Triangulation: Theory

Theorem: Every polygon has a triangulation.

e Proof by Induction. Base case n = 3.

p

e Pick a convex corner p. Let ¢ and r be pred and
succ vertices.

e If gr a diagonal, add it. By induction, the smaller
polygon has a triangulation.

e If gr not a diagonal, let z be the reflex vertex
farthest to gr inside Apqr.

e Add diagonal pz; subpolygons on both sides have
triangulations.

Subhash Suri UC Santa Barbara

Triangulation: Theory

Theorem: Every triangulation of an n-gon
has n — 2 triangles.

e Proof by Induction. Base case n = 3.

u

A"

e Let ¢{(P) denote the number of triangles in
any triangulation of P.

e Pick a diagonal uv in the given
triangulation, which divides P into P;, Ps.

° t(P):t(P1)+t(P2):n1—2+n2—2.

e Since n; +ny =n+2, we get t(P) =n— 2.

Subhash Suri UC Santa Barbara

Triangulation in 3D

5 Tetrahedra

6 Tetrahedra

e Different triangulations can have different
number of tetrahedra (3D triangles).

Subhash Suri

UC Santa Barbara

Untriangulable Polyhedron

e Smallest example of a polyhedron that
cannot be triangulated without adding
new vertices. (Schoenhardt [1928]).

e It is NP-Complete to determine if a
polyhedron requires Steiner vertices for
triangulation.

e Every 3D polyhedron with N vertices can
be triangulated with O(N?) tetrahedra.

Subhash Suri UC Santa Barbara

Triangulation History

1. A really naive algorithm is O(n?*): check all
n? choices for a diagonal, each in O(n)
time. Repeat this n — 1 times.

2. A better naive algorithm is O(n?); find an
ear in O(n) time; then recurse.

3. First non-trivial algorithm: O(nlogn)
[GIJPT-78]

4. A long series of papers and algorithms in
80s until Chazelle produced an optimal
O(n) algorithm in 1991.

5. Linear time algorithm insanely
complicated; there are randomized,
expected linear time that are more
accessible.

6. We content ourselves with O(nlogn)
algorithm.

Subhash Suri UC Santa Barbara

Algorithm Outline

1. Partition polygon into trapezoids.

2. Convert trapezoids into monotone
subdivision.

3. Triangulate each monotone piece.

x—monotone polygon Monotone decomposition

4. A polygonal chain C is monotone w.r.t.
line L if any line orthogonal to L
intersects C' in at most one point.

5. A polygon is monotone w.r.t. L if it can
be decomposed into two chains, each
monotone w.r.t. L.

6. In the Figure, L is x-axis.

Subhash Suri UC Santa Barbara

Trapezoidal Decomposition

e Use plane sweep algorithm.

e At each vertex, extend vertical line until
it hits a polygon edge.

e Each face of this decomposition is a
trapezoid; which may degenerate into a
triangle.

e Time complexity is O(nlogn).

Subhash Suri UC Santa Barbara

Monotone Subdivision

e Call a reflex vertex with both rightward
(leftward) edges a split (merge) vertex.

e Non-monotonicity comes from split or
merge vertices.

e Add a diagonal to each to remove the
non-monotonicity.

e To each split (merge) vertex, add a
diagonal joining it to the polygon vertex
of its left (right) trapezoid.

A monotone piece

Subhash Suri UC Santa Barbara

Monotone Subdivision

e Assume that trap decomposition
represented by DCEL.

e Then, matching vertex for split and merge
vertex can be found in O(1) time.

e Remove all trapezoidal edges. The
polygon boundary plus new split/merge
edges form the monotone subdivision.

e The intermediate trap decomposition is
only for presentation clarity—in practice,
you can do monotone subdivision directly
during the plane sweep.

Subhash Suri UC Santa Barbara

Triangulation

Subhash Suri UC Santa Barbara

Triangulation

o (V1,V9,...,V,) sorted left to right.
e Push v;,v5 onto stack.

e for 1 =3 to n do

if v; and top(stack) on same chain
Add diagonals v;v4,...,v;v;, where
vi is last to admit legal diagonal
Pop vj,...,v,—1 and Push v;

else
Add diagonals from v; to all vertices
on the stack and pop them
Save v;,p; Push vy, and v;

sweep line

top

bot

Subhash Suri UC Santa Barbara

Correctness

e Invariant: Vertices on current stack form
a single reflex chain. The leftmost
unscanned vertex in the other chain is to
the right of the current scan line.

Vi Vi Vj
top top
\4
bot bot
Yi
New stack: (bot, ..., vk, vi) New stack: (vj, vi)
Case I Case 11

Subhash Suri UC Santa Barbara

Time Complexity

\% Vi v
top top
v
bot bot
Vi
New stack: (bot, ..., vk, vi) New stack: (vj, vi)
Case I Case 11

e A vertex is added to stack once. Once it’s
visited during a scan, it’s removed from
the stack.

e In each step, at least one diagonal is
added; or the reflex stack chain is
extended by one vertex.

e Total time is O(n).

e Total time for polygon triangulation is
therefore O(nlogn).

Subhash Suri UC Santa Barbara

