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Abstract. The analysis of vanishing points on digital images provides
strong cues for inferring the 3D structure of the depicted scene and can
be exploited in a variety of computer vision applications. In this paper,
we propose a method for estimating vanishing points in images of ar-
chitectural environments that can be used for camera calibration and
pose estimation, important tasks in large-scale 3D reconstruction. Our
method performs automatic segment clustering in projective space – a
direct transformation from the image space – instead of the traditional
bounded accumulator space. Since it works in projective space, it han-
dles finite and infinite vanishing points, without any special condition or
threshold tuning. Experiments on real images show the effectiveness of
the proposed method. We identify three orthogonal vanishing points and
compute the estimation error based on their relation with the Image of
the Absolute Conic (IAC) and based on the computation of the camera
focal length.
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1 Introduction

Large-scale three-dimensional (3D) reconstruction is a challenging task in com-
puter vision and has received considerable attention recently due to the useful-
ness of the recovered 3D model for a variety of applications, such as city planning,
cartography, architectural design, fly-through simulations, and forensic science.

The key task in large-scale 3D reconstruction is to recover high-quality and
detailed 3D scene models from two or more unordered and wide-baseline im-
ages [1], which may be taken from widely separated viewpoints.

Due to the complexity of the scenes, conventional modeling techniques are
very time-consuming and recreating detailed geometry become very laborious.
In order to overcome these difficulties, some works have been inclined towards
image-based modeling techniques [2], using images to drive the 3D reconstruc-
tion [3, 4]. However, in many image-based modeling techniques, the scenes are
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reconstructed using camera calibrated images or, when this is not the case, it is
nontrivial to establish correspondences between different images.

Recent works have focused on using scene constraints to optimize the recon-
struction, especially the geometric ones found in almost man-made environments,
such as parallelism and orthogonality [5, 6]. Vanishing points are an important
geometric constraint widely found in images of man-made objects, that can be
used to calibrate the camera [6, 7] and to find the relative pose.

A vanishing point is defined as the convergence point of a set of lines in
the image plane that is produced by the projection of parallel lines in real space,
under the assumption of perspective projection, e.g. with a pin-hole camera. The
analysis of such vanishing points provides strong cues to make inferences about
the 3D structures of a scene, such as depth and object dimension, because they
are invariant features.

Each vanishing point corresponds to an orientation in the 3D scene and when
the camera geometry is known, these orientations can be recovered. Even without
this information, vanishing points can be used to group segments on the image
with the same 3D orientation.

Because of its important role in 3D reconstruction, the detection of the van-
ishing points in a scene has to be effective, especially when no human intervention
is required. This work proposes a novel and automated method based on a geo-
metrical approach, in which all finite and infinite vanishing points are estimated
in an image of a man-made environment. It does not rely on calibration param-
eters or thresholds. Our solution is based on the clustering of line segments that
are detected in the image, representing points and segments on the projective
space. The advantages of our method with respect to previous methods are:

– Translational and rotational invariance. Preserves the original dis-
tances among points and lines, because it does not operate on a bounded
space, such as the Gaussian sphere or the Hough space.

– Unlimited location accuracy. It does not use accumulator-space tech-
niques.

– Unified handling of vanishing points. It uses projective geometry.
– Estimates all vanishing points. It includes orthogonal and non-orthogonal

vanishing points.
– No need for camera calibration. All camera parameters are unknown.

Figure 1 shows the stages of this method including detection of image line
segments, determination of seeds based on a computed quality value for each
segment, grouping of the line segments based on the distance among the inter-
section points of the corresponding lines in projective space (and not relying on
any orthogonality assumption). The two later stages iteratively run until con-
vergence to find the vanishing points. Experimental results on real images show
that the proposed method can effectively detect all finite and infinite vanish-
ing points. We also compute the estimation error based on the relation of the
detected vanishing points with the Image of the Absolute Conic (IAC).
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Fig. 1. Flowchart of the proposed vanishing point detection method.

2 Related Work

In recent years, a lot of effort has been devoted to finding vanishing points out
of 2D perspective projections and practical methods consider this task as a line
intersection detection problem. Due to quantization and error on the detection
of segments, the segments corresponding to a specific vanishing point do not
intersect at a single point, but they intersect inside an area called vanishing
region. To address this problem, methods often break the task into three steps:

1. Extraction of line segments on the image plane.
2. Clustering of line segments to groups of lines converging to the same vanish-

ing point.
3. Vanishing point estimation for the extracted line clusters.

The first step is often implemented using a zero-crossing technique to extract
edges that are subsequently grouped to form straight segments, e.g. Canny op-
erator [8] followed by Hough transform [9]. For the second and third steps, the
methods can be roughly divided in two categories: the ones that use accumulator
spaces [10–14] and the ones that perform the clustering directly on the image
plane [15, 16].

In the seminal technique due to Barnard [10], a Gaussian sphere is used to
represent the orientation space. In this approach, lines from image space are
projected onto a sphere that is tangent to the image plane at the center of the
image. The projection of lines are circles and the sphere is discretized to compose
an accumulator space for these circles; maxima on the sphere represents orien-
tations shared by several line segments, and can be hypothesized as vanishing
points for the image.
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Since Bernard’s work, however, methods for vanishing points detection in
digital images have been based on some variation of the Hough transform in
a conveniently quantized Gaussian sphere, for mapping the parameters of the
line segments into a bounded Hough space [11]. One problem that arises in such
methods is categorized as noise: artifacts of digital image geometry and textural
effects can combine to produce spurious maxima on the Gaussian Sphere [12].
To address this problem, Almansa et al. [13] use the Helmholtz principle to
partition the image plane into Meaningful vanishing regions and use Minimum
Description Length to reject spurious vanishing points. Unfortunately, bounded
spaces are not translational and rotational invariant (do not preserve distances
between lines and points).

In [14], the image plane itself is chosen as the accumulator space and although
it is not straight-forward to treat in the same way finite and infinite vanishing
points, this method addresses the problem. But since determining local maxima
is difficult and expensive, this method imposes an orthogonal criterion – the
vanishing points must correspond to the three mutual orthogonal directions of
the scene.

The second category of methods use the image plane itself for the clustering
process, without the use of any accumulator technique [15, 16]. Generally, the
clustering process depends on computations, such as distance among points and
lines, that are performed on image space. Such methods have the advantage of
not limiting the location accuracy and of preserving distances. It can be difficult,
however, to handle infinite vanishing points without additional criterion.

Against this background, this work provides a method for vanishing point
estimation that uses the projective space – a direct transformation from the
image space – to perform the clustering of segments and to handle all vanishing
points without special criterion, despite the fact that the space is unbounded.

3 Large-scale 3D reconstruction from vanishing points

Under perspective projection, a 3D point x ∈ R3 is projected to an image point
m ∈ R2 via a projection matrix P ∈ R3×4 as

m̃ = Px̃ = K[R|T]x̃ , (1)

where m̃ and x̃ are the homogeneous form of points m and x, respectively; R
is the rotation matrix, T is the translation vector from the world system to the
camera system, and K is the camera intrinsic matrix. Matrix K is defined as

K =

f/mx ς px
0 f/my py
0 0 1

 , (2)

where f is the focal length, (mx,my) is the camera pixel dimension, (px, py) is the
camera principal point, and ς refers to the skew factor. For a three-parameter
camera, we have to assume square pixels, i.e., ς = 0 and mx = my; known
principal point and known aspect ratio γ = mx/my.
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3.1 Recovering camera matrices

In [7], Wang et al. show that camera parameters can be learned from three
orthogonal vanishing points, assuming some restrictions. More specifically, they
prove that the camera projection matrix can be uniquely determined from three
orthogonal vanishing points, assuming a three-parameter camera. Furthermore,
they prove that the global consistent projection matrices can be recovered if an
arbitrary reference point in space is observed across multiple views.

To calibrate the camera, we have to recover the image of the absolute conic [7].
The absolute conic C∞ = I3 is a conic on the plane at infinity composed of purely
imaginary points. Under perspective projection, the image of the absolute conic
(IAC) is defined as

ω = K−TK−1 . (3)

It is know that two orthogonal vanishing points v and vT satisfies

vTωv = 0 . (4)

Consequently, a set of three orthogonal vanishing points can provide three lin-
early independent constraints to ω and a three-parameter camera can be cali-
brated.

The projection matrix P is defined as P = [sxṽx, sy ṽy, sz ṽz, soṽo], where
ṽx, ṽy, ṽz are the homogeneous form of the three orthogonal vanishing points, ṽo
is the world origin; and sx, sy, sz, so are unknown scalars.

Given a set of three orthogonal vanishing points vx, vy and vz, the scalars
sx, sy and sz can be uniquely determined if the camera is assumed to have
three-parameter and if soṽo is known [7].

For large-scale 3D reconstruction, when we have multiple views of the scene,
the scalars corresponding to the projection matrices of these views must be con-
sistent. Given an arbitrary point in space which can be observed across multiple
views, the consistent scalars associated with the translation terms of the projec-
tion matrices of these views can be uniquely determined [7].

In [2], the authors solved the inconsistency among the multiple views using
digital compass information associated with each view, instead of using a key
point in multiple views.

3.2 3D reconstruction

A possible outline for large-scale 3D reconstruction based on vanishing point
detection from uncalibrated images is presented in [7]:

(i) For each view:
(a) Compute three orthogonal vanishing points;
(b) Compute three scalars sx, sy and sz for a specified world origin.

(ii) Determine the consistent scalars of the projection matrices:
(a) Select a reference point in the first image and determine its correspon-

dence in other views;



6 Vanishing Point Detection by Segment Clustering on the Projective Space

(b) Compute the scalars pair-wisely;
(c) Compute the consistence projection matrices for each view weighted by

the scalars;
(iii) Detect and match key features across the images;
(iv) Recover the 3D structure of these key features via triangulations;
(v) Perform global optimization.

4 Effective vanishing point detection

As presented in Figure 1, our method has four main steps. The first step, de-
tection of line segments, is discussed in Section 4.1. The second and the third,
that together characterize the clustering process are presented in Section 4.2.
The last step is presented in Section 4.3.

4.1 Line segment detection

The line segments are used as primitives of our vanishing point estimator and
to detected them, we use a method based on the Helmholtz Principle [17]. The
usefulness of this specific method is beyond the task of segment detection. It
also provides an important value – the number of false alarms for a segment –
that is useful in the next steps to compute a quality value for the segment.

The Helmholtz principle states that if the expectation in the image of an
observed configuration is very small, then the grouping of the objects is a Gestalt:

Definition 1 (ε-meaningful event). An event is ε-meaningful, if the expecta-
tion of the number of occurrences of this event in an image is less than ε.

Let f be an image of size N ×N and x1, . . . , xl a set of l independents pixels
of a line segment A. At each xi, a random variable Xi equals 1 if the angle
between the image gradient 5f(xi) and the normal to the segment A is less
than pπ, where p is the precision level (usually p ≈ 1/16); and Xi = 0 otherwise,
assuming a uniform distribution of the gradient orientations.

The random variable that represents the number of points having the same
direction as the line is Sl = X1 +X2 + . . .+Xl, which has a binomial distribution
of parameters p and l.

The method considers a segment of length l0 to be meaningful when its
expected number of occurrences in the image is low (lower than ε).

Definition 2 (ε-meaningful segment). A segment of length l is ε-meaningful
in a N × N image if it contains at least k(l, ε) points having their direction
aligned with that of the segment, where k(l, ε) is given by

k(l, ε) = min
{
k ∈ N, P [Sl ≥ k] ≤ ε

N4

}
. (5)
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Let li be the length of the i-th segment and ei the event “the i-th segment is
ε-meaningful”. Let χei

denote the characteristic function of the event ei, so that

P [χei = 1] = P [Sli ≥ k(li, ε)] =
li∑

k=k(li,ε)

(
li
k

)
pk(1− p)li−k . (6)

Then the variable representing the number of ε-meaningful segments is R =
χe1 , χe2 , . . . , χeN4 , and its expectation E(R) gives the expected number of false
alarms.

Definition 3 (number of false alarms). Given a segment of length l0 in a
N ×N image containing k0 points aligned with the direction of the segment, the
number of false alarms for this segment is

NF (k0, l0) = N4P [Sl0 ≥ k0] . (7)

To avoid spurious responses, the method considers a subset of the ε-meaningful
segments that are maximal.

The described method depends on two parameters. The meaningful threshold
ε is necessary and it is not critical. The standard setting ε = 1 works well for
all images. However, the precision parameters p is not really necessary. Even
though p = 1/16 works well for most images, a finer p might do better in edges
with highly precise gradient orientations [13].

4.2 Line segment clustering

The input of our method is a set S = {s1, . . . , s|S|} of detected image segments on
Euclidean space R2, and the number M of clusters. The output is a classification
cluster(si) for each segment, representing its assignment to a cluster.

For the segment clustering process, the method constructs three sets: set L
of lines on the real projective space RP2, corresponding to each segment in S;
set W of the intersection points for each pair of lines in L, where w(a,b) ∈ W
corresponds to the intersection point between lines a and b; and set Q of quality
values for each segment. For a segment si with the number of false alarms NFi,
the quality value qi is

qi =
∣∣∣∣NFi − (max(NFj) +min(NFj))

max(NFj)

∣∣∣∣ , sj ∈ S . (8)

The goal of the line segment clustering is to assign a cluster for each one
of the segments in S. We denote Cj the j-th cluster. In addition, the following
properties corresponds to Cj : a seed (d1j , d2j ), where d1j and d2j are lines in
L; and a pseudo-centroid tj = w(d1j

,d2j
) ∈ W that is the intersection point

between lines d1j and d2j .
The clustering process is divided in three steps: selection of the first seeds,

assignment step, and update step. The algorithm aims to minimize an objective
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function
M∑
j=1

∑
si∈Cj

DLP (li, tj) , (9)

where the function DLP gives the distance between a line and a point. This
function is defined in RP2 and is given by

DLP (k, h) =
|k · h|
‖ k ‖‖ h ‖

. (10)

An important property is that the distance between two points in RPn is the
angle between the corresponding lines in RPn+1 [18]. Using this information, the
functionDLP gives a value that is relative to the angle between the corresponding
line and plane in RP3. This distance is symmetric, but it is not a full metric – it
does not satisfy triangle inequality. However, it is a robust way to measure the
amount of symmetry between lines and points.

First Seeds For a number M of vanishing points, we select as seeds 2M lines
based on the quality of the corresponding segments. More precisely, we select
the 2M lines with highest corresponding segment quality and distribute these
pairs of lines randomly across the clusters.

Assignment step At this step, the algorithm assigns each segment s ∈ S to
the cluster C that has the closest pseudo-centroid t. The “closest” concept is
determined by the distance function DLP . Formally,

cluster(si) = C | t = argmin
tj ,j∈[1,M ]

DLP (li, tj) . (11)

Update step When all segments in S have been assigned to a cluster, we need
to recalculate the positions of the pseudo-centroids. To accomplish this task, the
method selects a new seed for each cluster. For the cluster Cj , the new seed is
(d1j

, d2j
).

The choice of the lines d1j
and d2j

is so that they minimize the error to the
lines that would pass through the real corresponding vanishing point, i.e., line
d1j minimizes the distance to the mean line of cluster Cj and d2j is chosen so
that the new pseudo-centroid tj minimizes the distance to some key intersection
points.

The line d1j
is the one that the corresponding segment is assigned to the

cluster Cj and that minimizes the angular distance to the weighted mean ori-
entation of the cluster. The angular distance is the smallest angle between two
orientations. The weighted mean orientation θj for the cluster Cj , considering
the quality values as the weight, is computed as [19]

θj = arctan


∑

si∈Cj

qi ∗ sin(2θi)∑
si∈Cj

qi ∗ cos(2θi)

 , (12)
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where θi is the orientation of the line corresponding to the i-th segment assigned
to the cluster.

The line d2j
is the one that the corresponding segment is assigned to the

cluster Cj and which intersection point with the line d1j
, w(d1j

,d2j
), minimizes

the sum of the distances to all other intersection points w(d1j
,i), where si is

assigned to Cj .
The process of determining d1j

and d2j
on cluster Cj is illustrated on Figure 2.

First, the mean orientation of segments assigned to Cj (corresponding to non-
dotted lines) is computed. Line d1j is the one with closest orientation to the
mean. Line d2j

is the one that, together with d1j
, forms the intersection point

closest to all other intersection points of d1j
(only considering the ones formed

by lines corresponding to segments assigned to cluster Cj).

Fig. 2. Determination of the seed (d1j , d2j ) of the cluster Cj . Non-dotted lines corre-
spond to segments assigned to cluster Cj .

The relative distance between two intersection points in RP2 is given by the
angle between the corresponding lines in RP3. Figure 3 illustrates the distance
on the spherical model of RP2 between a finite point a and a infinite points b.

Fig. 3. Relative distance between a finite point a and a infinite points b, on a spherical
model of RP2.
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The new pseudo-centroid tj of cluster Cj is w(d1j
,d2j

) – the intersection point
between lines d1j

and d2j
.

The two last steps – assignment and update – must be computed until con-
vergence is achieved, i.e. until the pseudo-centroids no longer change.

4.3 Vanishing point estimation

The final step is the estimation of the vanishing points location. For each de-
tected cluster Cj , the method selects, as the corresponding vanishing point, the
intersection point vj that is the closest one to all lines in the cluster, according
to DLP :

vj = argmin
p

∑
si∈Cj

DLP (li, p) . (13)

5 Experiments and Results

We implemented our algorithm in C++ and we conducted the experiments using
the York Urban Database [20]. It consists of 102 indoor or outdoor images of
man-made environments. Figure 4 illustrates a few obtained results. The first
column shows input images with the detected segments. The second row shows
the line clustering results and the location of the finite vanishing points. For
experimental purposes, the parameter M was set for each image. For real pur-
poses, the parameter M does not need to be tuned. If M = 3, the method will
actually detect three vanishing points.

Our first experiment to test the effectiveness of the estimated vanishing points
was to compute the error associated with their relation with the Image of Ab-
solute Conic (IAC).

The York Urban Database provides the camera intrinsic parameters and
therefore it is simple to construct the camera intrinsic matrix K (Equation 2).
Given K, the IAC ω is given by Equation 3.

Let vi, i = 1, . . . ,M be the estimated vanishing points. Our goal is to find
the triplet that is more orthogonal, i.e, we want to minimize

ei,j,w = (viωvj)2 + (vjωvw)2 + (vwωvi)2 . (14)

For all vanishing points estimated by our method, we select the triplet that
minimizes Equation 14, the orthogonality error, as the three orthogonal vanish-
ing points. A triplet (vi, vj , vw) of orthogonal vanishing points leads to a zero
ei,j,w (Equation 14), the error associated with our estimation procedure. Fig-
ure 5 shows the cumulative orthogonality error histogram for our method and
for the method provided in York Urban database (hand detected segments and
vanishing points detection on the Gaussian sphere), called here as Ground Truth.

The second experiment was to estimate the focal length with the vanish-
ing point triplet that minimized Equation 14 and to compute the focal length
error compared to the real focal length provided in the York Urban database.
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Fig. 4. The first column shows the input image and all detected segments. The second
column shows the line clustering result and the estimated finite vanishing points. Each
input image has exactly three vanishing points. Parallel lines with the same color rep-
resent lines associated with a vanishing point at infinity; the other lines are associated
with finite vanishing points.

To compute the focal length, we recovered the camera intrinsic matrix K by
decomposing the IAC matrix with unknown focal length.

Our method is compared with three other vanishing point detectors, sum-
marized in Table 1. The method Almansa 2003 detects vanishing regions instead
of vanishing points. For comparison purposes, we have selected the center of the
detected regions as the vanishing points location. We called this extension as
Almansa 2003 + vpe.

Method Line detection VP estimation

Ground Truth [20] by hand Gaussian sphere

Tardif 2009 [16] Canny detector+flood fill J-Linkage

Almansa 2003 [13] Helmholtz Principle Helmholtz Principle
Table 1. Vanishing point detectors used for comparison.
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Fig. 5. Cumulative histogram for the estimated errors on York Urban Database. A
point (x, y) represents the fraction y of images in the database that have error e < x.

Figure 6 shows the cumulative focal length error histogram for our method
and for the others methods (Table1) in the York Urban database. We can see
that for the critical part of the histogram, where the focal length error is low,
our method provides significant superior results.
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Fig. 6. Cumulative histogram for the focal length errors on York Urban Database. A
point (x, y) represents the fraction y of images in the database that have focal length
error less than x.
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6 Conclusion

This work has examined the problem of estimating vanishing points on an image,
a useful tool in large-scale 3D reconstruction, since vanishing points can be used
for camera calibration and pose estimation.

We presented a new automated method to detect finite and infinite vanish-
ing point, without any prior camera calibration or threshold tuning. Since the
method is performed on an unbounded space – the projective plane – all vanish-
ing points can be accurately estimated with no loss of geometrical information
from the original image, as illustrated on the experimental results.

The method is effective when applied to images of architectural environments,
where there is a predominance of straight lines corresponding to different 3D
orientations. This is characterized as a strong perspective. However, if we go
to ICCV 2011 in Barcelona, Spain, for example, our pictures will not be good
inputs for the method. Most of the buildings in Barcelona have no straight lines,
an important characteristic to achieve the detection of the vanishing points.

The results show visually the effectiveness of the vanishing points estimation.
The method is also effective when relating the orthogonal vanishing points with
the Image of Absolute Conic and for focal length estimation.
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