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PSQP – Puzzle Solving by Quadratic Programming
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Abstract—In this article we present the first effective global
method for the reconstruction of image puzzles comprising
rectangle pieces – Puzzle Solving by Quadratic Programming
(PSQP). The proposed novel mathematical formulation reduces
the problem to the maximization of a constrained quadratic
function, which is solved via a gradient ascent approach. The
proposed method is deterministic and can deal with arbitrary
identical rectangular pieces. We provide experimental results
showing its effectiveness when compared to state-of-the-art ap-
proaches. Although the method was developed to solve image
puzzles, we also show how to apply it to the reconstruction of
simulated strip-shredded documents, broadening its applicability.

Index Terms—image puzzle, jigsaw puzzle, image analysis, tile
compatibility, quadratic programming.

I. INTRODUCTION

THE traditional Jigsaw Puzzle is the problem of assem-

bling several non-overlapping puzzle pieces that can be

combined following a fitting and/or a color pattern logic, with

the final goal of obtaining a single plane or image.

Although it has been proved to be NP-complete when

the affinity between the pieces in uncertain [1], much effort

has been devoted to solve the problem and the scientific

challenges that can be reformulated as 2D or 3D puzzles,

such as: reassembling broken archaeological artifacts [2], [3],

reconstruction of shredded documents [4], [5], speech recog-

nition [6], DNA/RNA modeling [7], and image editing [8],

among others. However, the primary interest in solving these

puzzles is probably the simple and challenging nature of the

problem, which captures people’s imagination.

This article addresses the problem of reconstructing images

from rectangular non-overlapping tiles of identical shape and

size (Figure 1a), placed without repetition within a regular

grid of the same dimension as the original image. Unlike

the traditional jigsaw puzzle (Figure 1b), in our formulation

the linear boundaries of the tiles do not provide additional

geometric information, making the problem resolution even

more challenging. We also assume that the puzzle pieces have

known orientation.

To solve the problem, it is necessary to overcome two main

difficulties. The first difficulty is the inherent combinatorial

complexity of the problem. Since a feasible solution can be

described by a permutation of the tiles in the rectangular grid,

the number of feasible solutions increases exponentially as

a function of the number of tiles. There exist (M × N)!
possible permutations in a problem with M × N tiles. The
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(a) (b)

Fig. 1. Different formulations of the jigsaw puzzle problem: (a) formulation
considered in this work, in which pieces have linear boundaries, and (b) jigsaw
puzzle formed by traditional puzzle pieces.

second difficulty is the global nature of the problem. Several

local measures have been studied to compute a compatibility

measure between tiles and consequently to decrease the com-

plexity of the global search. Nevertheless, an exact measure

based solely on the similarity of the tiles’ borders is unknown

to date.

The proposed Puzzle Solving by Quadratic Programming

(PSQP) method addresses these difficulties, comprising a

global compatibility function, which is maximized to find

the best permutation among tiles, and a local compatibility

function, which gives a compatibility measure of tiles being

assigned to neighboring locations.

Experiments are divided into two groups. First PSQP is

compared to related methods that address the same prob-

lem [9], [10], [11], according to three measures: Direct com-

parison, in which the obtained permutation is compared di-

rectly to the ground-truth permutation; Neighbor comparison,

in which the reconstruction accuracy is the average fraction

of correct neighboring tiles; and Perfect reconstruction, a

binary indicator of perfectly reconstructing the puzzle. PSQP

is accurate considering these metrics, in comparison with the

related methods. The second group of experiments aims at

demonstrating the effectiveness of PSQP in another application

– reconstruction of simulated strip-shredded documents. We

also obtain good results, showing that PSQP applicability is

not only limited to solving image puzzles with identically

shaped rectangular tiles.

The outline of this article is as follows. Section II gives a

brief history of automatic puzzle solving, classifying PSQP in

comparison to relevant related works. The formulation of the

PSQP method is presented in Section III. Some implemen-

tation issues and their solutions are discussed in Section IV.

Experimental results and analysis are presented in Section V.

Finally, conclusions are presented in Section VI, along with

directions for future work.
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(a) (b)

Fig. 2. Examples of real puzzles. (a) Fragments from a mural found at
Huaca Bandera, 2010, photograph courtesy National Archaeological Museum
of Brüning, Peru. (b) Apictorial puzzle manufactured by Ravensburger.

II. RELATED WORK

Methods for automatically solving image puzzles can be

classified according to whether or not they use chromatic

information, by the shape of the puzzle pieces, and by the

choice of two main strategies: matching between the pieces,

and the puzzle assembling itself (i.e. how the pieces are

combined to form the result).

In general, there are pictorial puzzles, where the puzzle

pieces are obtained by cutting an image; and apictorial puzzles,

where the pieces are obtained by cutting a constant color

plane, without any chromatic variation. In pictorial puzzles,

the pieces can be identical size rectangles (Figure 1a), can

be a traditional shape (Figure 1b), or have totally irregular

shapes (Figure 2a). In these puzzles, the matching strategy

between pieces relies on the analysis of their color and/or

shape. In apictorial puzzles, the pieces should be matched

only by their shape, disallowing the use or regular pieces

(Figure 2b). We proceed to classify and analyze the main

methods for automatic jigsaw puzzle solving, with respect to

these important characteristics.

A. Apictorial puzzles

The first method for solving apictorial puzzles with tradi-

tional pieces was proposed in 1964 by Freeman and Gard-

ner [12]. It was able to solve problems with only 9 pieces.

Even though it had no implementation, it was a foundation

for subsequent works. The method identified critical points

along the boundary of the pieces, which were then used to

compute a matching measure.

Burdea and Wolfson [13] developed a program to find

corresponding pieces in a traditional puzzle, and even showed

how to control a robot arm to position the pieces next to each

other according to the problem solution. With this method

they were able to solve puzzles with 104 pieces. The method

used a Schwartz–Sharir [14] bi-dimensional curve matching

algorithm to compute the affinity between the pieces, and

optimized search trees for assembling the puzzle.

Curve matching was also the strategy used for the compar-

ing pieces in the method proposed by Goldberg et al. [15].

Nearly 40 years after the publication of the first solution,

this method was able to solve problems with 204 pieces. The

method first computes the centers of the ellipses that fit on the

indents and outdents of the pieces. Then, by comparing these

points, the method finds the best translation and rotation for

each puzzle piece. To assemble the puzzle, the authors use a

greedy approach, starting with the edge pieces.

All these techniques rely on special features of the frag-

ments, as smooth edges and sharp corners. These character-

istics are typically not available in applications such as the

reconstruction of archaeological material, where the fragments

are completely irregular, the boundaries are eroded, and many

pieces may be missing.

Leitão and Stolfi [16] address the problem of irregular

pieces by applying a multi-scale approach directly to the

comparison of the contours, without the need of identifying

critical points. They demonstrate the ability of automatically

distinguishing adjacent fragments, by re-sampling the contours

in low-level details, which facilitates the global search. Con-

sidering the formed pairs of fragments, only the best are kept

and analyzed at higher scales.

Using a similar multi-scale approach and a greedy search

– global best-first – McBride and Kimia [2] were able to

reconstruct an artifact of approximately 20 fragments.

B. Pictorial puzzles

Kosiba et al. [17] proposed the first method that considers

the chromatic information of the pieces, although the size of

the puzzle shown to be successfully assembled is small – only

54 pieces with a greedy strategy. The process of matching the

pieces takes into account many of their features: color samples

along the edges, curvature parameters and their convexities and

concavities.

The type of piece used in the PSQP method is different from

the ones described so far. We consider identical rectangular

pieces, or tiles, where the matching characteristic is the chro-

matic information along their borders. The literature for this

classification is somewhat recent and not extensive, although

the problem is very important in practice. Here we present a

real application for this kind of formulation: the reconstruction

of shredded documents (text or image) by paper shredders.

The available literature for image reconstruction from

identical rectangular tiles comprises mainly a few recent

works [18], [19], [9], [10], [11], [20].

Nielsen et al. [18] presented the first method to successfully

solve these image puzzles. The method was shown to recon-

struct puzzles with up to 320 pieces, assembled by a greedy

strategy.

Cho et al. [19] obtained approximate reconstruction of the

original image using graphical models and a probabilistic

function maximized by Loopy Belief Propagation. Because

the method needs information about the layout of the original

image, they employed two strategies to explore a priori

knowledge: estimation of image in low resolution from a

few tiles, to serve as local evidence in the graphical model;

or the correct fixation of some tiles, called anchors, by the

user. Although being semi-automatic, this strategy allowed the

assembling of puzzles with up to 432 tiles.

Focusing on the disadvantage of the method by Cho et

al. [19], Pomeranz et al. [9] presented a greedy method which

does not require any user intervention. First, a compatibility
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Pictorial

Apictorial /

Shape

Shape and color / 

Traditional pieces

Color / 

Irregular pieces

Irregular

pieces

Traditional

pieces

Jigsaw puzzle

• Kosiba et al., 1994

 - Greedy

 - 54 pieces

• Freeman and Garder, 1964

 - Greedy

 - 9 pieces

• Burdea e Wolfson, 1989

 - Search tree

 - 104 pieces

• Goldberg et al., 2002

 - Greedy

 - 204 pieces

• Cho et al., 2010

 - Loopy Belief Propagation

 - 432 pieces

• PSQP

 - Quadratic programming

 - 3300 pieces

• McBride e Kimia, 2003

 - Best-global-first

 - 20 pieces

Global function

Local analysis

• Sholomon et al., 2013

 - Genetic-based greedy

 - 22834 pieces

• Nielsen et al., 2008

 - Greedy

 - 320 pieces

• Pomeranz et al., 2011

 - Greedy

 - 3300 pieces

• Gallagher, 2012

 - Tree-based greedy

 - 9600 pieces

• Son et al., 2014

 - Loop constraints

 - 9801 pieces

Fig. 3. Classification of relevant puzzle solving methods.

function which measures the affinity between two tiles is

computed and evaluated on every pair of tiles. Then the

method comprises three modules: positioning, segmentation,

and translation. The positioning module puts all tiles on

the grid following a predetermined logic and considering

randomly selected seeds; the segmentation module identifies

the regions that are more likely to be assembled correctly; and

the translation module reallocates regions and tiles to produce

the result. With this strategy, they achieved the considerable

improvement of solving puzzle with up to 3,300 tiles.

The method proposed by Gallagher [10] uses a new com-

patibility measure based on local gradients near the boundary

of the tiles and a tree-based greedy assembling approach. The

method is able to assemble puzzles with up to 9,600 square

pieces with unknown orientation and location (using specific

images).

Sholomon et al. [11] advanced the state-of-the-art, propos-

ing a genetic algorithm to solve very large puzzles up to 22,834

puzzle pieces with known tile rotation and puzzle dimension.

Son et al. [20] proposed a novel algorithm based on “loop

constraints” for assembling jigsaw puzzles where the rotation

and the position of each piece are unknown. Their key idea

is to find all small loops, or cycles of pieces, and group these

small loops into higher order “loops of loops”, in a bottom-up

fashion, to form a structure with no geometric conflict.

These discussed related methods can work in the same

scenario considered here: known puzzle dimension and tile

orientation. Some of them and other methods in the literature

are also extended to work in more complex scenarios, but we

are not covering them here as they are out of scope.

In this article we present an effective global optimization

method to the solution of rectangular-piece jigsaw puzzles,

with known tile rotation and puzzle dimension. We provide

a new mathematical formulation to reformulate a hard com-

binatorial problem into a constrained continuous optimization

problem, permitting the application of numerical methods.

PSQP is effective in most image puzzles up to 3, 300 tiles,

considering the studied metrics. It also can solve puzzles with

arbitrary rectangular pieces directly.

Figure 3 shows a diagram summarizing the methods pre-

sented in this section, classified first by the characteristic used

to match the pieces (shape and/or color) and subsequently

by the piece type (rectangular, traditional or irregular), and

assembling strategy. Along with each method we specify its

specific assembling strategy when possible and the maximum

number of puzzle pieces that were tested.

III. IMAGE PUZZLE SOLVING BY QUADRATIC

PROGRAMMING

The explanation of the PSQP – Puzzle Solving by Quadratic

Programming – can be divided into four stages. First the global

compatibility function is presented in Subsection III-A and in

Subsection III-B we show how to reformulate it as a quadratic

homogeneous function. The numerical method used to solve

the optimization problem is presented in Subsection III-C, and

the local compatibility function is defined in Subsection III-D.

A. Global compatibility function

The method formulation consists of an image partitioned

into a regular 2D grid of size Ncolumns ×Nrows forming N

tiles, t1, . . . , tN , of identical dimensions; and an empty similar

grid with N locations labeled 1, . . . , N . We have to determine

a biunivocal correspondence between the N tiles and the N

locations, optimized with respect to a properly constructed

global compatibility function.

Since the biunivocal correspondence can be described as

a permutation π of N tiles, the problem can be reduced to

a discrete optimization over the finite group of N -element

permutations.

We organize this formulation in a directed graph G =
{V,E = EH

⋃

EV }, where the vertices represent the loca-

tions, V = 1, . . . , N , and the edge set E comprehends all pairs

of neighboring locations. Sets EH and EV denote horizontally

and vertically neighboring locations, respectively. Graph G

must be directed since, in general, swapping two tiles should

result in a global compatibility value change.

For each pair of tiles (ti, tj), for 1 ≤ i, j ≤ N and i 6=
j, we define two local compatibility measures, CHi,j

≥ 0
and CVi,j

≥ 0, which correspond to the compatibility of the

two tiles being associated with locations connected by any

horizontal edge e ∈ EH or vertical edge e ∈ EV , respectively.



0162-8828 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2547394, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, NOVEMBER 2015 4

The global compatibility function of a permutation π is

ε(π) =
∑

(i,j)∈EH

CHπ(i)π(j)
+

∑

(i,j)∈EV

CVπ(i)π(j)
, (1)

where e = (i, j) is the edge connecting the neighboring

locations i and j; and π(i) corresponds to the tile permuted

to location i.

The goal is to maximize this function (Equation 1) con-

sidering all permutations π of N elements. Since this is a

hard combinatorial problem, we reformulate it as a constrained

continuous optimization problem which, in turn, can be solved

by numerical methods.

B. Reformulation the global compatibility function

In this section, the defined global compatibility function

(Equation 1) will be reformulated as a quadratic homogeneous

function of a square matrix.

Each permutation π of N elements can be represented as a

permutation matrix, i.e., a binary square matrix P , with one

entry 1 in each row and column:

Pik =

{

1, if k = π(i),

0, if k 6= π(i).
(2)

Using this notation, we can reformulate the global compat-

ibility function as

ε(P ) =
∑

(i,j)∈EH

(P⊤CHP )ij +
∑

(i,j)∈EV

(P⊤CV P )ij , (3)

where a generic term (P⊤CP )ij , corresponding to edge e =
(i, j), is the element (ij) of the square matrix (P⊤CP ).

Note that, for each edge e = (i, j), the term (P⊤CP ) is a

homogeneous non-negative quadratic function of elements of

matrix P . It follows that the sum of all terms in ε(P ) is also

a homogeneous non-negative quadratic function of P . If the

columns p1, . . . , pN of matrix P , which has N ×N elements,

are stacked up in a column-vector p of dimension N2, we

have

ε(P ) =
∑

(i,j)∈EH

p⊤i CHpj +
∑

(i,j)∈EV

p⊤i CV pj . (4)

We can rewrite Equation 4 in the canonical quadratic

form p⊤Ap, where A is a symmetric non-negative matrix of

dimension N2 × N2 that represents the Hessian of ε(P ). In

vector form and in coordinates,

ε(P ) = p⊤Ap =
N
∑

i=1

N
∑

k=1

N
∑

l=1

N
∑

j=1

PkiA(ki)(lj)Plj , (5)

where A(ki)(lj) is element (lj) of block (ki) of matrix A.

Block (ki) of matrix A is the second-order partial derivative

of ε(P ) with respect to edge (k, i), which will be either a null

matrix, CH , CV , or their transposes.

Figure 4 illustrates the proposed formulation: tile assign-

ment via permutation of the tiles, edge sets representing

neighboring locations, and the final form of matrix A. Note

that in this example A is a block-matrix, where each block is

a 9× 9 matrix.
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Fig. 4. Problem formulation. From top to bottom: each tile ti is assigned
to a location j. The result is represented by a permutation π of the N = 9
tiles; edge sets EH and EV representing horizontal and vertical neighboring
locations, respectively; and the final form of matrix A for this example.

C. Constrained Gradient Ascent

Permutation matrices are a special case of doubly stochastic

matrices [21], which are non-negative matrices such that the

sum of all elements in each row and in each column is equal

to 1. In fact, the set of doubly stochastic matrices is the

convex hull of N × N permutation matrices. Each doubly

stochastic matrix satisfies N2 inequality constraints, which

specify that the elements of P are non-negative, and 2N
equality constraints, which specify that the sum of elements

of each row and each column of P is equal to 1.

Extending the domain of ε(P ) for all doubly stochastic

matrices, the problem reduces to the solution of the following

quadratic optimization problem:

Maximize f(p) = p⊤Ap,

subject to P✶ = ✶, P⊤
✶ = ✶, and pij ≥ 0, (6)

where ✶ is an N−column vector with all elements equal to 1,

and pij = Pij , i.e., the element (ij) of P .

Although the objective function f(p) is positive in the

feasible set, it is not necessarily concave, since matrix A is not

positive definite. All diagonal values of A are equal to 0, which
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Fig. 5. Simplified 2D gradient projection of the gradient ∇f(p) onto the
space defined by the linear equality constraint, during a maximization process,
generating a constrained ascent direction s.

violates the necessary conditions for the matrix to be positive

definite or even positive semi-definite. Therefore we cannot

guarantee that f(p) reaches its maximum in a permutation

matrix. However, in practice, we observe that we can get very

close to a solution by working with the constraints.

To search for a local maximum of Equation 6, we propose

a simple constrained gradient ascent algorithm, with gradient

projection [22]. To find the local maximum, we update the

variables in steps proportional to the gradient of the function

in the current point, while the gradient is projected.

Although there are several optimization algorithms to max-

imize quadratic functions in literature, we propose a specific

gradient ascent to deal with two particular difficulties. First, the

function to be maximized is not concave. Second, the number

of variables is quadratic on N , e.g., for a puzzle with 3, 300
tiles, we have to work with 10, 890, 000 variables.

The optimization algorithm needs to keep a set of active

variables – the ones that are inside the feasible region. A

variable is inactivated when it reaches the boundary of the

feasible region and cannot be further updated, meaning that the

dimensionality of the problem is reduced by one. All variables

are initialized as pkl =
1
N

, for 1 ≤ k, l ≤ N , and set as active,

i.e., activekl = true, where activekl indicates whether pkl is

active or not.

The ascent direction is computed as d = ∇f(p) = A ∗
p at current p. Note that to compute d it is not necessary

to explicitly construct matrix A, because it is composed by

known blocks that are either formed by zeros, CH , CV , or

their transposes.

It is possible, however, that the ascent direction d does not

reside in the space defined by the linear equality constraints.

Therefore, the ascent direction must be projected onto the

space defined by the linear equality constraints [22], yielding a

constrained ascent direction s. Figure 5 illustrates a simplified

2D gradient projection during a maximization process.

Considering the constrained ascent direction s, the method

updates p to a new feasible point: pkl = pkl+step∗s, for 1 ≤
k, l ≤ N and activekl = true, where step is the maximum

value such that 0 ≤ pkl ≤ 1.

When one of the variables reaches the boundary of the

feasible region, the constraints should be modified so that the

variable no longer gets updated and remains at the boundary.

In practice, however, maintaining a group of mutable and

orthogonal constraints implies high computational costs. For

this reason, p must be reinitialized when there is no ascent

direction to maximize the energy inside the feasible region.

In order to reinitialize p, firstly the variables at the boundary

of the feasible region, i.e, the ones equal to 0 or 1, must be

deactivated. Deactivating a variable which is in the upper limit

is equivalent to associate the corresponding tile to the most

probable location. Then p is initialized without the inactive

variables: pkl = 1
N−Na

, for 1 ≤ k, l ≤ N and activekl =
true, where Na is the number of tiles that have already been

assigned to a location. The algorithm iterates until all tiles

have been assigned to a location.

Algorithm 1 describes the proposed Constrained Gradient

Ascent optimization method.

Algorithm 1 Constrained Gradient Ascent.

Input: Local compatibility matrices CH and CV ; and the

number of tiles N .

Output: Permutation π of tiles.

Na ← 0;

activekl ← true, for 1 ≤ k, l ≤ N ;

while Na < N do

pkl ←
1

N −Na

, for 1 ≤ k, l ≤ N and activekl = true;

d← ∇f(p)← A ∗ p;

s← Kd, where K is the projection matrix;

pkl ← pkl + step ∗ s, for 1 ≤ k, l ≤ N and activekl =
true;

for 1 ≤ k, l ≤ N and activekl = true do

if pkl = 0 then

activekl ← false;

end if

if pkl = 1 then

activekl ← false;

π(l)← k;

Na ← Na + 1;

end if

end for

end while

D. Local compatibility function

The compatibility between pairs of fragments has been

studied previously [19], [9] and plays a crucial role in the

solution of image puzzles. Demaine et al. [1] showed that if

it is possible to locally identify whether two fragments must

be neighbors in the solution, then an attempt to assemble all

tiles using a greedy method solves the problem in polynomial

time. But in natural images it is trivial to find examples of

tiles with ambiguous neighbors.

In the method by Cho et al. [19], one of the considered

compatibility functions is based on dissimilarity. The horizon-
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tal dissimilarity between two tiles ti and tj is computed as

DHij
=

T
∑

k=1

3
∑

l=1

(ti(k, T, l)− tj(k, 1, l))
2, (7)

where tiles ti and tj are T × T × 3 matrices and the color

difference is computed in the normalized L*a*b* color space.

The vertical dissimilarity DVij
is computed similarly.

Based on the dissimilarity measure, Cho et al. [19] calculate

the local horizontal compatibility between two tiles ti and tj
as

CHij
∝ exp

(

−
DHij

2σc
2

)

, (8)

where σc is adaptively defined as the difference between the

lowest and the second lowest DHij
, for 1 ≤ j ≤ N .

Pomeranz et al. [9] observed that the local compatibility

function proposed by [19] (Equation 7) is related to the

L2 norm of the vector of differences across tiles borders,

suggesting that other norms could provide better results. To

analyze the distribution of dissimilarity values when comput-

ing compatibilities, several powers q of the Lp norm were

studied. The horizontal dissimilarity with norm (Lp)
q for tiles

ti and tj is defined as [9]

DHij
=

( T
∑

k=1

3
∑

l=1

(| ti(k, T, l)− tj(k, 1, l) |)
p

)

q

p

. (9)

While Cho et al. [19] consider p = 2 and q = 2, Pomeranz et

al. [9] found their best results with values p = 3
10 and q = 1

16 .

Pomeranz et al. [9] also studied a compatibility function

based on prediction. Instead of computing dissimilarities, it

quantifies how well the content of one tile border can be

predicted based on the content of the other tile border. For

the predictions, they used Taylor expansion. The derivative is

obtained by computing the difference between the two last

pixels, near the border, of every row of the tile. This value

is used as a prediction for the first pixel of the corresponding

row in the second tile. The prediction is then compared to the

actual value of the first pixel of the second tile. That is, the

horizontal prediction of ti over tj is

DHij
=

[ T
∑

k=1

3
∑

l=1

(| 2 ∗ ti(k, T, l)− ti(k, T − 1, l)− tj(k, 1, l) |)
p

+ (| 2 ∗ tj(k, 1, l)− tj(k, 2, l)− ti(k, T, l) |)
p

]

q

p

, (10)

Their compatibility measure is defined as

CHij
∝ exp

(

−
DHij

quartile(i)

)

, (11)

where quartile(i) is the quartile of the dissimilarity values

among tile ti and all other tiles.

Gallagher [10] proposed a measure called Mahalanobis Gra-

dient Compatibility (MGC) that describes the local gradients

near the boundary of a tile. It penalizes changes in intensity

(a) Correct solution.
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(c) Vertical dissimilarities.

Fig. 6. Dissimilarities among tiles assigned to their correct location.

gradients and considers the covariance between color channels.

The horizontal dissimilarity between tiles ti and tj is

DLR(ti, tj) =
T
∑

k=1

(GijLR(k)− µiL)S
−1
iL (GijLR(k)− µiL)

T ,

(12)

where GijLR(k) is the gradient from the right side of ti to the

left side of tj , at row k; µiL is the mean difference between

the final two columns of ti; and SiL is a 3 × 3 covariance

matrix estimated from the difference between the last column

of ti and the first column of tj .

Because dissimilarity DLR is not symmetric, the final

horizontal symmetric dissimilarity is

DHij
= ((DLR(ti, tj))

p + (DRL(xj , xi))
p)q, (13)

where, in [10], the parameters are fixed: p = q = 1.

Equations 12 and 13 are modified appropriately to analyze

the other configurations.

The compatibility functions studied so far make use of

components that account for global information, as σc and

quartile(i). Such components are important because dissimi-

larities between tiles have an intrinsic ambiguity and are only

comparable in local small regions. As an example, Figure 6

shows the dissimilarities computed by Equation 7, considering

only neighboring tiles in the correct solution. In those areas of

the image where there is little information, such as cloudless

skies, the dissimilarity between the tiles is lower than the

dissimilarity between tiles in non-constant parts. This problem

is even worse when all possible pairs of tiles are considered.

Because PSQP is a global method, where all variables

are taken into consideration together in each iteration, the

ambiguity difficulty has to be further addressed. We present

a new way of computing compatibilities between tiles, based

on the previous ones, which imposes a stronger global order.

The horizontal compatibility between tiles ti and tj is defined

as

CHij
∝ exp

(

−ϕ(i, j)−
DHij

quartile(i)

)

, (14)

where ϕ(i, j) is used to impose a stronger global meaning

to the compatibilities. The value of ϕ(i, j) is determined by
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the position/ranking of DHij
in an increasingly ordered set

of values DHik
, for 1 ≤ k ≤ N , summed up with the

position/ranking of DHij
in an increasingly ordered set of

values DHkj
, for 1 ≤ k ≤ N . For example, if tile tj is the

second candidate neighbor of ti, and ti is the first candidate

neighbor of tj in the opposite border, according to DH , then

ϕ(i, j) = 3. The same idea is applied to compute vertical

compatibility values.

We have studied Equation 14 with two different dissimilarity

functions: the prediction-based function (Equation 10) and

MGC (Equation 13). In Equation 10, the color differences

were computed in the YIQ color space and the channels were

normalized to attain the same variance. In Equation 13, the

RGB space was considered. These color spaces were chosen

based on the recommendation of the original works.

While in [9], [10] the values of p and q in (Lp)
q are fixed,

we observed that there are optimal p and q for each image. For

this reason, we do not apply the same values for all images.

In practice, some sets of parameters p and q are tested and

the method chooses the set that yields the highest normalized

global compatibility (Equation 1).

IV. IMPLEMENTATION

A major concern in the implementation of PSQP is memory

usage. Vector p, the ascent direction s, and matrices CH

and CV have N2 elements each. To save up memory, we

observed that the term ϕ(i, j) in Equation 14 induces the

compatibility values to decrease rapidly, becoming very close

to 0 when distant neighbors of ti are considered. Under these

circumstances, it is possible to zero out compatibility values

that are already close to 0 using a safe threshold (10−6), which

makes matrices CH and CV sparse. In the optimal case, CH

will have Nrows × (Ncolumns − 1) non-negative entries and

CV will have Ncolumns × (Nrows − 1) non-negative entries,

drastically reducing memory usage.

The computational complexity of PSQP in O(N4). The as-

cent direction is computed by traversing matrices CH and CV ,

and gradient projection is done by traversing the corresponding

vector twice.

There are two new issues not discussed so far. First, the

constant tiles – group of tiles that have borders with identical

color information – pose a difficult problem to be solved.

These tiles have total compatibility among them and the same

compatibility with all other non-constant tiles. To overcome

this issue, we ignore constant tiles. If the total compatibility is

replaced by zero compatibility, these tiles will not be analyzed

by the method, finally being assigned to empty locations by the

end of the optimization method. Note that it does not matter

the permutation adopted among constant tiles, because their

borders are equal. Our method will not distinguish between

two or more sets of distinct constant tiles.

The second issue is associated with the non-concave prop-

erty of the global compatibility function. There is no guarantee

that the maximum obtained by the Gradient Ascent method

is the global optimum. In practice, we observed that for the

majority of images, PSQP works towards finding the correct

solution. However, in some few cases, especially in images

(a) Initial configuration (random per-
mutation).

(b) Final permutation: displacement
of the correct permutation.

(c) Correct permutation.

Fig. 7. Example of the non-concave property of the global compatibility
function. Note that the image contains several constant (white) tiles.

with constant tiles, the final permutation is a displacement of

the correct permutation (Figure 7).

To correct the displacement, PSQP adopts a post-processing

step: the global compatibility function ε(π) is computed for

the final permutation π changed by every possible cyclical

shift, considering each row and each column, and with p and

q equal to 1. The algorithm picks the shift that increases the

global compatibility – a linear-time operation on the number

of tiles. The formulation of PSQP is presented in Algorithm 2.

Algorithm 2 PSQP method.

π ← GradientAscent(CH , CV , N);
stHmax

, stVmax
← argmax

stH∈[1,Ncols],
stV ∈[1,Nrows]

GlobalComp(π, stH , stV );

πfinal ← Shift(π, stHmax
, stVmax

);

In Algorithm 2, function GradientAscent returns the per-

mutation π given by Algorithm 1; GlobalComp computes the

global compatibility ε(π) after applying to π cyclical shifts of

stH horizontally and stV vertically; and finally Shift applies

to π the shifts that generate the higher global compatibility

value (stHmax
horizontally and stVmax

vertically).

V. EXPERIMENTAL RESULTS

We use twenty jigsaw puzzles [19], each with 432 tiles

of size 28 × 28 pixels, to compare PSQP to the three most

recent methods in the literature [9], [10], [11]. The accuracy

of the solutions are measured according to three different

metrics [19], [10]:

Direct comparison: the final permutation is compared

directly to the ground-truth permutation. This metric

computes the ration between the number of tiles that are

assigned to the correct location and the total of tiles.

Neighbor comparison: for each tile, this metric com-

putes the fraction of its neighboring tiles that are also
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TABLE I
SETS OF PARAMETERS FOR PSQP, DEPENDING ON THE CONSIDERED

DISSIMILARITY MEASURE.

Equation 10 Equation 13

p q p q

0.3 1.8 0.5 1.0
1.0 6.0 0.5 2.0
1.0 1.0
1.0 0.3
3.0 3.0

TABLE II
METRICS COMPUTED FOR EACH OF THE TWENTY IMAGES USING

EQUATION 10. D STANDS FOR Direct comparison AND N FOR Neighbor

comparison.

PSQP

Image # D (%) N (%)

1 88.5 85.5
2 83.2 82.1
3 100.0 100.0
4 65.9 65.0
5 100.0 100.0
6 98.4 98.3
7 100.0 100.0
8 100.0 100.0
9 100.0 100.0

10 100.0 100.0
11 100.0 100.0
12 99.5 99.4
13 88.9 87.8
14 100.0 100.0
15 95.6 94.2
16 100.0 100.0
17 100.0 100.0
18 100.0 100.0
19 100.0 100.0
20 100.0 100.0

Mean 96.0 95.6

its neighbors in the correct solution. The accuracy is the

mean fraction of correctly assigned neighbors.

Perfect reconstruction: binary indication of whether

every tile is assigned to the correct location in a puzzle.

Direct comparison, however, is not a good metric [11], being

too sensitive to shifted solutions. For the sake of completeness,

we reported the results considering all metrics, including direct

comparison.

The method PSQP was implemented in C++ and the exper-

iments were conducted on a 3.4 GHz machine with 8 GB of

RAM.

In order to find out the optimal parameters p and q, PSQP

was previously trained with a set of 50 images randomly

chosen from the Internet, with the two considered dissimilarity

measures (Equations 10 and 13). The training step was per-

formed by a grid search in an interval of possible parameters.

Table I shows the optimal sets of parameters.

PSQP was executed with the optimal sets of parameters and

the best solution – the one that yields the highest normalized

compatibility measure (Equation 1) – is chosen as the solution.

For all executions, the accuracy metrics were computed and

are reported in Table II.

By using the prediction-based dissimilarity (Equation 10),

the mean accuracy was 96.0% under direct comparison, 95.6%
under neighbor comparison, and 13 perfect reconstructions.

TABLE III
ACCURACY COMPARISON.

Method D (%) N (%) # of perfect

432-tile puzzles (28× 28 pixels)

PSQP with Eq. 10 96.0 95.6 13
PSQP with Eq. 13 95.6 95.4 13
Pomeranz et al. [9] 91.0 94.0 13

Gallagher [10] 95.3 95.1 12
Sholomon et al. [11] (avg.) 82.9 95.7 7

By using MGC (Equation 13), the mean accuracy was 95.6%
under direct comparison, 95.4% under neighbor comparison,

and 13 perfect reconstructions

The mean time to obtain the final permutation with the

appropriate parameters is 1.8 minute per execution. Note that

several sets of parameters can be tested in parallel, because

the executions are independent. In this case, the total run-time

for an image is 1.8 minute. In case sets are tested sequentially,

the total run-time is 7 minutes. If the same result is obtained

with consecutive sets, the best solution (the one with higher

overall compatibility) so far is considered, without the need

of testing other sets.

Higher accuracy can be obtained if other parameters sets

are considered. However, if fewer sets are considered, for

example, only p = 1 and q = 1, we also obtain good accuracy:

87.4% under direct comparison and 94.1% under neighbor

comparison. Besides p = 1 and q = 1, if one more set is

considered, for example, p = 1 and q = 0.3, we obtain 91.4%
and 95.0%.

Table III summarizes the results obtained by related methods

in the literature [9], [10], [11]. Some of these methods are not

deterministic, needing 10 executions with random seeds, for

each image, to yield the reported average accuracy. PSQP is

deterministic because it does not require random seeds and it is

independent of the initial permutation of tiles1. Some puzzles

in which PSQP is superior are presented in Figure 8.

A. Puzzles with rectangular tiles

Another advantage of PSQP is the possibility of directly

solving puzzles with rectangular tiles, not only square ones.

For applications such as the reconstruction of fragmented

paper, for example, this is an essential characteristic.

To test the accuracy of the method concerning the use of

non-square tiles, we conducted an experiment with the same

20 images provided by [19], divided into 432 tiles, but now

with 56× 14 pixels each.

The obtained mean accuracy using the prediction-based

dissimilarity was 89.7% under direct comparison and 95.2%
under neighbor comparison. Figure 9 shows examples of

puzzles with rectangular tiles solved by PSQP.

B. Puzzles with more tiles

We also executed PSQP with 40 additional images provided

by [9], in order to test puzzles with 540 and 805 tiles, each

one with 28× 28 pixels.

1This is true for every image, except the ones with constant tiles. The
permutation among them is taken into account to compute the metrics.
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(a) (b)

(c) (d)

Fig. 8. Jigsaw puzzles with 432 tiles of size 28×28 pixels. In each subfigure,
we present the original image, the initial permutation for PSQP, PSQP final
permutation, and the result obtained by [9].

(a) Image 4. Accuracy: 66.15% under direct comparison and
65.50% under neighbor comparison. The non-constant part is per-
fectly reconstructed.

(b) Imagem 12. Accuracy: 100% under both metrics.

Fig. 9. Jigsaw puzzles with 432 tiles of size 56×14 pixels. In each subfigure,
we present the initial permutation and the result.

The obtained accuracy for 540-tile puzzles using Equa-

tion 10 was 90.6% under direct comparison, 95.3% under

neighbor comparison, and 13 perfect reconstructions; and for

805-tile puzzles, 82.5%, 93.4%, and 8 perfect reconstructions.

Figure 10 presents some results for puzzles with 540 and

805 tiles. The results were reported for PSQP using only

the prediction-based dissimilarity, since MGC did not provide

further improvements.

Also considering images provided by [9], PSQP was tested

with 2, 360- and 3, 300-tile puzzles, 28 × 28 pixels each tile.

Figure 11 shows some reconstructions with 100% accuracy.

Table IV summarizes all of the obtained results.

(a) Puzzle with 540 tiles of size 28 × 28 pixels. Left: PSQP, with 100%
accuracy; Right: Pomeranz et al. [9], 1% under direct comparison and 64%
under neighbor comparison.

(b) Puzzle with 805 tiles of size 28 × 28 pixels. Left: PSQP, 91.9% under
direct comparison and 90.6% under neighbor comparison; Right: Pomeranz et
al. [9], 83.0% under both metrics.

Fig. 10. Puzzles with 540 and 805 tiles.

(a) Puzzle with 2, 360 tiles.

(b) Puzzle with 3, 300 tiles.

Fig. 11. Puzzles with tiles of size 28 × 28 pixels each. In each subfigure,
we present the initial permutation and the result.

C. Simulated strip-shredded paper

PSQP is not limited to solving image puzzles. We demon-

strate its usage in another domain: reconstruction of simulated

strip-shredded documents.

In forensic investigations, investigators depend frequently

on the preservation quality of a document, or image, to analyze

or identify its contents. In some cases, such documents may

be damaged, torn, or obliterated. The reconstruction process

when they are torn, for example, can be done manually, which

suggests a tedious and laborious work.

Recently, the DARPA challenge [23] fomented the formu-

lation of novel methods to reconstruct real shredded papers,

most of them requiring some kind of human intervention.



0162-8828 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2547394, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, NOVEMBER 2015 10

TABLE IV
ACCURACY COMPARISON.

Method D (%) N (%) # of perfect

540-tile puzzles (28× 28 pixels)

PSQP 90.8 95.3 13
Pomeranz et al. [9] 83.5 90.9 9

Sholomon et al. [11] (avg.) 91.6 95.4 8

805-tile puzzles (28× 28 pixels)

PSQP 86.9 93.1 8
Pomeranz et al. [9] 80.3 89.7 7

Sholomon et al. [11] (avg.) 93.6 95.9 8

2, 360-tile puzzles (28× 28 pixels)

PSQP 92.7 95.8 2
Pomeranz et al. [9] 33.4 84.7 1

Sholomon et al. [11] (avg.) 84.6 88.0 -

3, 300-tile puzzles (28× 28 pixels)

PSQP 88.1 93.0 1
Pomeranz et al. [9] 80.7 85.0 1

Sholomon et al. [11] (avg.) 86.6 92.8 -

(a) Original image. (b) Initial permuta-
tion.

(c) Result.

Fig. 12. A business letter divided into 90. Accuracy of 3.3% under direct
comparison and 95.5% under neighbor comparison.

Although modern scenarios require the construction of

documents cut with cross-cut shredders, or even by hand, many

industrial-strength fast shredders are still strip-cut.

Here we perform a simulation and apply PSQP to automati-

cally reconstruct documents fragmented into strips, improving

the efficiency of the reconstruction when compared to the

manual process.

We use 30 scans of documents divided into three categories:

business letters, legal documents, and magazine pages. The

scans were selected from the ISRI-OCRtk database [24], orig-

inally constructed to evaluate OCR methods.

Each scan had its background without text removed to

contain only the document itself, and was divided into 28-

pixel width strips, resulting into 80 to 90 strips per document

(depending on its dimensions).

The method PSQP was executed for each image, using only

two sets of parameters, p = 1 and q = 0.3; and p = 3 and

q = 3, and using the prediction-based dissimilarity. Consider-

ing the whole document, the accuracy was 67.9% under direct

comparison, 99.1% under neighbor comparison, and 19 perfect

reconstructions. Note that the majority of documents contains

a white background which generates constant strips. If we

consider only the blocks of text, the accuracy is 100%, i.e,

all reconstructions all readable. Figures 12 to 14 show some

of the results obtained for each document category.

We then considered mixed strips from four business docu-

ments. All the documents are readable after running PSQP, as

(a) Original image. (b) Initial permuta-
tion.

(c) Result.

Fig. 13. A legal document divided into 90 strips. Accuracy of 0% under
direct comparison and 98.9% under neighbor comparison.

(a) Original image. (b) Initial permuta-
tion.

(c) Result.

Fig. 14. A magazine page divided into 81 strips. Accuracy of 100% under
direct comparison and 100% under neighbor comparison.

shown on Figure 15.

Fig. 15. PSQP applied to the reconstruction of mixed strips from four business
documents. The top row shows the mixed strips and the bottom row shows
the reconstruction.

VI. CONCLUSION

We presented the Puzzle Solving by Quadratic Programming

(PSQP) method as a new formulation to solve image puzzles.

In our formulation, a solution corresponds to the biunivocal

association of tiles to locations, according to an energy func-

tion. The complexity of this hard combinatorial problem makes

it infeasible in practice. So we reformulate it as a quadratic

programming problem, which we solve using a Constrained

Gradient Ascent algorithm.

PSQP was compared to related methods [9], [10], [11],

providing, in several image puzzles, superior results according
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to the studied metrics. The sizes of puzzles that have been

tested are: 432 square tiles, 432 rectangular tiles, 540, 805,

2, 360 and 3, 300 square tiles. We have also applied PSQP

to the reconstruction of simulated stripped documents, which

illustrated its versatility.

The proposed approach is fully automatic, and can solve

puzzles with rectangular tiles of arbitrary shape. The method is

deterministic and the reported accuracy is always guaranteed.

By analyzing the results, we observed that puzzles with

constant color tiles (where all the pixels in the tile have exactly

the same color) represent a fragility of PSQP method. Constant

tiles are difficult to order globally, and so they cannot be

considered as normal pieces in the resolution.

It was also observed that optimal parameters p and q for

each image may be defined a priori, by analyzing the image

and the tiles properties. These last two observations should be

incorporated into future studies.

As future extensions to the method, we plan to incorporate

some of these challenges to the problem formulation:

• In a puzzle some tiles may be missing. PSQP does not

contemplate this challenge, because it does a biunivocal

association between locations and tiles.

• Tiles from several puzzles may be mixed together. The

method should be capable of presenting the resolution of

every puzzle involved.

• Tiles may be rotated from its correct orientation. The

method should be capable of determining the correct

orientation.
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