] F. V. Paulovich, C. T. Silva, and L. G. Nonato, “Two-phase map-
ping for projecting massive data sets,” IEEE Trans. Vis. Comput.
Graph., vol. 16, no. 6, pp. 1281–1290, Nov. 2010.

[27] J. Alsakran, Y. Chen, D. Luo, Y. Zhao, J. Yang, W. Dou, and S. Liu,
“Real-time visualization of streaming text with a force-based
dynamic system,” IEEE Comput. Graph. Appl., vol. 32, no. 1,
pp. 34–45, Jan. 2011.

[28] X. Hu, L. Bradel, D. Maiti, L. House, C. North, and S. Leman,
“Semantics of directly manipulating spatializations,” IEEE Trans.
Vis. Comput. Graph., vol. 19, no. 12, pp. 2052–2059, Dec. 2013.

[29] E. Tejada, R. Minghim, and L. G. Nonato, “On improved projec-
tion techniques to support visual exploration of multidimensional
data sets,” Inform. Vis., vol. 2, no. 4, pp. 218–231, 2003.

[30] M. L. Braun, J. Schaback, M. L. Jugel, and N. Oury. (2011). jBlas:
Linear algebra for java [Online]. Available: http://www.jblas.
org/

[31] A. Frank and A. Asuncion. (2010). UCI machine learning reposi-
tory [Online]. Available: http://archive.ics.uci.edu/ml

[32] B. Shneiderman and J. Seo. (2008). Hierarchical clustering explorer
for interactive exploration of multidimensional data [Online].
Available: http://www.cs.umd.edu/hcil/hce/examples/
application_examples. html

[33] D. Whalen and M. L. Norman. (2008). Competition data set and
description, in Proc. 2008 IEEE Vis. Des. Contest [Online]. Available:
http://vis.computer.org/VisWeek2008/vis/contests.html

[34] M. W. Berry, “Large-scale sparse singular value computations,”
Int. J. Supercomput. Appl., vol. 6, no. 1, pp. 13–49, 1992.

[35] S. Lespinats andM. Aupetit, “Checkviz: Sanity check and topolog-
ical clues for linear and non-linear mappings,” Comput. Graph.
Forum, vol. 30, no. 1, pp. 113–125, 2011.

[36] I. Guyon. (2003). Design of experiments of the NIPS 2003 variable
selection benchmark, in Proc. NIPS 2003 Workshop Feature Extrac-
tion Feature Selection [Online]. Available: http://www.nipsfsc.ecs.
soton.ac.uk/datasets/

[37] C.-C. Chang and C.-J. Lin. (2011). LIBSVM: A library for support
vector machines. ACM Trans. Intell. Syst. Technol. [Online] 2,
pp. 27:1–27:27. Available: http://www.csie.ntu.edu.tw/ cjlin/
libsvm

[38] A. Jakulin, M. Mo�zina, J. Dem�sar, I. Bratko, and B. Zupan,
“Nomograms for visualizing support vector machines,” in Proc.
11th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2005,
pp. 108–117.

[39] L. Hamel, “Visualization of support vector machines with unsu-
pervised learning,” in Proc. IEEE Symp. Comput. Intell. Bioinformat.
Comput. Biol., 2006, pp. 1–8.

[40] W. Casaca, A. Paiva, E. Gomez-Nieto, P. Joia, and L. G. Nonato,
“Spectral image segmentation using image decomposition and
inner product-based metric,” J. Math. Imaging Vis., vol. 45, no. 3,
pp. 227–238, 2013.

[41] W. Casaca, E. Gomez-Nieto, C. O. Ferreira, G. Tavares,
P. Pagliosa, F. Paulovich, L. G. Nonato, and A. Paiva,
“Colorization by multidimensional projection,” in Proc. Conf.
Graph. Patterns Images, 2012, pp. 32–38.

[42] G. M. Mamani, F. M. Fatore, L. G. Nonato, and F. V. Paulovich,
“User-driven feature space transformation,” Comput. Graph.
Forum, vol. 32, no. 3, pp. 291–299, 2013.

[43] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in Proc. 6th Int. Conf. Comput. Vis., 1998, pp. 839–846.

Adriano Barbosa received the BSc degree in
mathematics in 2008 and the MSc degree in
applied mathematics in 2011, both from the
Universidade Federal de Alagoas, Brazil. He
is currently working toward the PhD degree
at the Instituto de Ciências Matem�aticas e de
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de Computaç~ao (ICMC-USP), where he accomplished a post-doc
(2013–2015).

Luis Gustavo Nonato received the PhD degree
in applied mathematics from the Pontif�ıcia
Universidade Cat�olica do Rio de Janeiro, Rio de
Janeiro—Brazil, in 1998. He is a full professor
at the Instituto de Ciências Matem�aticas e de
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