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1. Introduction 

A natural and well-studied problem in algorithmic graph theory and network optimization 
is that of computing a "shortest path" between two nodes, s and r, in a graph whose edges 
have "weights" associated with them, and we consider the "length" of a path to be the sum 
of the weights of the edges that comprise it. Efficient algorithms are well known for this 
problem, as briefly summarized below. 

The shortest path problem takes on a new dimension when considered in a geometric 
domain. In contrast to graphs, where the encoding of edges is explicit, a geometric instance 
of a shortest path problem is usually specified by giving geometric objects that implicitly 
encode the graph and its edge weights. Our goal in devising efficient geometric algorithms 
is generally to avoid explicit construction of the entire underlying graph, since the full 
induced graph may be very large (even exponential in the input size, or infinite). 

Computing an optimal path in a geometric domain is a fundamental problem in compu-
tational geometry, having many applications in robotics, geographic information systems 
(GIS) (see [135]), wire routing, etc. The most basic form of the problem is: Given a col-
lection of obstacles, find a Euclidean shortest obstacle-avoiding path between two given 
points. A much broader collection of problems is defined by considering the several pa-
rameters that define the problem, including the 

objective function: How do we measure the "length" of a path? Options include the Eu-
clidean length, Lp length, "link distance", etc. 

constraints on the path: Are we simply to get from point s to point t, or must we also visit 
other points or other regions along a path or cycle? 

input geometry: What types of "obstacles" or other entities are specified in the input map? 

dimension of the problem: Are we in 2-space, 3-space, or higher dimensions? 

type of moving object: Are we moving a single point along the path, or is the robot 
specified by some more complex geometry? 

single shot vs. repetitive mode queries: Do we want to build an effective data structure for 
efficient queries? 

static vs. dynamic environments: Do we allow obstacles to be inserted or deleted, or do 
we allow obstacles to be moving along known trajectories? 

exact vs. approximate algorithms: Are we content with an answer that is guaranteed to be 
within some small factor of optimal? 

known vs. unknown map: Is the complete geometry of the map known in advance, or is it 
discovered on-line, using some kind of sensor? 

In this survey chapter, we discuss several forms of the geometric shortest path problem, 
primarily for a single point moving in a 2- or 3-dimensional space. We assume that the map 
of the environment is known, except in Section 5, where we discuss on-line path planning 
problems. 
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We also discuss other geometric network optimization problems, including minimum 
spanning trees, Steiner trees, and the traveling salesperson problem. Many versions of these 
problems are known to be NP-hard; thus, much of our attention is devoted to approximation 
algorithms. 

We focus mostly on sequential algorithms in this survey, listing only a few results on 
parallel algorithms. See the surveys by Atallah and Chen [45], Goodrich [179], and by 
Reif and Sen [335] for more extensive lists of results on parallel algorithms in geometry. 

We will freely use the "big-Oh" notation for upper bounds on time and space require-
ments. We also use "big-Omega" notation for lower bounds. (See [124] for definitions.) 
We use "0(- • •)" to indicate an upper bound in which we suppress polylogarithmic factors. 

Many of the results discussed in this survey are also reported, in a more tabular form, in 
a survey chapter [288] of the recently released CRC Handbook, edited by Goodman and 
O'Rourke [178]. 

Finally, we make a disclaimer that our survey concentrates primarily on theoretical re-
sults. Some of these results may well imply practical algorithms that may be implementable 
and useful; however, in many cases, the algorithms are too complex or have too large of a 
constant buried in the big-Oh notation to be of practical significance. We hope that a future 
survey will address the important choices and issues facing practitioners in the implemen-
tation of geometric shortest path and network optimization algorithms. One of the major 
issues facing an implementer of any geometric algorithm is, of course, robustness', see the 
survey by Schirra [352] — Chapter 14 in this Handbook. 

1.1. Shortest paths in graphs 

Shortest paths in graphs and networks are well studied; see, e.g., Ahuja, Magnanti, and 
Orlin [10]. Here, we mention the case in which all edge weights are non-negative, as this 
is the most relevant for geometric instances. Then, a standard algorithm given by Dijk-
stra [139] allows one to compute a tree of shortest paths from any one source node to 
all other nodes of the graph. Early implementations of Dijkstra's algorithm required time 
0(i;^) or 0(^logi;), where v denotes the number of vertices and e the number of edges. 
Using Fibonacci heaps, Fredman and Tarjan [161] gave an 0{e + v log v) time implemen-
tation, and argued that this is optimal in a comparison-based model of computation. Ex-
ploiting planarity, Henzinger, Klein, and Rao [198] have obtained a linear-time algorithm 
for computing all shortest paths from a single source in planar graphs having nonnegative 
edge weights. 

There has been some recent progress too in devising new algorithms that differ from Di-
jkstra's algorithm in that they do not necessarily visit nodes in increasing order of distance 
from the source node. Thorup [374] has in fact obtained an optimal 0(^)-time algorithm 
for computing a tree of shortest paths in a graph having integer edge weights; see his paper, 
as well as the recent article of Raman [327], for a survey of other recent results that led up 
to this one. 
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1.2. Approximation algorithms 

Several of the problems we will discuss in this survey are "provably hard" (e.g., NP-hard), 
meaning that no polynomial-time algorithm is known to exist to solve it. An increasingly 
popular approach to "solving" NP-hard optimization problems is to obtain provably-good 
approximation algorithms, which are guaranteed, in polynomial time, to produce an answer 
that is close to optimal — say, whose objective function value at most some factor c > 1 
times optimal, for a minimization problem. Such an approximation algorithm is then called 
a c-approximation algorithm. (For a maximization problem, a c-approximation algorithm 
produces a solution whose objective function value is at least (1/c) times optimal.) 

A polynomial time approximation scheme (PTAS) is a method that allows one to com-
pute a (1 + e)-approximation to the optimal (minimum), in time that is polynomial in n, 
for any fixed ^ > 0. (In general, the dependence on e may be exponential in (1/6:).) 

The recent book edited by Hochbaum ([210]) contains several articles surveying the state 
of knowledge on approximation algorithms for NP-hard problems. In particular, the survey 
of Bern and Eppstein [65] gives an excellent overview of the subject of approximating 
NP-hard geometric optimization problems. 

Approximation algorithms can also be quite useful for problems that are not necessarily 
NP-hard. First, an approximation algorithm may be considerably simpler and easier to im-
plement than an algorithm that solves the problem to optimality. Further, the running time 
(both worst-case and average-case) for the approximation algorithm may be much better 
than the best known for the exact solution, even when the exact algorithm has polynomial 
running time. 

Further, approximation algorithms are known for some problems whose complexity sta-
tus is still open, such as the MAX TSP in the plane and the minimum-weight triangulation 
problem; see Section 7. 

1.3. Geometric preliminaries 

Throughout the survey, we will have need of some basic terminology, which we outline in 
this section. 

First, a path is a continuous image of an interval. A polygonal s-t path is a path from 
point s to point t consisting of a finite number of line segments {edges, or links) joining a 
sequence of points {vertices). 

The length of an s-t path is a nonnegative number associated with the path, measuring 
its total cost according to some prescribed metric. Unless otherwise specified, the length 
will be the Euclidean length of the path. 

A shortest path is then a path of minimum length among all paths that are feasible 
(satisfying all imposed constraints). We often refer to a shortest path also as an "optimal 
path" or a "geodesic path". (The word "geodesic" is sometimes used differently, to refer to 
paths that are "locally optimal", as defined below.) 

The shortest-path problem induces a metric, the shortest path metric, in which the dis-
tance between two points s and t is given by the length of a shortest s-t path; in many 
geometric contexts, this metric is also referred to as geodesic distance. 
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A simple polygon, P, having n vertices, is a closed, simply-connected region whose 
boundary is a union of n (straight) line segments (edges), whose endpoints are the ver-
tices of P. A polygonal domain, P, having n vertices and h holes, is a closed, multiply-
connected region whose boundary is a union of n Une segments, forming h + 1 closed 
(polygonal) cycles. (A simple polygon is a polygonal domain with h = 0.) 

A triangulation of P is a decomposition of P into triangles such that any two triangles 
either intersect in a common vertex, a common edge, or not at all. A triangulation of a 
simple polygon P can be computed in 0(n) time [92]; a polygonal domain can be trian-
gulated in time 0{n \ogn) [326] or 0{n + h log'"^^ h) [55] time. (See the chapter of Bern 
and Plassman [67] in this handbook, or the survey by Bern [64] for more information on 
triangulations.) 

We will use the term obstacle to refer to any region of space whose interior is forbidden 
to paths. The complement of the set of obstacles is the free space. If the free space is a 
polygonal domain P, the obstacles are the /i -f 1 connected components of the complement 
of P (h holes, plus tht face at infinity). 

A path that cannot be improved by making a small change to it that preserves its combi-
natorial structure (e.g., the ordered sequence of triangles visited, for some triangulation of 
a polygonal domain P) is called a locally shortest or locally optimal path. It is also known 
as a taut-string path in the case of a shortest obstacle-avoiding path. 

The visibility graph, yG(P) , is a graph whose nodes are the vertices of P and whose 
edges join pairs of nodes for which the corresponding segment lies inside P. An example 
is shown in Figure 2. 

Given a source point, s, a shortest path tree, SPT(5', P), is a spanning tree of s and the 
vertices of P such that the (unique) path in the tree between s and any vertex of P is a 
shortest path in P. 

A single-source query is a type of shortest path problem in which a source point, s, is 
fixed, and for each query (goal) point, t, one requests the length of a shortest path from 
the source point s to t. The query may also require the retrieval of an actual instance of a 
shortest s-t path; in general, this can be reported in additional time 0(k), where k is the 
complexity of the output (e.g., number of edges). 

One method of handling the single-source query problem is to construct a shortest path 
map, SPM(5'), which is a decomposition of free space into regions (cells) according to 
the "combinatorial structure" of shortest paths from a fixed source point s to points in the 
regions. Specifically, for shortest paths in a polygonal domain, SPM(5') is a decomposition 
of P into cells such that for all points t interior to a cell, the sequence of obstacle vertices 
along an s-t path is fixed. In particular, the last obstacle vertex along a shortest s-t path 
is the root of the cell containing t. Each cell is star-shaped with respect to its root, which 
lies on the boundary of the cell, meaning that the root can "see" all points within the cell. 
Typically, we will store with each vertex, v,of P the geodesic distance, d(s,v), from stov, 
as well as a pointer to the predecessor of v, which is the vertex (possibly s) preceding u in a 
shortest path from s to v. (The predecessor pointers provide an encoding of the SPT(^, P).) 
Note that v will appear on the boundary of the star-shaped cell rooted at its predecessor. The 
boundaries of cells consist of portions of obstacle edges, extension segments (extensions of 
visibility graph edges incident on the root), and bisector curves. The bisector curves are, 
in general, hyperbolic arcs that are the locus of points p that are (geodesically) equidistant 
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from two roots, u and v: they satisfy d{s, u) + d2(u, p) = d(s, v) + d2(v, p), where d2(', •) 
denotes EucHdean distance. (Extension segments can be considered to be degenerate cases 
of bisector curves.) In Figure 1, the root of the cell containing t is labeled r. If SPM(^) 
is preprocessed for point location (see the chapter by Goodrich [180] in this handbook), 
then single-source queries can be answered efficiently by locating the query point t within 
the decomposition: If t lies in the cell rooted at r, the geodesic distance to t is given by 
d(s, t) = d(s, r) + d2ir, t). A shortest s-t path can then be output in time 0{k), where k is 
the number of vertices along the path, by simply following predecessor pointers back from 
r to s. 

In a two-point query problem, we are asked to construct a data structure that allows us 
to answer efficiently a query that specifies two points, s and t, and requests the length of 
a shortest path between them. In all cases discussed here, an actual instance of a shortest 
path can be reported in additional time 0(/c), where k is the complexity of the output (e.g., 
number of edges). 

A geodesic Voronoi diagram (VD) is a Voronoi diagram for a set of sites, in which the 
underlying metric is the geodesic distance. See the chapter of Aurenhammer and Klein [46] 
in this handbook for details about Voronoi diagrams. 

The geodesic center of P is a. point within P that minimizes the maximum of the 
shortest-path lengths to any other point in P. The geodesic diameter of P is the maxi-
mum of the lengths of the shortest paths joining pairs of vertices of P. 

Finally, we remark that in most of the algorithmic results reported here, the model of 
computation assumed has been the real RAM, which assumes that exact operations on real 
numbers can be done in constant time per operation. We acknowledge that this model is 
not, in general, realistic. At a couple places in the survey, we will point to results involving 
bit complexity models. 

2. Geodesic paths in a simple polygon 

We begin by considering the most basic geometric shortest-path problem, that of finding 
a shortest s-t path inside a simple polygon, P (having no "holes"). The complement of P 
serves as an "obstacle" through which the path is not allowed to travel. 

2.1. Special structure: Linear-time algorithms 

In this case, simple local optimality arguments, based on the triangle inequality, yield: 

PROPOSITION 1. There is a unique shortest s-t path in a simple polygon P; consequently, 
SPT(s, P) is unique. 

We now sketch an 0(n) time algorithm for computing a shortest s-t path within a simple 
polygon P. We begin with a triangulation of P (0(n) time; [92]), whose dual graph is a 
tree. The sleeve is comprised of the triangles that correspond to the (unique) path in the dual 
that joins the triangle containing s to that containing t. By considering the effect of adding 
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Fig. 1. A shortest path map with respect to source point s within a polygonal domain with h = ?>. The heavy 
dashed path indicates the shortest s-t path, which reaches t via the root r of its cell. Bisector curves are shown in 

narrow solid curves; extension segments are shown thin and dashed. 

Fig. 2. The visibility graph VG{P)\ Edges of VG(P) are of two types — (1) the heavy dark boundary edges 
of P, and (2) the edges that intersect the interior of P, shown with thin dashed segments. A shortest s-t path is 

highlighted. 
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Fig. 3. Computing a shortest path in a simple polygon: Splitting a funnel. 

the triangles in order along the sleeve, [90,253] have shown how to obtain an 0(n)-time 
algorithm for collapsing the sleeve into a shortest path. At a generic step of the algorithm, 
the sleeve has been collapsed to a structure called a "funnel" (with "base" ab and "root" 
r) consisting of the shortest path from ^ to a vertex r, and two (concave) shortest paths 
joining r to the endpoints of the segment ab that bounds the triangle abc that is about to be 
considered (see Figure 3). In adding triangle abc, we "split" the funnel in two according 
to the taut-string path from r to c, which will, in general, include a segment, uc, joining c 
to some (vertex) point of tangency, M, along one of the two concave chains of the funnel. 
After the split, we keep that funnel (with base ac or be) that contains the s-t taut-string 
path. The work needed to search for u can easily be charged off to those vertices that are 
discarded from further consideration. The end result is that a shortest s-t path is found in 
time 0(n), which is worst-case optimal. 

In order to answer single-source query problems, we are interested in also computing 
the shortest path map in P. SPM(5') has a particularly simple structure, as the boundaries 
between cells in the map are simply (line segment) chords of P obtained by extending ap-
propriate edges of the visibility graph VG{P). Guibas et al. [186] have shown how it can 
be computed in time 0(n), by using somewhat more sophisticated data structures to do fun-
nel splitting efficiently (since, in this case, we cannot discard one side of each split funnel). 
Then, after storing the SPM(5') in an appropriate 0(n)-size point location data structure 
(see, e.g., [180]), single-source queries can be answered in 0(log/2) time. Hershberger and 
Snoeyink [203] have substantially simplified the original algorithm of [186]. 

The above result can be strengthened even further to the case of two-point queries. 
Guibas and Hershberger [185] have shown how a simple polygon can be preprocessed 
in time 0(n), into a data structure of size 0(n), to support shortest-path queries between 
any two points sjeP.ln time O(logn) the length of the shortest path can be reported, and 
in additional time 0{k), the shortest path can be reported, where k is the number of vertices 
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in the output path. The method has been simpUfied with a new data structure introduced by 
Hershberger[200]. 

THEOREM 2 ([185,200]). For a simple polygon P having n vertices, there is a data struc-
ture of size 0(n) that can be built in time 0(n) so that the length of the shortest path 
between any two points s,t e P can be reported in time 0(log«), and the shortest path 
itself can be reported in additional time proportional to its number of vertices. 

We should emphasize that the above methods all rely on starting with a triangulation 
of the simple polygon. Given the complexity of linear-time triangulations of polygons, we 
pose the following open problem: 

OPEN PROBLEM 1. Can one devise a simple 0(n) time algorithm for computing the short-
est path between two points in a simple polygon, without resorting to a {complicated) 
linear-time triangulation algorithm! 

In the dynamic version of the shortest path problem, one allows the polygon P to change, 
with the addition or deletion of edges and vertices. If the changes are always made in such 
a way that the set of all edges yields a connected planar subdivision of the plane into 
simple polygons (i.e., no "islands" are created), then one can maintain a data structure of 
size 0(/i) that supports two-point query time of 0(log^ n) (plus 0(k) if the path is to be 
reported), and update time of 0(log^ n) for each addition/deletion of an edge/vertex [183]. 
(The result of [183] improves the first results on the dynamic problem, obtained by Chiang, 
Preparata, and Tamassia [109,110], who gave a data structure achieving 0(\og^n) query 
and update bounds, using 0(n\ogn) space. The same data structure also gives the best 
known dynamic point location solution for connected maps, with optimal O(logn) query 
time.) 

We turn briefly to some results on parallel algorithms. ElGindy and Goodrich [148] gave 
a parallel algorithm to compute a shortest path in a simple polygon in time 0(\ogn), using 
0(n) processors (in the CREW PRAM model). Goodrich, Shauck, and Guha [181,182] 
show how, with 0(n/ logn) processors and O(logn) time, one can compute a data structure 
that supports 0(\ogn) (sequential) time shortest-path queries between pairs of points in 
a simple polygon. They also give an 0(logn)-time algorithm using 0(n) processors to 
compute a shortest path tree. Hershberger [201] builds on the results of [181,182] and 
gives an algorithm for shortest path trees requiring only 0(\ogn) time and 0(n/logn) 
processors (CREW); he also obtains optimal parallel algorithms for related visibility and 
geodesic distance problems. 

2.2. Other geodesic distance problems 

The geodesic Voronoi diagram of k sites inside P can be constructed in time 0((n -\-
k) \og{n + k)), using 0{n) space [320]; this improves an earlier result of Aronov [32] that 
required time 0((n + k) log(n + k) logn). The furthest-site Voronoi diagram for geodesic 
distance can also be computed in time 0{in -\-k) \og{n + A:)), and space 0(n + A:), using 
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an algorithm of Aronov, Fortune, and Wilfong [33]. Given that shortest paths in simple 
polygons require only linear time, it is natural to ask if the superlinear portion of the com-
plexities of these algorithms can be moved to the "^" term; the only lower bound known is 
Q{n^k\ogk). 

OPEN PROBLEM 2. Can the geodesic Voronoi diagram {closest-site or furthest-site) for k 
sites within a simple polygon P be computed in time 0{n-{-k \ogk)l 

The geodesic diameter of a simple polygon can be computed in time 0{n), using the 
method of "matrix searching" in the geodesic distance, as developed by Hershberger and 
Suri [209]. This algorithm improves an earlier 0{n logn)-time solution given by Suri [366, 
185]. Matrix searching also provides a powerful tool for obtaining linear-time solutions to 
other geodesic distance problems, such as all nearest neighbors and all furthest neighbors. 

The geodesic center of a simple polygon P can be computed in time 0{n log^ n) [325] 
(see also [42]); however, it is believed that this bound can be improved. 

OPEN PROBLEM 3. Can the geodesic center of a simple polygon be computed in 0{n) 
timel 

Shortest paths within simple polygons give a wealth of structural information about the 
polygon. In particular, they have been used to give an output-sensitive algorithm for con-
structing the visibility graph of a simple polygon ([199]) and can be used for constructing 
a geodesic triangulation of a simple polygon, which allows for efficient ray-shooting (see 
[93,207]). They also form a crucial step in solving link distance problems (Section 4.2). 

3. Geodesic paths in a polygonal domain 

In contrast to the situation in simple polygons, where there is a unique taut-string path 
between any two points, in a general polygonal domain P, there can be an exponential 
number of taut-string (locally optimal) simple paths between two points. 

A special case of the shortest path problem in polygonal domains is that in which the 
"homotopy type" of the desired path is specified, e.g., by giving the sequence (possibly 
with repetitions) of the N visited triangles, in some triangulation of P. In this case, Her-
shberger and Snoeyink [203] have shown how to compute a shortest path of the given 
homotopy type in time 0(N), using a generalization of the linear-time methods in simple 
polygons. This problem is of interest in applications to VLSI routing problems; see [123, 
163,256]. 

To compute a shortest path in general polygonal domains, with no constraints on the 
homotopy type, we must efficiently search over all possible "threadings" of paths. We 
discuss two methods below that have been used to do so: searching the visibility graph 
(see Figure 2), and performing a "continuous Dijkstra" search of the domain. 
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3.1. Searching the visibility graph 

Since we can make "point" holes in P at 5 and t, we can assume, without loss of generality, 
that s and t are vertices of P. Using simple local optimality arguments, it is easy to show: 

PROPOSITION 3. Any locally optimal s-t path in a polygonal domain P must lie on the 
visibility graph VG{P)\ it consists of a union of straight line segments joining pairs of 
visible vertices. 

Early algorithms to construct the visibihty graph required time 0{rp-\ogn) [252], and 
were based on a radial sweep about each vertex of P. The time complexity came from the 
use of n independent radial sortings of the vertices. Later improvements by Welzl [385] 
and by Asano et al. [38] gave a time bound O(n^). These methods were based on the use 
of point-line duality, which allowed the n sortings to be done more efficiently, in 0{n^) 
time overall, by constructing the arrangement of the n lines that are dual to the vertices 
of P. But, given that the number. Eye, of edges in the visibility graph may be much 
smaller than its worst-case quadratic size (in particular. Eye may be only linear in n), 
researchers pursued "output-sensitive" algorithms to compute it in time that is a function 
of EyC' Hershberger [199] studied the special case of visibility graphs in simple polygons, 
obtaining an 0(£'vG)-time and 0(n)-space algorithm to compute the visibility graph of a 
simple polygon. Overmars and Welzl [313] obtained a relatively simple 0{EyG^ogn)-
time method, requiring 0{n) space. Then, Ghosh and Mount [173] obtained an algorithm 
with worst-case optimal running time, 0{EyG + n log^z), using OiEyc) working storage 
space. More recently, Pocchiola and Vegter [324] and Riviere [345] have given algorithms 
to compute the visibility graph in optimal time (0 (£ 'VG + n\ogn)) and optimal space 
(0(n)). 

Once we have computed the graph VG{P), whose edges are weighted by their Euclidean 
lengths, we can use Dijkstra's algorithm' to construct a tree of shortest paths from s to all 
vertices of P, in time 0{EyG + n \ogn) [161,142]. Thus, Euclidean shortest paths among 
obstacles in the plane can be computed in time 0{EyG-\-n\ogn). This bound is worst-case 
quadratic in n, since Eye ^ (2)̂  r»ote too that domains exist with Eye = ^(n^). 

If our goal is to obtain the shortest path map, then, given the tree of shortest paths from 
s, we can compute SPMĈ y) in time 0(n \ogn) [282]. 

Another method based on visibility graphs leads to an algorithm whose running time 
is only linear in n, while being quadratic in the number, /i, of holes in P. Kapoor, Ma-
heshwari, and Mitchell [238] have given an 0(n -h /i^ logn)-time, 0(n)-space algorithm, 
using visibility graph techniques developed by Rohnert [347,346] for convex obstacles, 
and visibility "corridor" structure developed by Kapoor and Maheshwari [237]. 

There has been an effort for many years to characterize which graphs correspond to 
visibility graphs of some geometric domain. For example, it is an interesting open problem 
to characterize the class of graphs that can be realized as the visibility graph of a simple 

' In practice, it may be faster to apply the A* heuristic search algorithm (e.g., see Pearl [322]), using the straight-
line Euclidean distance as heuristic function, /i() (which is a lower bound, so it implies an "admissible" algo-
rithm). 
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polygon; see, e.g., Abello and Kumar [1], Ghosh [172], and O'Rourke and Streinu [312] 
for some recent results and some pointers to related work. 

For further information on visibility, visibility graphs, and their use in shortest path 
problems, we refer the reader to the survey of Alt and Welzl [20], the survey (on visibility) 
by O'Rourke [310], and the Chapter 19 on visibility by Asano, Ghosh, and Shermer [41] 
in this Handbook. 

3.2. Continuous Dijkstra method 

Instead of searching the visibility graph (which may have quadratic size), an alternative 
paradigm for shortest-path problems is to construct the (linear-size) shortest path map di-
rectly. The continuous Dijkstra method [278-280,282,283,291,292] was developed for this 
purpose. 

Building on the success of the method in solving (in nearly linear time) the shortest-path 
problem for the L\ metric (see Section 4.1), Mitchell [284,286] developed a version of the 
continuous Dijkstra method applicable to the Euclidean shortest-path problem, obtaining 
the first subquadratic (0(n^/^+^)) time bound. Subsequently, this result was improved by 
Hershberger and Suri [205,206], who achieve a nearly optimal algorithm based also on the 
continuous Dijkstra method. They give an 0{n logn) time and 0{n logn) space algorithm, 
coming close to the lower bounds of Q{n-\-h log/i) time and 0{n) space. 

The continuous Dijkstra paradigm involves simulating the effect of a "wavefront" prop-
agating out from the source point, s. The wavefront at distance S from s is the set of all 
points of P that are at geodesic distance 8 from 5. It consists of a set of curve pieces, called 
wavelets, which are arcs of circles, centered at obstacle vertices that have already been 
reached. At certain critical "events," the structure of the wavefront changes due to one of 
the following possibilities: 

(1) a wavelet disappears (due to the "closure" of a cell of the SPM); or 
(2) a wavelet collides with an obstacle vertex; or 
(3) a wavelet collides with another wavelet; or 
(4) a wavelet collides with an obstacle edge at a point interior to that edge. 

It is not difficult to see from the fact that SPM(^) has linear size that the total number of 
such events is 0{n). The challenge in applying this propagation scheme is in devising an 
efficient method to know what events are going to occur and in being able to process each 
event as it occurs (updating the combinatorial structure of the wavefront). 

One approach, used in [284,286], is to track a "pseudo-wavefront," which is allowed 
to run over itself, and "clip" only when a wavelet collides with a vertex that has already 
been labeled due to an earlier event. Detection of when a wavelet collides with a vertex is 
accomplished with range searching techniques, at a cost of 0(^^-^+^) per query. This leads 
to an overall running time of 0(n-^/^+^), for any fixed 6: > 0, using 0{n) space. 

An alternative approach, used in [205,206], simplifies the problem by first decomposing 
the domain P using a "conforming subdivision," which allows one to propagate an "ap-
proximate wavefront" on a cell-by-cell basis. A key property of a conforming subdivision 
is that for any edge (of length L) of the subdivision, there are only a constant number of 
(constant-sized) cells within geodesic distance L of it. 
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While the algorithm of [206] is optimal worst-case time when there are a large number 
of obstacles (e.g., h = Q{n)), it fails to be optimal in its space complexity {0{n\ogn)) 
and in its complexity as a function of n and h. One of the most intriguing open problems 
here is to obtain an (optimal) algorithm whose running time asymptotically matches the 
lower bound ofQ{n-^h log h), while using only 0{n) space. Currently, the only algorithm 
known that is linear in n is also quadratic in h [238]. 

OPEN PROBLEM 4. Can one solve the Euclidean shortest-path problem in 0{n + h \ogh) 
time and 0(n) spacel 

3.3. Approximation algorithms 

Efficient methods to approximate the Euclidean shortest path, in time O(nlogn), have 
existed for some time. Clarkson [120] gave an algorithm that spent 0{{n\ogn)/e) time 
to build a data structure of size 0(n), after which a (1 -h 6:)-approximate shortest path 
query could be answered in time 0{n logn -h n/e). (These bounds rely also on an obser-
vation in [94].) Using a related approach, based on approximating Euclidean distance with 
fixed orientation distances (see Section 4.1), Mitchell [279,283] gave a method requiring 
0{(n logn)/v^) time and 0{n/yfe) space to give an approximate Euclidean shortest path. 
Chen, Das, and Smid [96] have shown an Q{n \ogn) lower bound, in the algebraic com-
putation tree model, on the time required to compute a (1 -h £)-approximate shortest path; 
they also give Q{n \ogn) lower bounds on computing various types of "r-spanners," which 
are graphs that, for every pair of points, contain a path whose length is at most t times the 
interpoint distance (Euclidean, geodesic, etc.); see the survey on spanners in this handbook 
by Eppstein [151], as well as [80,107,350]. 

3.4. Two-point queries 

Two-point queries in a polygonal domain are much more challenging than the case of 
simple polygons, where optimal algorithms are known. 

One approach, observed by Chen, Daescu, and Klenk [95], is to proceed as follows. 
Using O(n^) space, we can store the shortest path map, SPM(i;, P), rooted at all n vertices. 
Then, for any s and r, we can use the visibility complex of Pocchiiola and Vegter [323] to 
compute the set of ks vertices visible to s and kt vertices visible to f, in time 0{K\ogn), 
where K = min{ks, kt} (using a standard "lock step" computation of the visibility from 
the two points). Then, assuming that K = ks, we simply locate t in each of the ks SPM's 
rooted at the vertices visible from s. This permits two-point queries to be answered in 
time 0 ( ^ logn), which is ^(n \ogn) in the worst case, making this method no better than 
starting the computation from scratch. However, this approach may be effective in cases in 
which K may be expected to be small. 

A recent study by Chiang and Mitchell [108] has yielded more efficient query times, 
with various tradeoffs between preprocessing time and space. They use a visibility-based 
approach to achieve query time 0(logn + h) using 0(n^) preprocessing time and space. 
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They also achieve optimal query time, O(logn), using high polynomial space (roughly 
n^^), and they achieve slightly sublinear query time, using 0(n^'^^) space. These results 
utilize an "equivalence decomposition" of the domain P, so that for all points z within a 
cell of the decomposition, the shortest path maps with respect to z are topologically equiva-
lent. Then, for given query points s and t, one locates s within the decomposition, and then 
uses the resulting SPM, along with a parametric point location data structure, to locate t 
within the SPM with respect to s. Unfortunately, the complexity of the decomposition can 
be quite high; there can be ^(n^) topologically distinct shortest path maps with respect 
to points within P. Unfortunately, the upper bound is still considerably higher than this; 
obtaining tight bounds remains an interesting open question. 

Approximations have also been useful in attacking the two-point query problem. As 
observed in [94], the method of Clarkson [120] can be used to construct a data structure 
of size O(n^), in 0(n^logn) time, so that two-point (1 + 6:)-optimal queries can be an-
swered in time O(logn), for any fixed e > 0. Chen [94] was the first to obtain nearly 
linear-spsice data structures for approximate shortest path queries; these were obtained, 
though, at the cost of a higher approximation factor. He obtains a (6 + 6^)-approximation, 
using 0(r?l^I log^/^ n) time to build a data structure of size 0(n logn), after which queries 
can be answered in time O(logn). (Within this time bound, the approximate length is re-
ported; in additional time proportional to the number of vertices, a path can be reported 
that achieves the length bound.) These results have been improved recently by Arikati et 
al. [21], who give a family of results, based on planar spanners (see [151]), with tradeoffs 
among the approximation factor and the preprocessing time, storage space, and query time. 
One such result obtains a (3\/2 + 6:)-approximation using 0(r?l^ j log^^^ n) time to build 
a data structure of size 0{n logn), after which queries are performed in time O(logn). For 
other results, and for bounds that apply to other metrics {Lp metrics), we refer the reader 
to the paper. 

OPEN PROBLEM 5. How efficiently, and using what size data structure, can one prepro-
cess a polygonal domain for exact two-point queries? Can exact two-point queries be 
done in sublinear query time using subquadratic storage? Can O(I)-approximate two-
point queries be done in polylogarithmic time, using nearly linear storagel 

3.5. Other geodesic distance problems 

The geodesic Voronoi diagram of k sites inside P can be constructed in time 0((n -1-
k) \og{n + k)), using the continuous Dijkstra method, simply starting with multiple source 
points [206]. 

While the geodesic center/diameter problem has been carefully examined for the case 
of simple polygons (Section 2), we are unaware of results (other than brute force) for 
polygonal domains: 

OPEN PROBLEM 6. How efficiently can one compute a geodesic center/diameter for a 
polygonal domain! 
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4. Shortest paths in other metrics 

So far, we have considered only shortest path problems in the Euclidean metric. We turn 
now to other possible objective functions for measuring the length of a path. 

4.1. L\ metric 

The Lp metric defines the distance between q = (q^^qy) and r = (rx,ry) by dp(q, r) = 
[|̂ x —^x\^ -^\^y — fy\^V^^' The Lp length of a polygonal path is the sum of the Lp lengths 
of each edge of the path. Special cases of the Lp metric include the L\ metric (Manhattan 
metric) and the Loo metric {dooiq, r) = niax{|̂ jc — fxlA^y — ^yl))-

A polygonal path with each edge parallel to a coordinate axis is called a rectilinear 
(or isothetic) path. (For a rectilinear path, the L\ and L2 lengths are identical.) A natural 
generahzation of the notion of a rectilinear path is that of C-oriented paths, having each 
edge parallel to one of a set C of c = |C| fixed orientations. (See Widmayer, Wu, and 
Wong [386], who initiated the study of fixed orientation metrics in computational geome-
try.) 

As with Euclidean shortest paths, algorithms for computing shortest paths in the L\ met-
ric fall into two general categories: searching a sparse "path preserving graph" (analogous 
to a visibility graph), or applying the continuous Dijkstra paradigm or tracking a wavefront. 

Clarkson, Kapoor, and Vaidya [122] showed how to construct a sparse graph, having 
0{n\ogn) nodes and O(nlogn) edges, that is path preserving in that it is guaranteed to 
contain a shortest path between any two vertices. Applying Dijkstra's algorithm then gives 
an 0{n \o^n) time {0{n \ogn) space) algorithm for L\ shortest paths. (Alternatively, one 
gets 0{n\o^^^n) time and OinXog'^^n) space.) Using observations in [98,99] the time-
space tradeoff has been improved to yield somewhat improved bounds of 0(nlog^/^n) 
time and 0{n \ogn) space. 

The continuous Dijkstra paradigm has also been applied to the L \ shortest path problem, 
resulting in the computation of the SPM(^) in time 0(/i logn), using 0{n) space [279,283]. 
The special property of the L \ metric that is exploited in this algorithm is the fact that the 
wavefront in this case is piecewise-linear, with "wavelets" that are line segments of slope 
di 1, so that the first vertex hit by a wavelet can be determined efficiently using rectangular 
range searching techniques (e.g., see [91]). 

Two-point query problems have also been studied for the L \ geodesic metric. In a simple 
rectilinear polygon, Lingas, Maheshwari, and Sack [259] and Schuierer [353] give optimal 
algorithms, achieving O(logn) query time (0(1) for vertex-to-vertex queries), using 0{n) 
preprocessing time and space; an optimal path can be reported in additional 0{k) time, 
where k is the number of links. (A previous algorithm of de Berg [131] achieved optimal 
query time using O(nlogn) space and preprocessing.) Their methods are based upon a 
histogram decomposition of the polygon and yield a path that is "smallest" — simulta-
neously optimal in both the L\ and rectilinear link metric (see also [158,274], as well as 
Section 4.7). They also yield an 0{n) algorithm for computing the L\ geodesic diameter 
and furthest neighbors for all vertices. Further, the algorithm of Lingas, Maheshwari, and 
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Sack [259] is actually based on an optimal parallel (EREW PRAM) algorithm that pre-
processes a polygon (with a given trapezoidization) in time 0(log/t), using 0(n/\ogn) 
processors. 

Two-point queries in a polygonal domain, under the L i metric, have been studied by 
Chen, Klenk, and Tu [98,99], who have shown how a polygonal domain can be prepro-
cessed, using 0{n^\o^n) time and 0{n^\ogn) space, so that two-point queries can be 
answered in time 0(log^ n). The special case in which obstacles are disjoint axis-aligned 
rectangles has been studied by Atallah and Chen [44,43] and by ElGindy and Mitra [149]; 
0(\ogn) query time is achievable, using 0{n^) preprocessing time and space, or O(v^) 
query time is achievable, using 0{Tr'f^) preprocessing time and space. In fact, they give 
parallel algorithms: with 0(n^/logn) CREW processors, a data structure of size 0{n^) 
can be built that permits two-point queries to be answered in time 0(\o^n) on a sin-
gle processor ([43]). Mitra and Bhattacharya [298] and Chen and Klenk [97] have ob-
tained approximation in the special case of disjoint rectangular obstacles; [97] describe a 
method achieving O(logn) query time for a 3-approximate query, using 0{n\ogn) space 
and 0{n log^ n) preprocessing time. (If the query points are both obstacle vertices, then the 
query time is only 0(1).) Arikati et al. [21] have recently obtained approximation results 
for two-point queries in polygonal domains, as we mentioned already in the Euclidean 
case. Their results apply also to L^ metrics, where they obtain various tradeoffs between 
space and time resources, to achieve approximation factors that are c + e, 2c -f e, or 3c + e, 
where c = 2*^̂ ~^̂ /̂  (so c = 1 for the L\ metric). 

Methods for finding L\ shortest paths often generalize to the case of C-oriented paths, 
in which c = |C| fixed directions are given. Shortest C-oriented paths can be computed in 
time 0{cn logn) [279,283]. Two-point queries can be answered in query time 0(c^ log^ n), 
after 0(c^n^ log^ n) time and space preprocessing [95]. Since the Euclidean metric is ap-
proximated to within accuracy 0(l /c^) if we use c equally spaced orientations, this results 
in an algorithm to compute, in time 0 ( ( n / ^ ) l o g n ) , a path guaranteed to have length 
within a factor (1 + e) of the Euchdean shortest path length [279,283]. Clarkson [120] 
gave an alternative approximation algorithm based also on discretizing directions that 
computes an e-optimal (Euclidean) shortest path in time 0(n/£ + nlogn), after spend-
ing 0((n/6) logn) time to build a data structure of size 0(n/6). 

4.2. Link distance 

The link distance within P from 5 to n s the minimum number of edges in an s-t path in P. 
If the paths are restricted to be rectilinear or C-oriented, then we speak of the rectilinear 
link distance or C-oriented link distance. A min-link s-t path is a polygonal path from s to 
t that achieves the link distance. 

In many problems, the link distance provides a more natural measure of path complex-
ity than the Euclidean length. The link distance also has applications to curve simplifica-
tion [187,222,295]. 

Since this handbook contains a chapter by Maheshwari, Sack, and Djidjev [271] de-
voted entirely to the subject of link distance, we refer the reader to that survey for further 
information. 
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4.3. The weighted region metric 

In the "weighted region problem", we are given a piecewise-constant function, f '.W?' ^^ 
9̂ , that is defined by assigning a nonnegative weight to each face of a given triangulation 
in the plane. The weighted length of an s-t path n is the path integral, /^ /(jc, y) da, of 
the weight function along n. The weighted region metric associated with / defines the 
distance df{s, t) to be the infimum over all s-t paths n of the weighted length of jr. The 
weighted region problem (WRP) asks for an s-t path of minimum weighted length. 

The WRP is a natural generalization of the shortest-path problem in a polygonal domain: 
Consider a weight function that assigns weight 1 to F and weight oo (or a sufficiently 
large constant) to the obstacles (the complement of P). The WRP models the minimum-
time path problem for a point robot moving in a terrain of varied types (e.g., grassland, 
brushland, blacktop, bodies of water, etc.), where each type of terrain has an assigned 
weight equal to the reciprocal of the maximum speed of traversal for the robot. 

We usually assume that / is specified by a triangulation having n vertices, with each 
face assigned an integer weight a G {0 ,1 , . . . , W, +00}. (We can allow edges of the trian-
gulation to have a weight that is possibly distinct from that of the triangular facets on either 
side of it; in this way, "linear features" such as "roads" can be modeled.) Using an algo-
rithm based on the continuous Dijkstra method, Mitchell and Papadimitriou [292] show 
how to find a path whose weighted length is guaranteed to be within a factor of (1 + 6:) 
of optimal, where e > 0 is any user-specified degree of precision. The time complexity of 
their algorithm is 0{E • 5), where E is the number of "events" in the continuous Dijkstra 
algorithm, and S is the complexity of performing a numerical search to solve the following 
subproblem: Find a (1 + £)-shortest path from s io t that goes through a given sequence 
of k edges of the triangulation. It is shown that E = Oin"^) and that there are examples 
where E can actually achieve this upper bound. The numerical search can be done using a 
form of binary search that exploits the local optimality condition: An optimal path bends 
according to "Snell's Law of Refraction" when crossing a region boundary. (The earliest 
reference we have found to the use of Snell's Law in optimal route planning applications is 
to the work of Warntz [384].) This leads to a bound ofS = 0(k^ loginNW/e)) on the time 
needed to perform a search on a A:-edge sequence, where N is the largest integer coordinate 
of any vertex of the triangulation. Since one can show that k = O(w^), this yields an overall 
time bound of O(^i^L), where L = \og(nNW/e) can be thought of as the bit complexity 
of the problem instance. 

Various special cases of the weighted region problem admit faster and simpler algo-
rithms. In the case that region weights are restricted to {0, 1, 00] (while edges may have ar-
bitrary (nonnegative) weights), then an 0(n^)-time algorithm can be based on constructing 
a path-preserving graph similar to a visibility graph, as shown by Gewali et al. [169]. This 
also leads to an efficient method for performing lexicographic optimization, in which one 
prioritizes various types of regions according to which is most important for path length 
minimization. Lee, Yang, and Chen [254] consider the case in which the plane has weight 
1, while each of a set of pairwise-disjoint rectilinear polygonal "obstacles" has a weight 
greater than 1, indicating that it is more costly to travel through it than to go around it. They 
apply the techniques of [122], searching a path-preserving graph, to obtain an algorithm 
for minimum-cost rectilinear paths that takes time 0(nlog^n) (with space 0(nlogn)) or 
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0(n log-̂ /̂  n) (with 0{n log^/^ n) space). A path-preserving graph approach can also be ap-
pHed to the more general case of rectilinear paths in an arbitrarily weighted rectilinear sub-
division, to yield efficient algorithms for single-source and two-point queries. Specifically, 
Chen, Klenk, and Tu [98] give an 0(nlog^/^n)-time algorithm to construct a data struc-
ture of size 0{n logn), permitting 0(logn)-time single-source queries to be answered; for 
two-point queries, they use 0(n^ log^ n) space and preprocessing time, and answer queries 
in time O(log^n). 

In recent experimental investigations, Mata and Mitchell [273] and Lanthier, Mahesh-
wari, and Sack [247], have shown the practicality of solving the WRP using very simple 
methods based on searching a discrete graph which is assured of containing an approxi-
mately optimal path. One graph is based on discretizing the edges of the subdivision, plac-
ing evenly-spaced new (Steiner) vertices along each edge, with separation at most weighted 
length 5. The vertices on the boundary of each (convex) facet are interconnected (possi-
bly implicitly) with a complete graph. Searching the resulting graph for a shortest path 
results in an approximate shortest path; the error is at most KS, where K is the number 
of segments in the path. Another option (in [273]) is to construct a "pathnet" graph, based 
on tracing k evenly-spaced "refraction rays" (that obey Snell's Law) out of each original 
vertex, and linking that vertex to one vertex (or "critical entry point") within each of the k 
refraction cones defined by the rays. As k increases, the pathnet more closely approximates 
a complete set of optimal paths connecting pairs of vertices. The experimental studies sug-
gest that these methods are practical and are readily implementable, and that the observed 
dependence of the approximation factor on the algorithm parameters (5 or A:) is better in 
practice that the worst-case bounds may suggest. Further, the graphs that are searched can 
be precomputed and stored, allowing reasonably efficient solutions to two-point queries. 
The reported path can also be postprocessed with a local optimality procedure that results 
in a solution even closer to optimal. 

Using a slightly different discrete graph than the edge subdivision graph of [247,273], 
Aleksandrov et al. [11] give alternative time bounds that depend on other parameters re-
lated to the "fatness" of the triangular facets of a weighted polyhedral surface. They place 
Steiner points along edges in a geometric progression, as Papadimitriou [317] has done for 
approximating shortest paths in three dimensions (Section 6.3). This allows one to com-
pute a (1 + £)-approximate shortest path from s io t in time 0{MnlogMn + nM^) (and 
space O(nM^)), where M = 0 ( ^ ^ ^ log ^ ) , X is the length of a longest edge, h is the 
minimum altitude of a triangular facet, 6 is the smallest angle of any triangular facet, W 
is the maximum (resp., minimum) weight of a facet, and 0 < ^ < ^ + ^ - (See also Sec-
tion 6.3, where the same method is mentioned in the unweighted case.) Note that, while the 
dependence on e and on geometric precision parameters is substantially worse than in the 
algorithm of Mitchell and Papadimitriou [292], the worst-case dependence on n is much 
better. (If, as in [292], the coordinates have integral values at most N, then sin 0 = 0(1/N^) 
and h = 0(l/N), making the time bound roughly 0 ( ^ ^ ^).) An improved variant of their 
result ([12]) searches a reduced subgraph, allowing them to remove the additive term nM^ 
in the complexity, resulting in time bound 0{Mn log Mn) (roughly 0 ( ^ ^^))' 

Several other papers have also addressed practical and effective (possibly heuristic) 
methods for the WRP; see the work by Alexander and Rowe [13-15] and a recent pair 
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of papers by Kindl, Shing, and Rowe [239,240], which report practical experience with a 
simulated annealing approach to the WRP. Johansson [229] has implemented a version of 
the edge subdivision method (also investigated by [247,273]) and studied its use in fluid 
flow computations for injection molding. 

Papadakis and Perakis [315,314] have generalized the WRP to the case of time-varying 
maps, where both the weights and the region boundaries may change over time; they obtain 
generalized local optimality conditions for this case and propose a search algorithm to find 
good paths. 

4.4. Minimum-time paths: Kinodynamic motion planning 

Our discussion so far has focussed on path planning problems with holonomic constraints 
— those that are completely specified in terms of the robot's configuration, which is de-
scribed by a A:-vector, if the robot has k degrees of freedom. In non-holonomic motion 
planning, the constraints on the robot are specified in terms of a non-integrable equation 
involving also the derivatives of the configuration parameters. For example, non-holonomic 
constraints may specify bounds on the robot's velocity, acceleration, or the curvature of its 
path. See Latombe [248] and Li and Canny [258] for more a more detailed discussion of 
non-holonomic constraints and motion planning. 

The kinodynamic motion planning problem (also known as the minimum-time path prob-
lem) is a non-holonomic motion planning problem in which the objective is to compute a 
trajectory (a time-parameterized path, (JC(0, >'(^))) within a domain P that minimizes the 
total time necessary to move from an initial configuration (position and initial velocity) 
to a goal configuration (position and velocity), subject to bounds on the allowed acceler-
ation and velocity along the path. The problem formulation is intended to model the fact 
that real mobile robots have a bounded acceleration vector and a maximum speed. In its 
general form, it is a difficult optimal control problem; optimal paths will be complicated 
curves given by solutions to differential equations. 

The bounds on acceleration and velocity are most often given by upper bounds on the 
Loo norm (the "decoupled case") or the L2 norm (the "coupled case"). 

Exact solutions to the kinodynamic motion planning problem are known in one dimen-
sion (O'Dunlaing [306]) and in two dimensions (Canny, Rege, and Reif [82]). The al-
gorithm of [82] is for the decoupled case (Loo bounds on velocity and acceleration); it 
requires exponential time and polynomial space. Their method is based on characterizing a 
set of "canonical solutions" (related to "bang-bang" controls) that are guaranteed to include 
an optimal solution path. This leads to an expression in the first-order theory of the reals, 
which can then be solved exactly in exponential time. It remains open, however, whether or 
not a polynomial-time algorithm exists in two dimensions. For three or more dimensions, 
the problem is at least NP-hard, as implied by the lower bounds of Canny and Reif [83]. 

Approximation methods have been developed by Donald et al. [141], who have given 
a polynomial-time algorithm that produces a trajectory requiring time at most (1+6:) 
times optimal, for the decoupled case. Their approach is to discretize (uniformly) the four-
dimensional phase space that represents position and velocity, with special care to ensure 
that the size of the grid is bounded by a polynomial in \/s and n. They prove that shortest 
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paths in the induced grid graph are guaranteed to be close to optimal. The running time of 
their algorithm has been improved by Donald and Xavier [140]. Approximation algorithms 
for the coupled case have been given independently by Donald and Xavier [140] and by 
Reif and Tate [340]. By using a non-uniform discretization of J-dimensional configuration 
space, Reif and Wang [337] have obtained an approximation algorithm with a time com-
plexity that improves that of [140], reducing the dependency on £ from 0((l/6:)^^~^) to 
0((lA)4^-2). 

4.5. Curvature-constrained shortest paths 

Related to the kinodynamic motion planning problem is the problem of finding shortest 
paths subject to a bound on their curvature. The curvature-constrained shortest-path prob-
lem is to compute a shortest obstacle-avoiding smooth (C^) path joining point s, with pre-
scribed orientation, to point t, with prescribed orientation, such that for every subinterval 
of the path, the average curvature is at most 1. (The average curvature of a path p : I -^ ?il^ 
in the interval [u\,U2]^ I is defined to ho \\pXu\) — p\u2)\\/\ui — U2\, where the param-
eter u denotes arc length.) Placing a bound on the curvature can be thought of as a means 
of handling an upper bound on the acceleration vector of a point robot (e.g., an idealized 
aircraft) whose speed is constant, or can be thought of as the constraint imposed when 
modeling a car-like mobile robot having a minimum turning radius. The complexity of 
solving the general problem in a polygonal domain has been open until very recently; Reif 
and Wang [338] have shown that it is NP-hard in a polygonal domain having n vertices, 
each having coordinates specified by n^^^^ bits. 

Since the general problem is difficult to solve exactly, algorithms for restricted versions 
of the problem, as well as approximation algorithms, have been the topic of recent investi-
gations. 

Early investigations into the problem were by Dubins [145], who characterized shortest 
curvature constrained paths in the absence of obstacles: a shortest path consists of a se-
quence of at most three segments, each of which is a straight line segment ("S") or an arc of 
a unit radius circle ("C"), with the allowable sequences being CCC, CSC, or a subsequence 
of one of these two. Reeds and Shepp [333] extended this result, obtaining a characteriza-
tion of shortest paths in the case in which the robot is allowed to move in reverse, as well 
as forward. Boissonnat, Cerezo, and Leblond [76] give an alternative method of obtaining 
characterizations in both cases, based on optimal control theory. (See also [368].) 

Approximation algorithms for a shortest "e-robust" path were given by Jacobs and 
Canny [227,228]. (See also Barraquand and Latomb [56].) Here, "e-robust" roughly means 
that small perturbations of certain points along the path do not cause the path to penetrate 
an obstacle. They place points that discretize the boundaries of the polygonal obstacles 
and connect these points by paths ("jumps") of standard shapes (circular arcs and straight 

3 2 

segments); the resulting algorithm takes time 0 ( ( ^ ) l o gn + T I ) ' where 8 is the spacing 
of the discretization points on the boundary; 8 controls the robustness of the path as well 
as the degree of approximation. They also give an alternative quadtree-based algorithm, 
having complexity 0(n^ logn -h ( |)^). Wang and Agarwal [383] give time bounds that do 
not depend on the length parameter 8: they give (1) an 0((^)^ log n)-time algorithm that 
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produces a feasible path (not necessarily 6:-robust) that is at most {l-\-e) times the length of 
a shortest 6:-robust path; and (2) an 0((|)^-^ logn)-time algorithm that produces a feasible 
path that is (e/2)-robust, with length at most (1 + e) times the length of a shortest 6:-robust 
path. 

For the special case in which the obstacles are "moderate" (have differentiable boundary 
curves, with radius of curvature at least 1), Agarwal, Raghavan, and Tamaki [8] give an 
algorithm requiring time 0(/i^logn) to compute exactly a shortest curvature-constrained 
path from a starting configuration (position-orientation pair) to a goal location (no orienta-
tion specified), and an algorithm requiring time 0{n^ \ogn -h ^) for computing an approx-
imate shortest path (having length at most e greater than optimal) between two configura-
tions. Boissonnat and Lazard [78] obtain exact algorithms between two configurations for 
moderate obstacles whose boundaries consist of unit-radius circular arcs and straight seg-
ments. If the boundary arcs (straight or curved) are each of length at least some constant, 
then their algorithm requires time 0(«^log/2); otherwise, the complexity is 0{n^\ogn). 
(Their algorithm remains polynomial even if the obstacles are not pairwise disjoint.) 

Sellen [357] uses a simple discretization of the unit square to search, in 0(6:"^) time, 
for a path among a set of constant-complexity obstacles that is "e-approximate" (which 
roughly means that it is within factor (1 -f e) of being shortest, while maintaining an s-
clearance from obstacles and obeying an approximate (up to e) curvature constraint). He 
also provides a decision procedure to determine the existence of a curvature-constrained 
path, in time polynomial in the reciprocal of a parameter that measures the difference 
between the radius of curvature in the constraint and the supremum of all radii for which a 
constrained path exists. 

For the special case of curvature-constrained paths inside a convex polygon having n 
vertices, Agarwal et al. [4] use a careful characterization of the structure of shortest paths 
to obtain an algorithm with running time 0{n log^ n). Their result may be an important first 
step towards the solution of the more general problem inside a simple polygon: 

OPEN PROBLEM 7. How efficiently can one compute a curvature-constrained shortest 
path in a simple polygon? 

Boissonnat et al. [77] examine curvature-constrained motion in a convex polygon (with 
m vertices), having a single simple polygonal hole (with n vertices). They compute, in time 
0(m + n), a cycle surrounding the hole having the minimum possible curvature. 

Wilfong [387,388] considers the case in which the robot is to follow a given network of 
lanes, specified by a set of m line segments in free space, among a set of obstacles (having 
a total of n vertices). The robot is allowed to turn from one segment to another along a 
circular arc, of radius ^ rmin, if the two lanes intersect and the robot does not collide with 
the obstacles. In Wilfong [387], a polynomial-time (0(m^(n^ -\- logm))) algorithm is given 
for preprocessing, after which, in O(m^) time, one can report a path (if one exists) having 
a minimum number of turns. (See also Mirtich and Canny [277].) Wilfong [388] shows 
that the problem of finding a minimum-length curvature-constrained path on a set of lanes 
is NP-complete; however, he also gives a dynamic programming algorithm to compute a 
shortest path (in time 0(m^n^)) for a given (feasible) sequence of turns (e.g., to optimize, 
locally, the path produced by the algorithm in [387]). 
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Fortune and Wilfong [160] give an exponential-time algorithm for determining if a 
curvature-constrained path exists between two configurations, assuming the robot is not 
allowed to reverse; their algorithm solves this reachability question in time and space 
20(poiy(n,m))̂  where n is the number of vertices in the polygonal obstacles, and m is the 
total number of bits required to specify the vertices. Sellen [356] shows that the existence 
of a curvature-constrained path can be decided in time that is polynomial in J~.|̂  and W~ ̂ , 
where dmm is the smallest distance between obstacle features and W = |7? — /?^|//? is the 
"relative width" of the problem, relating the maximal curvature, R~^, with the critical 
curvature, R~\ which is the infimum over the curvatures R~^ for which a curvature-
constrained path (with constraint R~^) exists. Sellen also shows how to approximate the 
critical curvature R~^ to within any relative error ^ > 0, and to produce a corresponding 
path; the algorithm is polynomial in n and Rc/s. 

If the robot following the path is allowed to reverse direction, then Laumond [249] has 
shown that it is always possible to obtain a curvature-constrained path from ^ to Mf the s 
and t lie in the same open, path-connected component of free space. Further, when allowing 
reversals, Laumond et al. [250] give an algorithm that determines a path (if one exists), 
producing a path having a local optimality property. Desaulniers [138] shows that, in the 
presence of reversals, in may be that no shortest path exists, even when there is a feasible 
path. 

Svestka and Overmars [369] also study problems of planning routes for car-like robots, 
using a "probabilistic learning paradigm." 

All of the discussion so far has been for paths in a two-dimensional environment. 
For three-dimensional spaces, Sussmann [367] gives a characterization of curvature-
constrained shortest paths. Polynomial-time approximation algorithms for three and higher 
dimensions are given by Reif and Wang [337], by applying their discretization techniques 
developed for the kinodynamic motion planning problem. 

Another interesting open area of research on curvature-constrained optimal paths is to 
consider network optimization problems in the curvature-constrained model. For exam-
ple, we may desire a traveling salesperson tour (cycle) of minimum length, subject to the 
curvature constraint (see Section 7.2): 

OPEN PROBLEM 8. What is the complexity of the curvature-constrained TSP for points 
in the unit squarel What is the best approximation algorithm that can be given for the 
probleml 

4.6. Optimal motion of non-point robots 

So far, we have considered only the problem of optimally moving si point robot. If the robot 
is modeled as a circle, or as a nonrotating polygon, then many of the results carry over by 
simply applying the standard configuration space approach in motion planning: "shrink" 
the robot to a (reference) point, and "grow" the obstacles (using a Minkowski sum) so that 
the complement of the grown obstacles model the region of the plane for which there is 
no collision with an obstacle if the robot has its reference point placed there. Chew [106] 
has examined the specific case of a circular robot; Hershberger and Guibas [202] have 
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considered more general convex robots, obtaining essentially quadratic-time algorithms 
for optimal paths under translation. 

Optimal motion of rotating non-circular robots is a much harder problem. Even the 
simplest case of moving a (unit) line segment (a ladder) in the plane is highly nontrivial. 
One notion of "optimal" motion requires that we minimize the average distance traveled 
by a set of k fixed points, evenly distributed along the ladder. This "J^-distance" in fact 
defines a metric (for k^2). The special case of A: = 2 is the well-known Ulam'sproblem, 
for which optimal motions have been fully characterized, in the absence of obstacles, by 
Ickingetal. [217]. 

The case of /: = oo is an especially interesting case, requiring that we compute a min-
imum work motion of a ladder; however, no results are known yet for this problem. (The 
work measures the integral (over A. € [0,1]) of the path length, L(A), for each infinitesimal 
subsegment of length dX.) O'Rourke [308] has studied a restricted case of the ^oo-optimal 
motion problem. 

OPEN PROBLEM 9. Characterize the doo-optimal (minimum-work) motion for a ladder 
that is allowed to translate and rotate in the plane. What if it is restricted to move within a 
polygonal domain! 

While d\ does not define a metric, several cases of d\ -motion, and its generalization of 
measuring the distance traveled by any fixed "focus" F on the ladder, have been studied. 
In particular, if F is restricted to move on the visibility graph of a polygonal environment, 
Papadimitriou and Silverberg [318] (see also Sharir [360]) have obtained polynomial-time 
algorithms. Without restrictions, minimizing the d\ -distance, for any F not at an endpoint 
of the ladder, is NP-hard, but there exists an approximation algorithm; see Asano, Kirk-
patrick, and Yap [40]. 

OPEN PROBLEM 10. Does minimizing the d\-distance of a ladder endpoint remain NP-
hardl Also, is it NF-hard to obtain a di-optimal motion of a ladder in a polygonal domain! 

Chen and lerardi [101] have studied a velocity-constrained version of the problem of 
moving a ladder, such that no point of the ladder is allowed to have its speed exceed a 
given bound, and the objective is to minimize the time required to move the ladder from 
one configuration to another. For the case of no obstacles, they give a complete character-
ization of the optimal motion and give an explicit construction. See also the related work 
of Reister and Pin [343], who study time-optimal motion of mobile robots having indepen-
dently controlled wheels. 

4.7. Multiple criteria optimal paths 

The standard shortest-path problem asks for paths that minimize some one objective 
(length) function. Frequently, however, an application requires us to find paths to minimize 
two or more objectives; the resulting problem is a bicriteria (or multi-criteria) shortest-
path problem. A path is called efficient or Pareto optimal if no other path has a better value 
for one criterion without having a worse value for the other criterion. 
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For example, in mobile robotics applications, we may wish to find a path that simultane-
ously is short in (Euclidean) length and has few turns. Note that a minimum-link path may 
be far from optimal with respect to Euclidean length; similarly, a shortest Euclidean length 
path may have thousands of links, while there exists a path joining start and goal that has 
only 2 links. 

Multi-criteria optimization problems tend to be difficult. Even the bicriteria path prob-
lem in a graph is NP-hard [165]: Does there exist a path from s io t whose length is less 
than L and whose weight is less than Wl Pseudo-polynomial time algorithms are known, 
such as the algorithm of Hansen [191], who finds all Pareto-optimal paths in a graph, in 
time polynomial in the number of paths and n. Experimental studies suggest that the aver-
age number of Pareto-optimal paths remains very small in practice, although in theory this 
number may be exponential. Various heuristics have also been devised; e.g., see Handler 
and Zang [190] and Henig [197]. 

In geometric problems, various optimality criteria are of interest, including any pair 
from the following list: Euclidean (L2) length, rectilinear (Li) length, other Lp metrics, 
link distance, total turn, etc. 

NP-hardness lower bounds are known for several versions, including: [30] (1) Find a 
path in a polygonal domain whose L2 length is at most L, and whose "total turn" is at 
most 7; (2) Find a path in a polygonal domain whose Lp length is at most Xp and whose 
Lq length is at most Xq {p^q)\ and (3) Given a subdivision of the plane into red and blue 
polygonal regions, find a path whose length within blue regions is at most B and whose 
length within red regions is at most R. 

One problem of particular interest is to compute a Euclidean shortest path within a 
polygonal domain, constrained to have at most k links. No exact solution is currently 
known for this problem. Part of the difficulty is that a minimum-link path will not, in gen-
eral, lie on the visibility graph (or any simple discrete graph). Furthermore, the computa-
tion of the turn points of such an optimal path appear to require the solution to high-degree 
polynomials. 

OPEN PROBLEM 11. For a polygonal domain {with holes) what is the complexity of com-
puting a shortest k-linkpath between two given points? 

For a given k (k ^ di, where di is the s-t link distance), one can compute a path 
in a simple polygon P whose length is guaranteed to be within a factor (1 + 6:) of the 
length of a shortest /:-link path, for any tolerance s > 0. The algorithm runs in time 
0(n^k^ log {Nk/e^'^)), polynomial in n and k, and logarithmic in \/s and the largest inte-
ger coordinate N of any vertex of P [294]. Within the same time bound, one can compute 
an ^-optimal path under any (single) combined objective, f(L,G), where L and G denote 
link distance and Euclidean length, and / is an increasing function in G for each L. 

Aside from the problem of computing a shortest ^-link path, one may ask if there always 
exists Sin s-t path that is simultaneously close to Euclidean shortest and minimum-link? In 
a simple polygon, such a path always exists and can be computed efficiently (in time 0(n)): 
There is an s-t path whose link length is within a factor of 2 of the link distance from s to 
t, while also having Euclidean length within a factor of A/2 of the Euclidean shortest-path 
length [31]. A corresponding result is not possible for polygons with holes. However, in 
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0(kEyQ) time, one can compute a path in a polygonal domain having at most 2k links and 
length at most that of a shortest A:-link path [294]. 

In a rectilinear polygonal domain, some of these bicriteria path problems become easier, 
since there is a path-preserving graph (grid). In particular, efficient algorithms are known 
for the bicriteria path problem that combines rectilinear link distance and L i length. Yang, 
Lee, and Wong [390] and Chen, Daescu, and Klenk [95] give efficient algorithms for com-
puting a shortest ^-link rectilinear path, a minimum-link shortest rectilinear path, or any 
combined objective that uses a monotonic function of rectilinear link length and Li length 
in a rectilinear polygonal domain. Single-source queries can be answered in time O(logn), 
after 0(n log^^^ n) preprocessing time to construct a data structure of size 0(n logn) [95]; 
two-point queries can be answered in time O(log^n), using 0(n^\og^n) preprocessing 
time and space [95]. (See also the survey article of Lee, Yang, and Wong [255] on the 
subject of rectilinear path problems.) A related problem is studied by de Berg et al. [133, 
134], who give efficient algorithms in two or more dimensions for computing optimal 
paths among a set of axis-parallel (possibly crossing) line segment obstacles according to 
a "combined metric," defined to be a linear combination of rectilinear link distance and 
L\ path length: In the plane, using O(n^) preprocessing time and 0(n logn) space, a data 
structure for a fixed source point can be computed, so that path length queries to a goal 
point can be answered in time 0{\ogn). (Note, however, that optimal paths in this metric 
are not equivalent to the Pareto-optimal solution paths.) It would be interesting to study the 
complexity of the problem in a more general setting: 

OPEN PROBLEM 12. How efficiently can one compute a (general) polygonal path in a 
polygonal domain, under a combined metric cost function that takes into account Eu-
clidean length, the number of turns, and possibly the amount of turningl 

4.8. Other optimal path problems 

We briefly mention some various other optimal path problems: 

(1) In the sailor's problem, the goal is to compute a minimum-cost path, where the cost 
of motion is direction-dependent, and there is a cost L per turn (in a polygonal path). For 
L = 0, Sellen [355] gives an algorithm for computing optimal paths in a polygonal domain, 
in time O(n^) times a bit complexity term. Sellen also considers the case in which L > 0, 
obtaining a (1 + ^)-approximation algorithm that requires time polynomial in n and If a. 
See also the study by Rowe [349] on anisotropic weighted regions. 

(2) In the maximum concealment path problem, the goal is to determine a path within 
a polygonal domain P that minimizes the length during which the robot is exposed to a 
given set of v "enemy" observers. This problem is a special case of the weighted region 
problem, in which weights are 0 (for travel in concealed free space), 1 (for travel in exposed 
free space), or oo (for travel through obstacles). Gewali et al. [169] use visibility graph 
methods, based on the local optimahty conditions, to obtain polynomial-time algorithms 
for this problem. In a simple polygon, their time bound is 0(i;^(i; + n)^)\ in a polygonal 
domain, the bound becomes 0(i;^w^). 
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(3) In the minimum total turn problem, the goal is to compute a polygonal s-t path that 
minimizes the sum of the absolute values of the turn angles at its vertices. This problem is 
solved in polynomial time {0{EyG logn) time, 0{EyG) space) by reducing it to a short-
est path problem in an augmentation of a visibility graph [30]. (See also Section 7.4, on 
angular-metric traveling salesperson problems.) 

(4) In iho^ fuel-consuming problem, one is given a set of n point sites in the plane and the 
goal is to find a "cheap" polygonal path from one site to another, with the vertices of the 
path being restricted to the set of point sites. The cost of a path, though, is not measured in 
terms of its Euclidean length, but in terms of a more general cost function, l(p,q), which 
assigns a nonnegative cost to a flight from ptoq. Naturally, one can compute a minimum-
cost path in time 0(n^) simply by searching the complete graph for a shortest path. How-
ever, it turns out that more efficient algorithms that exploit geometry are possible, if we 
assume that /(•, •) has some simple properties: its description is of size 0(1) and l(p, q) 
can be evaluated in 0(1) time, and l(p, q) < l(p, q') if and only if d2{p, q) < d2(p, q') 
(where d2{-, •) denotes Euclidean distance). Efrat and Har-Peled [147] show that a cheap-
est route can be computed in time 0(n^-^+^), for any fixed s > 0). Further, they show that 
if the cost function grows with at least a quadratic rate as a function of Euclidean distance 
(i.e., l(p, q) = (d2(p, q))^ • f(d2(p, q)), where /(•) is a positive, nondecreasing function), 
then it suffices to search the Gabriel graph (a subgraph of the Delaunay triangulation) of 
the point sites; thus, cheapest routes can be found in time 0(n logn) in this case. 

(5) In the problem of shortest paths in an arrangement, one is given a set of n lines 
in the plane, and points s and t on the lines, and must compute a shortest s-t path that is 
contained within the union of the lines. Since the arrangements can be computed in time 
O(n^) (see the chapter on arrangements by Agarwal and Sharir [2]), and shortest paths in 
planar graphs can be computed in linear time ([198]), the problem is trivially solved in 
time O(w^). It is an intriguing open question if there exists a subquadratic-time algorithm. 
There has been partial progress towards addressing this question: Bose et al. [79] give a 
2-approximation algorithm that requires 0{n logn) time, and Eppstein and Hart [152] give 
an algorithm for computing an exact shortest path in time 0{n-\- k^), where k is the number 
of different line orientations. 

(6) In the asteroid avoidance problem, one is given a set of obstacles, each moving along 
a fixed (known) trajectory, and the problem is to find a minimum-time obstacle-avoiding 
path for a point robot that is subject to a velocity bound. This problem was first studied 
by Reif and Sharir [336], who show that the general problem is PSPACE-hard in three 
dimensions and that the two-dimensional problem can be solved in exponential time in 
the case of pure translational motion. Canny and Reif [83] prove that the two-dimensional 
problem is NP-hard, even for convex translating obstacles, moving with fixed velocity, 
that do not collide. (Effectively, the fact that the obstacles are moving lifts the dimension 
of the problem from two to three, making it substantially more difficult; see Section 6.) 
Canny [81] has given a PSPACE algorithm to solve the asteroid avoidance problem. 

5. On-line algorithms and navigation without maps 

In all of the optimal path problems we have discussed so far, we have assumed that we know 
in advance the exact layout of the environment in which the robot moves; i.e., we assume 
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we are given a perfect map. In many situations, the robot does not have prior information 
about the obstacles in the environment; e.g., the robot may be placed in a completely new 
environment, or it may roam on a factory floor or an office building where there are frequent 
changes in the positions of obstacles. In such cases, we may have perfect information about 
the robot's current location, as well as the location of the goal, but we acquire information 
about the environment on-line, as the robot encounters or senses obstacles. 

Common assumptions about the sensory capabilities of the robot include (1) a tactile 
robot, in which the robot learns of the boundary of an obstacle only as it encounters it, and 
moves along it; or a (2) vision-based robot, in which the robot learns of obstacles only as it 
is able to see them. (It is common to assume that the robot has 360-degree vision, allowing 
it to look in all directions; however, this assumption may be relaxed as well.) For a vision-
based robot, there are also different assumptions that can be made about the nature of the 
sensor: (a) it may be that it knows only about that portion of the obstacle boundaries that it 
has seen; or (b) it may be that it has recognition capabilities, so that as soon as it sees any 
part of the boundary of an obstacle, it is able to determine the shape, size, and position of 
the obstacle, thereby learning the entire obstacle boundary. 

Our goal is to obtain a navigation strategy that controls the motion of the robot, while 
utilizing sensory input, in order to minimize some notion of length (e.g., Euclidean length) 
of the path of the robot, which is to get from a start point, 5, to a goal (target) location, t 
(which may be a point, a line, a region, etc.). The environment is assumed to be a polygonal 
domain, P, that is unknown to us. Often, there is very special structure assumed about the 
obstacles that constitute the holes of P, 

Some of the first work that obtained worst-case bounds on the length of a path produced 
by a navigation strategy was that of Lumelsky and Stepanov [268,269]. They give naviga-
tion strategies for a tactile robot moving among a set of arbitrary obstacles. The robot is 
assumed to know, at any given time, its own position, the position of the goal, and whether 
or not it is in contact with an obstacle; it is assumed to have only a small constant-size 
memory for recording other information that is learned along the way. One simple strategy 
("BUGl"), attempts to head towards the goal until an obstacle is encountered; then, the 
robot follows the boundary of the obstacle, all the way around the perimeter, keeping track 
of the point p that is closest to the goal; finally, the robot returns to point p (by following 
the boundary) and heads again towards the goal. This strategy finds a path whose length is 
at most d2{s, t) -\-\L, where L is the sum of the perimeters of the obstacles that intersect 
a disk of radius diis, t) centered at t. Within their model, they also prove a lower bound, 
showing that no strategy can guarantee a path length better than d2{s, t) -\- L — e, fox any 
^ > 0. A second strategy ("BUG2") attempts to stay on the straight segment ~st, at the cost 
of possibly visiting obstacles more than once. BUG2 is shown to produce a path of length 
at most d2{s, t) -j- ^ - ^ ^ , where ni is the number of times Ji crosses the /th obstacle, and 
Li is the perimeter of the /th obstacle. For convex obstacles, BUG2 is essentially optimal 
in their model. See also [130] for some further work on an extension of the Lumelsky-
Stepanov model. Other papers on maze traversal strategies include [75,328], as well as the 
surveys of Lumelsky [265-267]. 

While the Lumelsky-Stepanov result gives a worst-case additive error bound on the 
robot's path length, it does not give a bound on the ratio between the robot's path length 
and the (true) shortest path length, d{s,t', P), in P An order to evaluate the effectiveness 
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of a navigation strategy, a, in an on-line setting, it is now common to use the notion of a 
competitive ratio, p(n), where n = d2(s,t) here denotes the EucHdean distance between 
s and t, and the ratio p(n) is defined by where da(s, t; P) is the length of the s-t path 
produced by strategy or in P, and we assume that a unit diameter circle can be inscribed in 
each obstacle. In other words, our goal is to minimize the ratio between the length of the 
path obtained using the strategy to the length of a shortest path (with perfect information); 
the competitive ratio p(n) is the maximum value of this ratio, over all environments having 
a given start-to-goal distance n. 

The competitive ratio, in this context, has been studied first by Papadimitriou and Yan-
nakakis [319], and independently by Eades, Lin, and Wormald [146]. In particular, [319] 
show that if the obstacles are all axis-aligned squares, and the robot is equipped with a vi-
sion sensor, then one can achieve a competitive ratio of p(n) = ^y^ -f o(l), for all n. (The 
bound is 5/3 if 5* and t are points having the same x- or j-coordinate.) If the obstacles are 
in fact aligned unit squares, they prove that p(n) is at least 3/2, while supplying a strategy 
that achieves p(n) = 3/2 -h o(l), for all n. (It is now known that a ratio of p(n) = 3/2 
is possible for square obstacles, even if they have different sizes and are not axis-aligned; 
see the citation of Chan and Lam [87] below.) Further, by an adversary argument, they 
show that, for arbitrary (e.g., "thin") aligned rectangular obstacles,^ there is no strategy 
with a bounded competitive ratio, for a robot with line-of-sight vision. In fact, in [146, 
319], it is shown that if the goal region t is an infinite vertical line ("wall"), at distance 
n from s, and the obstacles are aligned rectangles, then p(n) = Q{^). Blum, Ragha-
van, and Schieber [74] provide a "sweep algorithm" for this wall problem that shows a 
matching upper bound of p{n) = 0(->/n), both for a vision-based robot and for a tactile 
robot (utilizing a "doubling" search procedure, suggested by Baeza-Yates, Culberson, and 
Rawlins [49]). 

If the obstacles are aligned rectangles having aspect ratio at most / and longest side at 
most g (and shortest side at least 1), then Mei and Igarashi [275] give an "adjusted bias 
heuristic" that achieves competitive ratio 1 + | / + o(l), if / = o(v^) and fg = o(n), 
assuming s and t have a common x- or >'-coordinate (the competitive ratio is slightly 
higher otherwise). (See also [276].) 

Blum et al. [74] also study the "room problem", in which P consists of an n-by-n 
(aligned) square room, with aligned rectangular holes (obstacles). For the room problem, 
they give an algorithm achieving p(n) = 0(2^^^^^"). Bar-Eli et al. [54] have improved 
upon this result, establishing a tight bound of p(n) = O(logn), for deterministic algo-
rithms. The wall and room problems can be combined, resulting in a competitive ratio 
of p(n) = 0(-s/n) for point-to-point navigation among aligned rectangular obstacles. 

While, for deterministic algorithms, we have the tight bound p(n) = 0 (V^) for the com-
petitive ratio in both the wall and point-to-point versions of the problem, it has been shown 
by Berman et al. [62] that randomized strategies are "powerful", in that one can obtain 
a competitive ratio of 0(/2^/^log/i) for the wall and point-to-point navigation problems 
among aligned rectangular obstacles. For randomized strategies, we define p(n) to be the 

^ Note that if the obstacles (holes of P) are rectangles or squares, they are disjoint, but allowed to touch; how-
ever, the robot can "squeeze" between two touching obstacles. Thus, we cannot synthesize nonconvex obstacles 
by putting together rectangular obstacles. Also, unless otherwise stated (e.g., in the "room problem") we are 
assuming that P is the infinite plane, with holes that are the obstacles; i.e., there is no outer boundary of P. 
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supremum of the ratio of the expected path length to d(s, t; P), assuming that P is se-
lected by an oblivious adversary, with knowledge of the strategy, but not of the coin tosses 
made during a walk using the strategy. Berman and Karpinski [63] obtained a randomized 
strategy for general convex obstacles with competitive ratio 0(n^^^). 

Blum and Chalasani [71] have shown that if the robot is to make multiple trips from s 
to r, it can make effective use of information gained on each trip, allowing it to improve 
its performance as it learns more about the environment. In particular, they show a strategy 
in which, for every i ^ n, the ith trip of the robot is a path of length 0(y/n/i) times 
d(s,t; P). Their results apply to the wall problem, as well as the point-to-point problem, 
in the presence of aligned rectangular obstacles. They also provide a lower bound, for 
deterministic strategies, of ^(y/n/k) on the cumulative k-trip competitive ratio (which 
measures the ratio of the total length of all k trips, over k times d{sj\ P)). 

If the obstacles are arbitrary nonaligned rectangles, then the competitive ratio for the 
room problem goes up: Blum et al. [74] show that p{n) = Q{^)\ they also give (non-
tight) upper bounds that either assume an excluded range of orientations of the rectangles, 
or allow a randomized algorithm. If the nonaligned rectangles have aspect ratio at most 
r, then a strategy of Chan and Lam [87] obtains a competitive ratio of (^ + 1), which 
is shown to be tight. In particular, in the case of nonaligned squares (r = 1), Chan and 
Lam's result implies a competitive ratio of 3/2, improving the earlier bound of Papadim-
itriou and Yannakakis [319]. An asymptotic competitive ratio of 3/2 has been obtained by 
Bezdek [69] for the case of nonaligned cubes in three dimensions; this result in fact implies 
the two-dimensional result for squares. 

For even more general environments P, Blum et al. provide some results in special 
cases of convex obstacles, as well as general polygonal domains ("mazes"), where the 
competitive ratio is ^(|V|), where V is the set of vertices of P. A simple "L-shaped" 
maze example shows that even a randomized algorithm cannot achieve a competitive ratio 
better than (| V| — 10)/6. Blum et al. also consider the three-dimensional version of the wall 
problem, obtaining a lower bound of C2 {n^^^) for the competitive ratio, and matching upper 
bounds in special cases (obstacles that are generalized cylinders, in the wall problem, or 
aligned boxes, in the point-to-point problem). Berman et al. [62] show that randomization 
can, again, help, allowing a strategy with competitive ratio 0{n^^^~^') for the point-to-point 
and wall problems. 

The on-line version of the weighted region problem (Section 4.3) has been studied 
by Reif and Wang [341], who consider an environment in which the axis-aligned rect-
angular "obstacles" are penetrable, with each having a weight (cost per unit distance) 
greater than one (the background has weight one). Using a modified sweeping strategy 
of Blum et al. [74], they show that a competitive ratio of O(v^) is achievable in the wall 
problem with penetrable obstacles (and this is tight). See their paper for generaUzations 
to "recursive" weighted environments, in which penetrable obstacles may include other 
penetrable obstacles of higher weight. 

In the search version of the on-line problem, our objective is to search for an entity at 
some unknown target location in an unknown environment, minimizing the total distance 
traveled from the starting point, until the visually identifiable target is first seen; see [49, 
234,243]. 
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While for general simple polygons P, no constant competitive ratio is possible when 
searching for a target t, Klein [242] has shown that if one is navigating in a special type of 
simple polygon, called an s-t street (for s and t on the polygon boundary), then there 
is a strategy for searching for a path from s to t that achieves a competitive ratio of 
l + | 7 r ^ 5 . 7 1 . (Points s and t split the boundary of P into two subchains; P is an 5-f street 
if each point on one subchain is visible from some point on the opposite subchain.) Here, 
both P and the coordinates of t are unknown to the robot; the robot is equipped with a 
vision sensor, and we assume that the goal t is visually identifiable. Streets (as well as 
"star-shaped polygons"; see below) enjoy the special property that in the tree of shortest 
paths from s, left-turning paths and right-turning paths are grouped. Klein's strategy is 
based on the idea of minimizing the "local absolute detour," while moving from one point 
known to be on the shortest s-t path to another such point. Klein's analysis was improved 
by Icking [215], who proved a bound of n/2 + y 1 + n^/A ^ 4.44 on the competitive ra-
tio. Kleinberg [243] gives a simpler strategy and analysis, achieving a competitive ratio of 

.61, and shows further that it achieves an optimal ratio of \ /2 in the case of 
rectilinear streets. Lopez-Ortiz and Schuierer [261] present a strategy, similar to Klein's, 
having a substantially simpler analysis, resulting in a ratio of TT + 1 ^4 .14; they show that 
a hybrid strategy based on this one achieves a ratio of ^VTT^ + 47r -}- 8 ^ 2.76. Lopez-
Ortiz and Schuierer [260] have given a further improved strategy, using ideas similar to 
Kleinberg's (but with a substantially more complex analysis), achieving competitive ratio 
y i + ( l+7r/4)^ ^ 2.05. Lopez-Ortiz and Schuierer [263] have given an extension of the 
original approach of Klein, to "continuous local absolute detour," that results in a compet-
itive ratio of 2.03; further, by combining this approach with their earlier method ([260]), 
Lopez-Ortiz and Schuierer obtain a hybrid strategy achieving competitive ratio of L73. 
Most recently, Semrau [358] has developed a strategy that results in a competitive ratio of 
7r/2 ^ 1.57, which is getting very close to the theoretical lower bound of \f2. 

OPEN PROBLEM 13. Is there a strategy achieving a competitive ratio of ^/l in streets! 

The results on searching in streets discussed above have assumed that the robot does 
not know the location of the target t. For such problems, it is easy to show that V2 
is a lower bound on the competitive ratio (see Klein [243]). However, Lopez-Ortiz and 
Schuierer [260] have shown a V2 lower bound on the competitive ratio for deterministic 
strategies, even if the coordinates of the target are known to the robot and the street is 
rectilinear. Thus, for rectilinear streets, knowledge of the target location does not assist the 
robot. 

Lopez-Ortiz and Schuierer [264] give a strategy with a constant competitive ratio (12.72) 
that finds a path to a target point in an unknown star-shaped polygon,^ even if the coordi-
nates of the target point are unknown, and it is not necessarily on the polygon's boundary. 
They also prove a lower bound of 9 on any strategy that must find a path in an unknown star-
shaped polygon to a target point whose coordinates are not specified. Star-shaped polygons, 
like streets, enjoy the property that the left-turning and right-turning paths in the shortest 
path tree rooted at s are grouped. Note too that a star-shaped polygon can be made into 

A polygon is star-shaped if there exists a point within it from which all other points of the polygon are visible. 
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an s-t street, for any vertex s, by adding, if necessary, a vertex t such that the diagonal st 
intersects the kernel."* 

Some results are also known for more general polygons than streets or star-shaped poly-
gons. Datta and Icking [129] introduced the notion of a "generalized street;" for rectilinear 
generalized streets they give an algorithm with competitive ratio of \/82 ^ 9.06 (or 9, 
in the L\ metric) and prove a lower bound of 9 on the competitive ratio of any strategy, 
assuming the target t is not known to the robot. (A simple polygon P is a generalized 
street (^-street) with respect to two points s and t on its boundary if for any point p on 
the boundary of P, there exists a horizontal chord, whose endpoints are on different sub-
chains of the boundary, such that p is weakly visible to the chord. The class of generalized 
streets strictly contains the class of streets.) Lopez-Ortiz and Schuierer [260] show a lower 
bound of 9 even in the case that the coordinates of the target are known. Datta, Hipke, and 
Schuierer [128] define even more generalized notions of rectilinear streets ("HV-streets" 
and "^-^-streets"), for which they prove bounds in the L\ metric: 14.5 is an upper and 
lower bound on the competitive ratio for HV-streets, while 19.97 is an upper bound for 
^-^-streets. (See also Schuierer [354] for lower bounds on the competitive ratio in 0-Q-
streets.) Lopez-Ortiz and Schuierer [262] give a competitive strategy (with ratio 80) in 
arbitrarily oriented (nonrectilinear) ^-streets. Kleinberg [243] considers searching in gen-
eral rectilinear simple polygons, obtaining a strategy with competitive ratio 0(m), where 
m is the number of essential cuts, which may be much smaller than the number of vertices. 

Streets have also been studied with respect to searching in link distance, instead of L2 
or L\ length. Ghosh and Saluja [174] give a deterministic strategy for searching for an s-t 
path in a street, using at most 2m — 1 links, where m is the link distance from ^ to ^ Further, 
they show that this bound is best possible for deterministic strategies in general streets. For 
rectilinear streets, a rectilinear link distance of m + 1 is achievable, and this is best possible; 
here, m is the rectilinear link distance from siot. Ghosh and Saluja observe that in general 
(non-street) simple polygons, no competitive ratio better than n/A is possible, where n is 
the number of vertices. 

On-line path problems arise also for objectives other than that of finding a path from 
a start 5 to a target point t. Icking and Klein [216] have given a competitive strategy for 
the problem of searching for the kernel of an unknown star-shaped polygon; the goal is 
for the robot to get to some point of the kernel. (A vision-equipped robot can recognize 
when it reaches a point in the kernel.) The competitive ratio is based on the distance from 
s to the point of the kernel that is closest to s. Icking and Klein [216] obtain a ratio of 
5.48 (which they have subsequently improved slightly); they also prove a lower bound of 
V2 (which was subsequently increased to 1.48 by [264]). The best current bound is that 
of Shin et al. [362], who obtain a competitive ratio of 1 + 2^2 ^ 3.829. Lopez-Ortiz and 
Schuierer [264] give a constant competitive ratio (of 46.35) for the on-line recognition of a 
star-shaped polygon, in which the robot must execute a path until it can prove or disprove 
the star-shapedness of P. They also show a lower bound of 9 on the competitive ratio of 
any such strategy. 

In the explore (or mapping) version of the problem, our objective is to execute a path 
such that the robot can map out the entire space, by seeing every point of free space; see 

The kernel of a polygon P is the locus of points within P from which every point of P is visible. If the kernel 
is non-empty, then the polygon is star-shaped. 
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[136,243]. (See also Section 7.4 on the "watchman route problem," which is the off-line 
version of the problem, to compute a shortest route that sees the entire space when the 
map is given.) In particular, Deng, Kameda, and Papadimitriou [136] have shown that no 
competitive strategy exists, in general, if there are an unbounded number of obstacles; 
however, if the number of obstacles is bounded, they obtain a competitive strategy with 
a constant competitive ratio (0(k), where k is the number of obstacles). In particular, if 
P is a simple rectihnear polygon, there is a 2-competitive deterministic algorithm [136, 
137], and a 5/4-competitive randomized algorithm [243] for the exploration problem. For 
general simple polygons, the competitive ratio of [136] is proved to be constant, but is only 
estimated to be in the thousands. A bound of 133 was later given by Hoffman et al. [211], 
and has recently been improved to (18\/2 + 1) < 26.5 by the same set of authors [212]. 

Kalyanasundaram and Pruhs [231] study the search and explore problems for a vision-
equipped robot among a set of k disjoint convex obstacles having average aspect ratio^ a. 
They obtain tight bounds on the competitive ratio for both problems: ^(min{^, V ^ } ) . (In 
the mapping problem of [231], the robot is required to see all of the boundary of the work 
space, but not necessarily all of its interior; this is in contrast with the mapping problem of 
[136].) They also show that the natural greedy "nearest neighbor" heuristic for the search 
problem can be quite bad, showing an Q{2^) lower bound on the competitive ratio for that 
strategy. In the visual traveling salesperson problem (visual TSP), the robot's objective is 
to visit and traverse the boundary of every obstacle; this formulation is meant to model 
the fact that a robot (equipped with a vision sensor) may have to get close to an object in 
order to map it completely. For the visual TSP, Kalyanasundaram and Pruhs [232] give a 
19-competitive algorithm, based on applying their 18-competitive algorithm for the "on-
line TSP" in planar graphs to a type of "relative neighborhood graph" in the presence of 
obstacles. (See also [233].) 

For other related work, without theoretical guarantees on the competitive ratio, but use-
ful in autonomous vehicle navigation, we refer the reader to the book edited by Iyengar 
and Elfes [225], as well as [226,281,293,329,330]. Mitchell [281] has considered a model, 
based on a special case of the weighted region problem (Section 4.3), in which the robot 
gathers information, which it accumulates in a map, and at each step applies the best pos-
sible local strategy, assuming travel within known free space has a cost-per-unit-distance 
of 1, while travel in unexplored terrain has cost a > 1 per unit distance. 

For a recent survey of on-line searching and navigation algorithms, see Berman [61]. 

6. Shortest paths in higher dimensions 

We turn our attention now to the problem of computing shortest paths in higher dimensional 
geometric spaces. Most of the discussion will focus on three-dimensional spaces, since 
most effort has been devoted to this case. We begin with a few definitions. 

A polyhedral domain is a connected subset, P, of 9̂ ^ whose boundary consists of a union 
of a finite number of triangles. (The definition is readily extended to d dimensions, where 
the boundary must consist of a union of "simplices.") The complement of P consists of 

^ Here, the aspect ratio of a convex body is the ratio of the radius of the smallest circumscribing circle to the 
radius of a largest inscribed circle. 
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connected (polyhedral) components, which are the obstacles. A polyhedral domain is or-
thohedral if each boundary facet is orthogonal to one of the coordinate axes. A polyhedral 
domain P is a (convex) polytope if it is the convex hull of its vertices. 

A polyhedral surface is a connected union of a finite number of polygonal faces, with 
any two polygons intersecting in a common edge, a common vertex, or not at all, and each 
edge belonging to exactly two polygons. 

Throughout this section, n will denote the number of edges in a polyhedral domain or 
surface. Without loss of generality, we can assume that all faces of a polyhedral surface 
are triangles, since a polygon triangulation algorithm can be applied to decompose each 
polygonal face into triangles, introducing a total of 0(n) additional edges and faces. 

6.1. Complexity 

In three or more dimensions, most shortest-path problems are very difficult. The problem 
is difficult even in the most basic Euclidean shortest-path problem in a three-dimensional 
polyhedral domain P, and even if the obstacles are convex, or the domain P is simply 
connected. There are two sources of complexity, as we now discuss. 

One difficulty arises from algebraic considerations. In general, the structure of a shortest 
path in a polyhedral domain need not lie on any kind of discrete graph. Shortest paths 
in a polyhedral domain will be polygonal, with bend points that generally lie interior to 
obstacle edges, obeying a simple "unfolding" property: The path must enter and leave at the 
same angle to the edge. It follows that any locally optimal subpath joining two consecutive 
obstacle vertices can be "unfolded" at each edge along its edge sequence, thereby obtaining 
a straight segment. (The edge sequence of a path is the ordered list of obstacle edges that are 
intersected by it.) Given an edge sequence, this local optimality property uniquely identifies 
a shortest path through that edge sequence. However, to compare the lengths of two paths, 
each one shortest with respect to two (different) edge sequences, requires exponentially 
many bits, since the algebraic numbers that describe the optimal path lengths may have 
exponential degree [51,52]. 

A second difficulty arises from combinatorial considerations. The number of combina-
torially distinct (i.e., having distinct edge sequences) shortest paths between two points 
may be exponential. Canny and Reif [83] have used this fact to prove that the shortest-path 
problem is NP-hard, even if the obstacles are simply a set of parallel triangles. While this 
result is strong evidence that we will not be able to solve the problem exactly in polynomial 
time, it does not rule out the possibility that we could construct a shortest path map in time 
proportional to its combinatorial size, which may be exponential in general, but far smaller 
in many practical cases. 

OPEN PROBLEM 14. Can one compute a shortest path map for a polyhedral domain in 
output-sensitive timel 

Sharir and Schorr [361] gave a doubly exponential time (2^ " ) exact algorithm, based 
on reducing to an algebraic decision problem in the theory of real closed fields. This result 
was improved by Reif and Storer [339], who give a singly exponential time algorithm 
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(requiring 2" time and /̂ (̂log )̂ space), based on the same theory, but using a more 
efficient reduction. Finally, Canny [81] has given a PSPACE algorithm, which applies not 
only to the shortest path problem in three dimensions, but also to the two-dimensional 
asteroid avoidance problem (see Section 4.8). 

Given the difficulty of solving the general problem exactly, it is natural to consider ap-
proximation algorithms for the general case, or to consider special cases in which we can 
obtain polynomial bounds. 

6.2. Special cases 

If the polyhedral domain P has only a small number, k, of convex obstacles, a shortest 
path can be found in rP^^"^ time, as shown by Sharir [359]. If the obstacles are known to 
be "vertical buildings" having only k different heights, then shortest paths can be found in 
time O (^ ̂ ^ ~ ̂ ) [ 170]; however, it is not known if this version of the problem is NP-hard if k 
is allowed to be large. Both of these special cases have worst-case exponential algorithms; 
is there some nontrivial case of disjoint obstacles in three dimensions that is not hard to 
solve exactly? We have noted that Canny and Reif's hardness proof applies even to simple 
(convex) triangular "plates" that lie in parallel planes; however, their construction seems 
to rely on some edges of the triangles not being axis-parallel. This suggests an interesting 
question: 

OPEN PROBLEM 15. What is the complexity of the Euclidean shortest-path problem in 3-
spacefor obstacles that are disjoint aligned boxesl What about for disjoint {unit) sphere si 

If we require paths to stay on a polyhedral surface (i.e., the domain P is essentially 
2-dimensional), then the unfolding property of optimal paths can be exploited to yield 
polynomial-time algorithms. This was first used by Sharir and Schorr [361] to obtain an 
0(n^ logn)-time algorithm for convex surfaces. Mitchell, Mount, and Papadimitriou [291] 
obtained an 0(n^ log n)-time algorithm for general polyhedral surfaces, by developing a 
continuous Dijkstra method of propagating a shortest path map over the surface, taking 
advantage of the local optimality (unfolding) property. Chen and Han [100] have improved 
the time bound even further, obtaining an algorithm requiring 0(n^) time and O(^) space. 
(The algorithm of [100] relies on the nonoverlapping property of the "star unfolding", as 
shown by Aronov and O'Rourke [34]; see below.) These algorithms not only construct a 
shortest path map with respect to a single source, but can be used to construct a geodesic 
Voronoi diagram for multiple source points within the same time bound (where n now 
includes the number of source points). 

One of the most interesting open problems in this area is to break the quadratic time 
barrier, even for the case of convex poly topes: 

OPEN PROBLEM 16. Can one compute shortest paths on the surface of a convex polytope 
in 9̂ ^ in sub quadratic timel In 0{n logn) timel 

Note added in proof: Kapoor [236] has announced a recent advance on this problem. 
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Several facts are known about the set of edge sequences corresponding to shortest paths 
on the surface of a convex polytope P in 9fl-̂ . In particular, Mount [300] has shown that 
the worst-case number of distinct edge sequences that correspond to a shortest path be-
tween some pair of points is 0{n^). Further, Agarwal et al. [3] have shown that the exact 
set of such sequences can be computed in time 0(n^P(n) logn), where P(n) = o(log* n). 
(A simpler O(n^) algorithm can compute a small superset of the sequences [3].) The num-
ber of maximal edge sequences for shortest paths is @(n^), as shown by Schevon and 
O'Rourke [351]. Some of these results depend on a careful study of the "star unfolding" 
with respect to a point p on the boundary, dP, of P. The star unfolding is the (nonover-
lapping [34]) cell complex obtained by subtracting from dP the shortest paths from p to 
vertices of P, and then "flattening" the resulting boundary. 

Agarwal et al [3] have also shown that two-point queries can be answered in time 
0((v^/m^/^)logn), after spending 0(n^m^+^) preprocessing time and storage, for any 
choice of 1 ^ m ^ n^, and 5 > 0. (If one query point always lies on an edge of the 
polytope, the algorithm can be improved to use 0(n^m^^^) preprocessing time and stor-
age and guarantee 0((n/m)^/^logn) query time, for any choice of I ^m ^n.) Further, 
the geodesic diameter is obtained in time O(n^logn), improving an earlier 0(«^^log«) 
bound of O'Rourke and Schevon [311]. Chiang and Mitchell [108] show how two-point 
queries can be answered efficiently (even in optimal 0(log/i) time) on nonconvex polyhe-
dral surfaces; however, the preprocessing and space complexities are even higher than in 
the convex case. Performing efficient two-point queries while using only a small polyno-
mial amount of storage remains an open problem: 

OPEN PROBLEM 17. How efficiently, and using what size data structure, can oneprepro-
cess a polyhedral surface for exact two-point queriesl Can exact two-point queries be done 
in sublinear query time using subquadratic storage! What if the surface is convexl 

In the special case of terrain surfaces (polyhedral surfaces having at most one inter-
section point with any line parallel to the z-axis), de Berg and van Kreveld [132] have 
studied various optimal path problems, including some bicriteria versions, with constraints 
imposed on the maximum allowed altitude. They build a "height-level map," in time 
0(nlogn), stored implicitly using 0(n) space, which enables O(logn) time queries to 
compute a shortest s-t path that stays below a given elevation z, or an s-t path having a 
minimum total ascent. 

6.3. Approximation algorithms 

Papadimitriou [317] was the first to study the general problem from the point of view of 
approximations. He gave a fully polynomial approximation scheme that produces a path 
guaranteed to be no longer than (I -\- s) times the length of a shortest path. His algorithm 
requires time 0(n^(L + \og(n/e))^/s^), where L is the number of bits necessary to repre-
sent the value of an integer coordinate of a vertex of P. Clarkson [120] gives an alternative 
method, requiring roughly 0(n^\og^^^^ n/s^) time (the exact expression includes also a 
precision parameter that depends on the geometry of P). 
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Choi, Sellen, and Yap [115,114] have re-examined closely the analysis of Papadimitriou 
and have addressed some inconsistencies found in the original algorithm. To this end, it is 
important to distinguish between the bit framework and the algebraic framework of study-
ing the complexity of the problem. Almost all shortest path algorithms (and most computa-
tional geometry algorithms) assume an algebraic model of computation, in which the time 
complexity is measured in terms of the number of algebraic operations performed on real 
numbers. It is assumed that these operations are performed exactly. In the bit framework, 
though, time complexity is measured in terms of the number of Boolean operations on bits, 
assuming the input is encoded with binary strings. Given the nature of current computer 
hardware, it is likely that the bit framework more accurately models actual computation 
times. 

Choi, Sellen, and Yap [115] give upper bounds on the bit complexity of the approxi-
mate shortest-path problem. They have also introduced the important notion of "precision-
sensitivity" in algorithms, where the goal is to write the complexity in terms of an implicit 
parameter, 5, that measures the implicit precision of the input instance [114]. For example, 
in the shortest-path problem, they define 8 = (d2 — d*)/d'^ to be the relative difference be-
tween the length J* of an optimal path, and the length, d2, of the second-shortest, locally 
optimal path; i.e., J2 > ^* is the length of a shortest path that uses an edge sequence dis-
tinct from any optimal edge sequence, but is closest in length to J* among all such locally 
optimal paths. Provided that the optimal edge sequence is in some sense nondegenerate, 
one obtains an approximation algorithm that is polynomial in 1/8 and the other parameters 
of the input, with only linear dependence on 1/6:. 

Recently, Har-Peled [194] has shown how to compute an approximate shortest path 
map in polyhedral domains. In particular, he shows that, for a given source point s, and 
real parameter 0 < ^ < 1, a subdivision of dl^ of size can be constructed in 
time roughly Oin'^/s^), so that for any point t edi^ a. (1 -\- £)-approximation of the length 
of a shortest s-t path can be reported in time 0(log(n/£)). His technique is to sprinkle 
a carefully selected set S of discrete points within P and to record with each point of S 
a "weight" that corresponds to the approximate shortest path distance from s to it; the 
approximate shortest path map is then given by the additive-weight Voronoi diagram of S. 

In addition to approximation results for shortest paths in polyhedral domains, there have 
been a number of results on approximating shortest paths on polyhedral surfaces. 

Hershberger and Suri [208] obtain a 2-approximation for a shortest s~t path on a convex 
poly tope in time 0(n), using a relatively simple algorithm that considers the shortest path 
on the surface of the polytope's bounding box, between an appropriate pair of points. An 
extension to the algorithm allows one to compute a 2.38(1 + £)-approximate shortest path 
tree, SPT(^), in 0(n logn) time. The method also results in a 2^-approximation algorithm 
for shortest paths in a polyhedral domain consisting of k convex poly topes. 

Agarwal et al. [6] extend the method of [208] by surrounding the input (convex) polytope 
with a tighter-fitting constant-size (depending on s) bounding polytope, which approxi-
mately preserves shortest path distances. The result is that in time 0(nlog(l/6:) -|- l/s^) 
one can compute a (1 -h ̂ )-approximate shortest s-t path, for any 0 < ^ ^ 1. (The approx-
imate length of a shortest path can be reported in time 0(n -h 1/6:̂ ).) Har-Peled [193,192] 
improves this result, obtaining results for the approximate two-point query version: He 
gives an 0(n)-time algorithm to preprocess a convex polytope so that a two-point query 
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can be answered in time 0((log«)/^^/^ + \/s^), yielding the (1 -f- ^)-approximate shortest 
path distance, as well as a path having 0(1/^^/^) segments that avoids the interior of the 
input polytope. He also gives an 0{n + l/£^)-time algorithm to compute an approximate 
diameter of the polytope's surface, obtaining a pair of points on the surface whose shortest 
path distance is least (1 — e) times the diameter. 

Varadarajan and Agarwal [382] have considered the problem of approximating short-
est paths on general (nonconvex) polyhedral surfaces. They have obtained the first 
subquadratic-time algorithms for provably good approximating paths, computing a 13-
approximation in 0{n^^^\og^^^ n) time, or a 15-approximation in 0{n^^^\o^/^ n) time. 
Their method is based on a partitioning of the surface into 0(n/r) patches, each hav-
ing at most r faces, using a planar separator theorem. (The parameter r is chosen to be 
^1/3 iog'/3 ^ Qj. „2/5 log^/^ w.) Then, on the boundary of each patch, a carefully selected 
set of points ("portals") is selected, and these are interconnected with a graph that approx-
imates shortest paths within each patch. Finally, Dijkstra's algorithm is used to search for 
a shortest path in the resulting graph, which is proven to contain an approximately shortest 
path. 

OPEN PROBLEM 18. Can one compute a {\-{- e)-approximate shortest path on a noncon-
vex polyhedral surface {or even on a terrain) in subquadratic timel Can one compute an 
0(1)-approximate shortest path in close to linear timel 

Har-Peled [194] has shown how to compute an approximate shortest path map on poly-
hedral surfaces, using techniques mentioned above. Given a source point and a param-
eter 0 < £ < 1, he constructs a subdivision of the surface of size 0{{n/e)\og{\/e)), 
so that a (1 + ^)-approximate shortest path query to any point t can be answered 
in time 0{\og{n/e)), by locating / within the subdivision. The preprocessing time 
is 0{n^\ogn + {n/£)\og{\/s)\og{n/s)) for general surfaces, and 0((«/^'^)log(l/^) + 
(nle^l^) log(l/^) logn) for convex polytopes. 

Finally, we mention some investigations on practical methods for computing nearly 
shortest paths on surfaces. By using the same methods that have been applied to 
the weighted region problem (Section 4.3) in subdivisions, Lanthier, Maheshwari, and 
Sack [247] and Mata and Mitchell [273] have shown that very simple algorithms based 
on searching a discrete graph (an "edge subdivision graph", or a "pathnet") produce paths 
that are remarkably close to optimal, and approach optimal as a parameter (5, or Xjk) 
approaches zero. The discrete graph can be constructed in advance, to assist in speeding 
two-point queries. Further, the path obtained can be postprocessed with a local optimality 
procedure that pulls the path "taut" within the sleeve of facets that it crosses, resulting in 
a solution even closer to optimal. Using a slightly different discrete graph than the edge 
subdivision graph of [247,273], Aleksandrov et al. [11] give alternative time bounds that 
depend on other parameters related to the "fatness" of the triangular facets of a polyhedral 
surface. They place Steiner points along edges in a geometric progression, as in Papadim-
itriou [317]. This allows one to compute a (1 + ^)-approximate shortest path from s \,o t 
in time 0(Mn logMn + nM'^) (and space 0(«M^)), where M = 0{j^ log ^ ) , X is the 
length of a longest edge, h is the minimum altitude of a triangular facet, 0 is the smallest 
angle of any triangular facet, and 0 < 6: < 2/3. By searching a sparser subgraph, they have 
recently ([12]) improved the time bound to 0(Mn log Mn). 
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6.4. Other metrics 

Link distance in a polyhedral domain in dl^ can be approximated (within factor 2) in poly-
nomial time, by searching a weak visibility graph whose nodes correspond to simplices 
in a simplicial decomposition of the domain. The complexity of computing the exact link 
distance is open. 

OPEN PROBLEM 19. How efficiently can link distance be computed in polyhedral do-
mains in 3-space! 

For the case of orthohedral domains, and rectilinear (L i) shortest paths, the shortest-path 
problem in "^^ becomes relatively easy to solve in polynomial time, since the "grid graph" 
induced by the facets of the domain serves as a path preserving graph that we can search for 
an optimal path. In dl^, we can do better than to use the 0(n^) grid graph induced by O(^) 
facets, as shown by Clarkson, Kapoor, and Vaidya [122]; an 0(n^log^^) size subgraph 
suffices for the case of n (possibly overlapping) axis-parallel boxes, allowing shortest paths 
to be found using Dijkstra's algorithm in time 0(n^log^ n). More generally, for a set of 
obstacles given by n axis-aligned (not necessarily disjoint) boxes in dl^, de Berg et al. [133, 
134] show that one can compute a data structure of size 0((nlogn)^~^), in 0(n^logn) 
preprocessing time, that supports fixed-source link distance queries in 0(log^~^ n) time. 
Further, this result applies, within the same complexities, to the case of a combined metric, 
in which path cost is measured as a linear combination of L \ length and the rectilinear link 
distance (see also Section 4.7). 

In the case of axis-parallel disjoint box obstacles in 9i^, Choi and Yap [116] have shown 
that rectilinear shortest paths can be computed in time 0{n^\ogn). Also, for this same 
problem in higher dimensions, a recent structural result of Choi and Yap [118,117] may 
help in devising very efficient algorithms: There always exists a coordinate direction such 
that every shortest path from ^ to f is monotone in this direction. 

7. Other network optimization problems 

Until now, we have been considering problems of computing a shortest path from one 
point to another (or from one point to all others). We consider now some other network 
optimization problems, in which the objective is to compute a shortest path, cycle, tree, or 
other graph, subject to various types of constraints. 

We focus primarily on two classes of problems: those of finding minimum-cost trees or 
tours that span some or all elements of a set 5. We discuss the resulting "minimum span-
ning tree" and "traveling salesperson" problems in the next subsections, and then give more 
details of a general method of obtaining approximations to these problems. The subject of 
spanning trees and spanners is surveyed extensively in the Chapter 9 by Eppstein [151] in 
this Handbook. 

Other well-studied network optimization problems that we do not attempt to survey 
here include minimum cost matching (which has polynomial-time exact and approximate 
solutions; see [36,379,380,389]) and minimum weight triangulation {MWT) (whose com-
plexity status is still open, although constant-factor approximation algorithms exist for 
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both the Steiner and non-Steiner versions; see Bern and Eppstein [65] and Levcopoulos 
and Krznaric [257]). We also refer the reader to the article of Smith and Winter [365], 
which surveys a large class of topological network design problems. Kalyanasundaram 
and Pruhs [233] survey on-line versions of standard network optimization problems. 

7.1. Optimal spanning trees 

Minimum spanning trees. A minimum spanning tree (MST) of a set of n points 5 is a tree 
of minimum total length whose nodes are the set S of n points, and whose edges are line 
segments joining pairs of points. 

The (Euclidean) minimum spanning tree problem can be solved to optimahty in the 
plane in time 0(n logn), by appealing to the fact that the MST is a subgraph of the (0(n)-
size) Delaunay diagram; after computation of the Delaunay diagram, results of Cheriton 
and Tarjan [105] can be applied to find the MST in only 0(n) additional time. 

PROPOSITION 4. An edge in a Euclidean MST is Delaunay. 

The above proposition remains valid in 9i^, for J ^ 3; however, the result does not 
lead directly to a subquadratic-time algorithm for MST in higher dimensions, since there 
can be Q{n^) Delaunay edges, even in "^^. However, geometry can be exploited to avoid 
examining the full set of (2) = Q{n^) weighted edges in the complete graph. Yao [391] 
was the first to compute an MST in D̂î  in subquadratic time. His general method yields 
a time bound of O(n^~"^(logn)'~"^0, where a j is a constant depending on the dimen-
sion d. His algorithm is based on partitioning the space around each point p into suffi-
ciently small cones so that there is at most one MST edge incident on p per cone, with 
this edge linking p to its nearest neighbor within that cone. In Yao [391], ofj = 2~^^+^\ 
but this has improved as better data structures for nearest-neighbors have been devel-
oped. Agarwal et al. [5] give a randomized algorithm whose expected running time has 
Of J = r^|\-^^^ — y, for any fixed y > 0. In three dimensions, their algorithm requires 
0{n^^^\og^^^ n) expected time. (See also Agarwal, Matousek, and Suri [7], who study 
maximum spanning trees (Section 7.1); a variant of their somewhat simpler randomized 
algorithm applies also to minimum spanning trees.) These algorithms exploit the close re-
lationship between the problem of computing an MST and that of computing a bichromatic 
closest pair of points between n red points and m blue points. Letting Td(n,m) denote the 
complexity of solving the bichromatic closest pair problem, Agarwal et al. [5] show that 
the Euclidean MST can be computed in time 0(Td(n, n) log^ n) (if Td{n, n) = o(n^^^)), 
or in time 0(Td{n,«)), if Td(n, n) is superiinear. Since they give a randomized algorithm 
for the bichromatic closest pair, with expected time 0((/2m)'~'/^'^^/^^'^'^"^^), their result 
implies that the MST can be computed in expected time Q(Jl^-^/(\^/'^^+^)+^)^ Callahan 
and Kosaraju [80] show a bound of 0(Td(n, n) log«), while Krznaric, Levcopoulos, and 
Nilsson [245], as well as Kapoor [235], obtain 0(Td(n, n)). These bounds hold for any Lp 
metric (p ^ 1); 0(Td(n, n)) is optimal in the algebraic computation tree model. 

For some Lp metrics, more efficient algorithms are known. Agarwal et al. [5] give a 
deterministic algorithm requiring 0(n log^ n) time for any metric having a polyhedral unit 
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ball (e.g., L\ and L^)\ see also Gabow, Bentley, and Tarjan [162]. In three dimensions, 
there is now an optimal O(nlogn) time algorithm for the MST in the L\ or Loo nietric, 
due to Krznaric, Levcopoulos, andNilsson [245] (improving an earlier 0{n\ogn\og\ogn) 
bound of [162]). 

Clarkson [121] and Vaidya [378] have given algorithms that are particularly efficient for 
points that are independently and uniformly distributed in a unit cube in 9^ .̂ Their algo-
rithms have expected time 0{na{cn, n)), where c is a constant depending on dimension, 
and a is the very slowly growing inverse Ackermann function. 

Several results are also known about approximation algorithms for the MST. Clark-
son [119] gives an 0(n(}ogn + ^ log5)) time (0(nlog(5) space) algorithm for a (1 + 6:)-
approximate Euclidean MST in 9^ ;̂ he also gives results in higher dimensions for the 
L\ metric {0{n(a{m,n) + log'^~^(^)log5)) time, 0{n(\og{\) + log5)) space). Here, 
m = 0(n), and 5 is a parameter that depends on the data: it is the ratio between the max-
imum and the minimum distance between pairs of points. Vaidya [377] gives a (1 + e)-
approximation for any Lp metric, requiring time 0(n(logn)^~^^s~^^~^''), which he later 
improves to 0(s~^nlogn) time [378]. Callahan and Kosaraju give an approximation, 
based on their "well-separated pair decomposition," for the Euclidean MST that requires 
time 0(n logn + (e""^/^ log ^)n). 

Das, Kapoor, and Smid [127] have studied the problem of r-approximating the Eu-
clidean MST, for large values of r: For 4 < r < n, and for any J ^ 1, they prove a 
lower bound of ^ (n log(n/r)), in the algebraic tree model of computation, and prove that 
this is tight by exhibiting an algorithm having the same asymptotic time complexity. If 
the (non-algebraic) floor function and random access operations are permitted, then they 
obtain a 3V^^^"^'^^-approximation algorithm requiring 0(n) time. For this more pow-
erful model, Bern et al. [68] compute a (1 + £)-approximate MST in the plane in time 
0((l/s)nloglogn) (time 0(n + ^^^g^) in m'). 

The best lower bound for the (exact) MST problem is currently ^(n logn), in any fixed 
dimension J ^ 1, in the algebraic tree model of computation for a general input of un-
ordered points. In contrast, the seemingly related all-nearest-neighbors problem can be 
solved in time 0(2^n logn), using the algorithm of Vaidya [381]. The all-nearest-neighbors 
problem is to compute the nearest neighbor for each of the n input points; given the MST, 
it is readily solved in 0(n) time, since the MST must include an edge linking each point to 
one of its nearest neighbors. 

OPEN PROBLEM 20. Does there exist a near-linear time algorithm for Euclidean MST 
(or bichromatic nearest neighbors) in ^^, for J ^ 3? 

Maximum spanning trees. If instead of finding a minimum spanning tree, the objective 
is changed to ask for a maximum-length spanning tree on a set of points, the problem 
changes its nature. (Applications are given in [39].) While in graphs the same algorithms 
that find minimum spanning trees also can be used for computing maximum spanning 
trees, by negating edge lengths, the geometric version of the problem changes because it 
is not obvious how to find a small subgraph of the complete graph that is guaranteed to 
contain the maximum spanning tree. The natural generalization of the MST result might 
be to expect that the maximum spanning tree must appear as a subgraph of the (linear-size) 
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furthest-point Delaunay diagram (see the chapter on Voronoi diagrams, by Aurenhammer 
and Klein [46]). However, this is not true in general, since the only points that are ver-
tices of the furthest-point Delaunay diagram are the points on the convex hull; further, 
even if the input point set is in convex position, the maximum spanning tree need not 
lie on the furthest-point Delaunay diagram (see [296]). A different approach is taken by 
Monma et al. [299], who provide an optimal 0(n\ogn)-iime algorithm for computing a 
maximum spanning tree of n points in the plane. They start with computing, in 0(n logn) 
time, the furthest neighbor graph, joining each point to its furthest neighbor; the resulting 
graph is a forest, whose connected components are called clusters. They then show that the 
clusters can be cyclically ordered around their convex hull, allowing a maximum spanning 
tree to be computed by adding a longest edge between adjacent clusters. (If the input points 
are already in convex position, the algorithm requires only 0(n) time.) Subquadratic-time 
algorithms for higher dimensions are also known, based on efficient methods to com-
pute bichromatic farthest neighbors. [7] give randomized algorithms with expected time 
0(«4/3 iog7/3 „) in m^^ and 0(^2-^^) in ^^ (d ^ 4), where a^ = pj/2]+i+^. for any fixed 
y > 0. They also give a simpler (deterministic) approximation algorithm, giving a tree at 
least (I — e) times optimal, that requires 0(e^^~^^^^n log^ n) time. 

Minimum Steiner spanning trees. A minimum Steiner spanning tree (or simply Steiner 
tree) of 5 is a tree of minimum total length whose nodes are a superset of the given set 
S. Those nodes that are not points of S are generally called Steiner points. It turns out 
that allowing the flexibility of adding Steiner points in order to obtain a potentially shorter 
spanning tree makes the problem much more difficult. In fact, the Steiner tree problem is 
known to be NP-hard [164], even for points in the Euclidean plane. 

The Steiner tree problem is in sharp contrast with the MST problem, which can be 
solved exactly in low-degree polynomial time. It is natural, therefore, to study how closely 
the MST solution approximates the Steiner tree. The supremum, over all point sets, of the 
ratio between the length of the MST and the length of the Steiner tree is known as the 
Steiner ratio;^ it has been studied extensively in the last several years. A simple example 
(the three comers of an equilateral triangle) shows that the Euclidean Steiner ratio in the 
plane can be as high as 2/V3. Gilbert and Pollak [175] conjectured that this ratio can in 
fact never be greater than 2 / \ /3 . This conjecture was finally confirmed by a proof due to 
Du and Hwang [143]. (For the L\ metric, the Steiner ratio in the plane is 3/2, and this is 
tight [214].) 

Approximation algorithms have also been obtained for the Steiner tree problem. First, 
because of the Steiner ratio, the MST algorithms already give a 2/\/3-approximation for 
the Euclidean Steiner tree problem in the plane. However, in a series of results, starting with 
important work by Zelikovsky [392], improved approximation algorithms were obtained, 
for both graph versions and geometric versions of the problem. In the Euclidean plane, the 
approximation factor has been improved to just over 1.1 by Zelikovsky's "relative greedy" 
algorithm [393]. We refer the reader Bern and Eppstein [65] and Du and Hwang [144], for 
excellent surveys on these problems and the recent results. Finally, though, a PTAS was 

Many authors have defined the Steiner ratio to be the reciprocal of what we call the Steiner ratio. We follow 
the notation of Bern and Eppstein [65]. 
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discovered by Arora [35] and Mitchell [289]. This result serves to separate the geomet-
ric versions of the problem from the "metric" version (in an arbitrary graph whose edge 
lengths satisfy the triangle inequality), since the metric version is known to be MAXSNP-
hard (meaning that no PTAS exists, unless P = NP), even if all edge lengths are 1 or 2 [66]. 

A problem that arises in some applications in VLSI is that of computing a minimum-
length rectilinear Steiner tree within a rectilinear polygon P, for a set of n sites on the 
boundary of the polygon. If P is rectilinear convex (any horizontal/vertical line intersects 
it in a connected set), having k vertices, Richards and Salowe [344] solve this problem 
exactly in time 0(k^n). For the same problem, Cheng, Lim, and Wu [103] give an O(n^) 
algorithm, and Cheng and Tang [104] give an 0(J<?n) algorithm. If P is a general rectilinear 
polygon, then an exact solution requiring time 0(J<?n) is given by Cheng [102], using a 
dynamic programming algorithm. 

In the on-line version of the Steiner tree problem, the n points S appear one at a time, and 
the on-line algorithm must decide how to connect each successive point to the previously 
constructed Steiner tree. As in the case of on-line navigation problems, our interest is in 
establishing bounds on the competitive ratio, which is the supremum over all n-point sets S 
of the ratio between the weight of the connected graph constructed by the on-line algorithm 
and the weight of the minimum Steiner tree for S. As shown by Imase and Waxman [223], 
a natural greedy strategy results in an O(logn) competitive ratio, for any metric space: at 
step /, simply join the /th point vi to the connected graph r/_i built so far, by linking vi 
to the point of Ti-\ that is closest to it. In general metric spaces, Imase and Waxman also 
establish a lower bound of Q(\ogn) on the competitive ratio. However, their construction 
does not apply to Euclidean instances. For sets of points in the Euclidean plane (or even 
on a grid), Alon and Azar [16] are able to prove a lower bound of Q(\ogn/\og\ogn) on 
the competitive ratio for the on-line Steiner tree problem, even for randomized on-line 
algorithms. (See also [233] for a survey of on-line network optimization problems.) 

Group Steiner tree problem. In the group Steiner tree problem (also known as the "class 
Steiner problem," the "tree cover problem," or the "one-of-a-set Steiner problem"), we 
are given an undirected graph with edge weights, and a set of k subsets ("groups") of the 
graph's n vertices. The objective is to find a minimum-weight tree having at least one vertex 
from each group. Because of a reduction from set cover, it is NP-hard to approximate the 
group Steiner tree to a factor of o(log^); see [219,241,363,270]. A{k— 1)-approximation 
algorithm is given by Reich and Widmayer [334] and Ihler [218]. (See also Ihler, Re-
ich, and Widmayer [221].) Slavfk [363] gives an O(log^)-approximation algorithm for 
the special case of an edge-weighted tree. Bateman et al. [59] give the first sublinear ap-
proximation factor for general graphs, with an approximation factor of (1 + In | ) • \/k. 
Charikar et al. [88] give a ^^-approximation algorithm that runs in polynomial time, as 
well as an 0(log^^)-approximation algorithm that runs in quasi-polynomial time. Garg, 
Konjevod, and Ravi [168] give a randomized 0(log^ n log ̂ )-approximation algorithm for 
general graphs, which improves to 0(log^ n \ogk) for a class of graphs that includes pla-
nar graphs, as well as graphs induced by a set of points in the Euclidean plane. Most 
recently, Charikar et al. [89] have derandomized the rounding scheme of [168], and ob-
tained a deterministic 0(log^n log A: log log n)-approximation algorithm for general edge-
weighted graphs. 
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Arkin et al. [22] obtained an 0 ( ^ log A:)-approximation algorithm, where K is the max-
imum number of elements in a group; their algorithm is based on repeated applications 
of approximations to the /:-MST problem (Section 7.1). Slavik [363] provides a 2K-
approximation algorithm, using an algorithm based on linear programming relaxations. 
(His approximation factor becomes 3^ /2 for the one-of-a-set TSP problem (Section 7.4), 
matching the Christofides factor of 3/2 when each group has size one; see Section 7.2.) 

An outstanding open question is to determine if a constant-factor approximation algo-
rithm exists for geometric instances of the problem; the hardness result for obtaining an 
o(log/:)-approximation does not apply to point sites in the plane. 

OPEN PROBLEM 21. IS there an 0{\)-approximation algorithm for the group Steiner 
problem on a set of points in the Euclidean planel 

If the groups of points are in fact connected sets (e.g., polygons) in the plane, then an 
O(log^)-approximation algorithm is given by Mata and Mitchell [272]. The special case in 
which the groups are intervals that lie on two parallel lines has a polynomial-time algorithm 
bylhler[220]. 

The group Steiner problem is closely related to the one-of-a-set traveling salesperson 
problem (TSP), and the TSP with neighborhoods, which are discussed below in Section 7.4. 

k-Minimum spanning trees. A k-minimum spanning tree {k-MST) is a minimum-length 
tree that spans some subset oi k ^n points of S. The fact that the particular subset of k 
points is not specified, but must be selected by the algorithm, makes the problem much 
more difficult than the usual MST problem (the case k = n). In fact, the problem is NP-
hard, even for points in the Euclidean plane; see [159,332]. A series of approximation 
results have been obtained for this problem. Ravi et al. [332] give an approximation al-
gorithm with ratio 0{k^^^), which was improved to a factor of 0(\ogk) by Garg and 
Hochbaum [167] and Mata and Mitchell [272]. Eppstein [150] has improved the approxi-
mation ratio to 0(log k/ log log n), and has given general techniques to improve the running 
times (as a function of /i) of existing algorithms; further, he shows that the exact A:-MST 
problem can be solved in time 2^^ '̂"S^^n + 0(nlog«), which is simply 0{n\ogn) for 
fixed k. Blum et al. [73] obtained the first 0(l)-approximation; this was greatly simpli-
fied with the 2V2-approximation of Mitchell [285,290]. Ultimately, a PTAS was given by 
Arora [35] and Mitchell [289]. More details will be given below. 

In general graphs having nonnegative edge weights, the current best approximation algo-
rithm is a 3-approximation by Garg [166], which applies also to the "rooted" case (in which 
the tree is required to include a given node); this has been improved to a 2.5-approximation, 
by Arya and Ramesh [37], if the tree is not "rooted." 

7.2. Traveling salesperson problem 

In the traveling salesperson problem (TSP), we are given a set S of n points ("sites") and 
are asked to find a shortest cycle ("tour") that visits every point of S. (There is a variant 
of the problem in which one wants a shortest path that visits S.) The TSP is a classical 
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problem in combinatorial optimization, and has been studied extensively in many forms, 
including geometric instances; see [60,251,342,230]. The problem is NP-hard, as shown 
by Papadimitriou [316], even for points in the Euclidean plane. 

The TSP has a simple approximation algorithm based on "doubling" the minimum span-
ning tree. Since an optimal tour spans all of the sites (and is converted into a spanning tree 
by deleting any one edge), it must be at least as long as the minimum spanning tree; thus, 
by doubling the spanning tree (and shortcutting in order to obtain a tour visiting each site 
exactly once), we obtain a tour that is at most twice the length of the optimal TSP tour. 
This 2-approximation algorithm has been improved to yield a factor of 1.5 by Christofides; 
instead of doubling the minimum spanning tree, this method augments the tree with a 
minimum-weight matching on the set of odd-degree vertices in the tree. Since the resulting 
graph, after augmentation, is connected and has even degree, it has an Euler cycle, which is 
taken as the approximating tour. The approximation factor is 1.5 since a minimum-weight 
matching is at most 0.5 times the length of an optimal TSP tour. 

For general metric spaces, the 1.5-approximation factor remains the best that is known. 
Until very recently, this was also the best known factor for geometric instances of the TSP. 
However, there are now polynomial-time approximation schemes for geometric versions 
of the TSP; more details are given below. 

Das, Kapoor, and Smid [127] have studied the problem of r-approximating the Eu-
clidean TSP, for large values of r: For 8 < r < n, and for any J > 1, they prove a lower 
bound of Q (n log(n/r)), in the algebraic tree model of computation, and prove that this is 
tight by exhibiting a matching asymptotic upper bound. (If the floor function and random 
access operations are permitted, then they obtain a 6VJn^~^/^-approximation algorithm 
requiring 0(n) time. In this more powerful model, Bern et al. [68] compute a (2 -\- s)-
approximate TSP in the plane in time 0((1/s)n log log n).) 

An important class of heuristics for the TSP are insertion methods, in which sites are 
added one by one to an existing tour: At the /th stage, site vt is inserted by deleting 
that edge (u, w) of Ti^\ (the tour constructed on sites {ui , . . . , f/_i}) which minimizes 
d(u, Vi) -h d(vi, w) — d(u, w), and replacing it with the edges (u, vi) and (f/, w). (The 
initial tour T\ is a self-loop of length zero through site vi.) Various insertion methods 
are possible based on the choice of ordering of the sites for insertion. In a landmark pa-
per, Rosenkrantz, Stearns, and Lewis [348] show that an arbitrary order of insertion of 
the sites gives a (flogn] + 1)-approximation of the TSP, in arbitrary metric spaces. Fur-
ther, they showed that nearest insertion and cheapest insertion lead to a 2-approximation. 
It remained open for some time whether or not an insertion order exists that does not 
achieve a constant-factor approximation. Independently, Azar [48] and Bafna, Kalyana-
sundaram, and Pruhs [50] showed that indeed an insertion order exists that has worst-case 
factor ^ (log n/log log w), even for instances in the Euclidean plane. Furthermore, Azar 
shows that the worst-case factor for random insertion (add the sites in random order) is 
Q (log log n/ log log log n), also for points in the Euclidean plane. One of the best insertion 
methods in practice {^furthest insertion, in which the site furthest from the existing tour is 
added at each stage; for this method, a 2.43 lower bound is known on the approximation 
factor for points in the plane (see Hurkens [213]). 
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7.3. Approximation schemes 

We now briefly survey some recent progress on approximation algorithms for geometric 
network optimization, which has led to polynomial-time approximation schemes (PTAS's) 
for several of these problems, including the TSP, Steiner tree, and /:-MST problems. Many 
of these results are in a current state of flux, being simplified and improved. In order to 
keep abreast of latest developments, we encourage the reader to refer to web pages (and 
personal email) with the authors. 

In early 1996, Arora [35] and Mitchell [289] gave PTAS's for a class of geometric op-
timization problems in the plane, which included the TSP, Steiner tree, and /:-MST. Both 
of these methods were based on methods of approximating an optimal solution with one 
that comes from a special class of networks, and then applying dynamic programming to 
optimize over that class of networks. Both methods led to algorithms with running times 
^0{\/e)^ to obtain a (1 -h e)-approximation. The method of Mitchell [289] was based on 
exactly the same method as he used in earlier work ([285]) to obtain a very simple 2-
approximation for the rectilinear ^-MST; the only change necessary was to observe that if 
one replaced the " 1 " by an "m" in the definition of "guillotine subdivision", then the ap-
proximation factor became (1 + 1/m) instead o f ( H - l / l ) = 2. The method was also based 
on earlier work on "division trees" introduced by Blum, Chalasani, and Vempala [73,290], 
and the guillotine rectangular subdivision methods of Mata and Mitchefl [272]. 

During the last year, there have been several improvements to the original PTAS results. 
Mitchell [287] has reduced the running time of his method to 0(/i^^'^), using a relatively 
minor modification to the earlier method. Arora [36] has obtained a randomized algo-
rithm, based on a clever use of quadtrees and an improved new structure theorem, with 
expected running time that is nearly linear: 0(n log^^^^^^n). Further, Arora's method ap-
plies to higher dimensional versions of the problem, with an expected running time in ^^ 
of 0(n(logn)^^^^^^' ). The randomized algorithms can be derandomized at the cost of an 
extra factor of n^ in the running times. 

In a very recent improvement to these results, Rao and Smith [331] obtain an 0(nlogn) 
time deterministic algorithm for any fixed s and any fixed dimension d. They introduce a 
remarkable generalization of the notion of ^-spanners — the "f-banyan" — which approx-
imates to within factor t the interconnection cost (allowing Steiner points) for subsets of 
sites of any cardinality (not just 2 sites, as in the case of r-spanners). They prove that for 
any fixed ^ > 0 and d ^ I, there exists a (1 + £)-banyan having 0(n) vertices and 0(n) 
edges, computable in 0(n logn) time. 

Trevisan [375] has shown that approximation schemes in JK̂  must have time bounds that 
are doubly exponential in J; he proves that it is NP-hard to obtain a (1 + £)-approximation 
mm^^^''^''\forsome6>0. 

We should remark that, while these results are of considerable theoretical interest, it is 
not yet known if they hold any practical implications. The "constants" hidden in the big-Oh 
notation are quite large (exponential) as functions of (1/^) and d. 
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7.4. TSP variants and related geometric problems 

k-TSP, quota-driven TSP. The ^-TSP, like the ^-MST, takes as input an additional integer 
parameter, k, and requires that one compute a minimum-length tour that visits some subset 
of k sites. Optionally, a site is specified as a root that is required to be visited. For the graph 
version of the /:-TSP, with edge weights obeying triangle inequality, Garg's method [166] 
for the ^-MST yields a 3-approximation for both the rooted and unrooted version; the 
improvement of Arya and Ramesh [37] does not apply to the /:-TSP. 

A related problem is the quota-driven salesperson problem, in which each site has an 
associated integral value, w;/, and a salesperson has a given integer quota, R. The objective 
is to find a shortest possible cycle having the sum of the values for the sites visited is at least 
R. A ^-TSP approximation algorithm gives also applies to this problem, since each site can 
be replicated wi times; the running time is then polynomial in n and R. Another related 
problem is the prize-collecting salesperson problem, as studied by Balas [53] (see also 
[70]). It differs from the quota-driven salesperson problem, in that, in addition to "values" 
Wi, there are non-negative penalties associated with each site, and the objective function 
is now to minimize the sum of the distances traveled plus the sum of the penalties on the 
points not visited, subject to satisfying the quota R. As discussed in [47], an approximation 
algorithm follows from concatenating a cycle obtained for the quota-driven salesperson, 
with the 2-approximation cycle given by the algorithm of Goemans and Williamson [176] 
(which considers the effect of penalties, but does not use the quota constraint). 

Orienteering problem In the orienteering problem (also known as the "bank robber" 
problem, or the "generalized TSP"), the traveling salesperson is allowed to travel at most 
a distance B, and has the objective to maximize the number of sites that he can visit, sub-
ject to the distance constraint. We can distinguish between the "rooted" and "unrooted" 
versions of the problem, depending on whether or not there is a specified site where the 
traveler starts. This resource-constrained optimization problem is, in a sense, dual to the 
problem of minimizing the length of a cycle, subject to meeting a quota on the number 
of sites visited (the ^-TSP) or the sum of the values of the sites visited (the quota-driven 
salesperson problem). 

For the unrooted orienteering problem, Awerbuch et al. [47] give a method for obtaining 
a 2c-approximation algorithm, where c is the approximation factor for the ^-TSP. For ge-
ometric instances, this, together with PTAS results, implies a (2 -f e)-approximation algo-
rithm for the unrooted case. The first results on the rooted case have recently been given by 
Arkin et al. [28], who obtain a 2-approximation for both the rooted and unrooted cases, for 
geometric instances of the problem. Their methods rely on recent results on m-guillotine 
subdivisions. (It remains an open question whether or not the rooted orienteering problem 
has any approximation algorithm in general graphs.) 

MAX TSP The MAX TSP changes the objective in the ordinary TSP from that of mini-
mizing to that of maximizing the length of a tour that visits every point of S. For the MAX 
TSP in graphs, the problem is easily seen (from Hamiltonian cycle) to be NP-complete, 
even if edge lengths obey the triangle inequality; however, a 5/7-approximation algorithm 
has recently been obtained [195,244]. 
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For geometric instances of the MAX TSP, Alon et al. [17] provide a constant-factor 
approximation algorithm for MAX TSP, as well as the problem of computing a longest 
noncrossing tour. Barvinok [58] has obtained a PTAS for the MAX TSP, computing a tour 
whose length is guaranteed to be at least (l — s) times optimal, for any fixed ^ > 0; his 
algorithm applies in any fixed dimension d, for Lp metrics, and more general metrics too. 
Most recently, Barvinok et al. [57] have resolved the complexity of the MAX TSP for 
geometric instances of the problem in metrics defined by a convex polytope, in any fixed 
dimension d; they provide a polynomial-time algorithm to solve the problem exactly in 
time 0(n^~^\ogn), where / is the number of facets defining the polytope. For example, 
for the L\ or LQO metric in the plane, their algorithm requires 0(n^ \ogn) time. Their ap-
proach is to reduce the problem to solving a set of maximum weight Z?-matching problems 
(which are actually transportation problems) on an appropriate (bipartite) graph. This re-
markable result is one of the rare cases in which a TSP problem can be solved exactly 
in polynomial time. The complexity of the Euclidean MAX TSP has been open. Very re-
cently, Fekete [155] was able to prove that the Euclidean MAX TSP is NP-hardness in 
dimension three or greater. The complexity remains open in the Euclidean plane: 

OPEN PROBLEM 22. What is the complexity of the MAX TSP in the Euclidean planel 
What if the tour is required to be noncrossing! 

We should remark, though, that there is an issue about the model of computation here 
since, for both the TSP and MAX TSP, we do not know if the problem lies in NP for the 
Euclidean metric. In particular, for sites having rational coordinates, in order to compare 
the length of a tour to a given rational number, we must evaluate a sum of n square roots 
to sufficient precision; the best known bound on the number of bits of precision in or-
der to guarantee a correct answer is exponential in w. It may be that the Euclidean MAX 
TSP can be solved in polynomial time if we assume that arithmetic operations (including 
square roots and comparisons) can be done in constant time, but the algorithm may require 
exponential time on a standard Turing machine. 

Bottleneck and maximum scatter TSP. In the bottleneck TSP, the goal is to obtain a 
tour minimizing the length of the longest edge in the tour. In graphs, the problem is NP-
complete [251]. If the edge lengths do not satisfy the triangle inequality, then no constant 
factor approximation algorithm can exist, unless P = NP. If the edge lengths do satisfy the 
triangle inequality, then Parker and Rardin [321] have given a 2-approximation algorithm 
and shown that this is best possible (unless P = NP). For the geometric version of the prob-
lem, it is easy to show that the problem is NP-hard, from the fact that Hamiltonian cycle in 
grid graphs is hard [251]. 

In the maximum scatter TSP, the goal is to obtain a tour maximizing the length of 
the shortest edge in the tour. (Such problems arise, e.g., in sequencing rivet operations.) 
Arkin et al. [23] have studied the problem in graphs, showing that the problem is NP-
complete, that the general problem has no polynomial-time constant-factor approximation 
algorithm (unless P = NP), and that if edge lengths obey the triangle inequality there is a 
2-approximation (a tour whose shortest edge has length at least one half that of optimal), 
which is best possible. However, it is not yet known if the geometric version of the prob-
lem is hard. Also, while the factor 2-approximation algorithms are best possible in graphs 



Geometric shortest paths and network optimization 681 

whose edge lengths obey the triangle inequality, the current approximation algorithm re-
sults for bottleneck TSP and maximum scatter TSP do not exploit geometric structure, 
which may lead to an improved factor: 

OPEN PROBLEM 23. What is the complexity of the maximum scatter TSP for points in 
the planel Can one obtain approximation factors better than 2 for geometric instances of 
bottleneck TSP or maximum scatter TSPl 

Minimum latency problem. In the minimum latency problem (MLT), also known as the 
deliveryman problem and the traveling repairman problem, the goal is to find a tour on 
S that minimizes the sum of the "latencies" of all points, where the latency of a point 
p is the length of the tour from a given starting point to the point p. (Thus, the latency 
of a point measures how long a job at that point must wait before being served by the 
repairman/deliveryman that is traveling along the tour.) For the problem in graphs, Blum 
et al. [72] have given a 128-approximation algorithm; this has been improved by Goemans 
and Kleinberg [177], who obtain a factor of 29. By a direct application of Theorem 2 
of [72], which states that a c-approximation for the /c-MST implies an 8c-approximation 
for the MLP, we see that recent PTAS results on the geometric /:-MST imply an (8 + 6:)-
approximation for geometric instances of MLP. It is an interesting open problem to improve 
on this factor: 

OPEN PROBLEM 24. Is there a PTAS for the minimum latency problem on a set of points 
in the Euclidean planel 

Area optimization problems. In the min-area TSP (resp., max-area TSP), the goal is to 
determine a cycle on a given set S of points such that the cycle defines a simple polygon 
of minimum (resp., maximum) area. Fekete [154] (in part together with Pulleyblank [156]) 
has studied these problems extensively. He has shown that both the min-area and max-area 
TSP problems are NP-complete. 

For the max-area TSP, Fekete gives a (1/2)-approximation algorithm, showing how, in 
O(nlogn) time, one can obtain a cycle surrounding area that is at least half that of the 
convex hull of S. Further, he shows that it is NP-complete to decide if one can obtain a 
simple polygon whose area is more than (2/3 -\- s) times that of the convex hull. 

For the min-area TSP, Fekete conjectures that no polynomial-time approximation algo-
rithm exists (unless P = NP); he bases this conjecture on evidence suggested by a poten-
tially related result of his: The min-area disjoint triangle matching problem (to determine 
a minimum-area set of disjoint triangles on 3n points) has no approximation algorithm 
(unless P = NP). 

OPEN PROBLEM 25. Is there a polynomial-time approximation algorithm for the min-
area TSPl 

Angular-metric TSP and angle-restricted tours. In the angular-metric TSP, the goal is to 
determine a cycle on a given set S of points such that the sum of the direction changes at 
each vertex (point of S) is minimized. Aggarwal et al. [9] have proven that this problem is 
NP-complete. 



682 J.S.B. Mitchell 

In the angle-restricted tour (ART) problem, one is given a set A of allowable angles 
and asks if a tour exists on the set S such that every angle between consecutive edges 
of the tour lies in the set A; such a tour is called an A-tour. (This problem is related 
to that of generating a simple polygon, given a sequence of angles; see Culberson and 
Rawlins [125].) Fekete [153] and Fekete and Woeginger [157] have studied the class of 
ART problems, showing that (1) if |5 | 7̂  4 and A = [0, n], then an A-tour always exists for 
any finite 5; (2) if A = {—rr/l, 7r/2}, then, based on results of O'Rourke [309], there exists 
a polynomial-time algorithm to detect if 5 admits an A-tour; (3) if A = {—n/2, n/l, TV}, 
{—7r/2, n] or {n, n/l], then it is NP-complete to decide if S admits an A-tour; and (4) if 
A = (—7r/2,7r/2) (the "acute" case) or A = (—7t, —njl) U (7r/2,7t\ (the "obtuse" case), 
there are arbitrarily large points sets S that do not admit an A-tour (an "acute tour" or an 
"obtuse tour"). Their work suggests a number of open questions, including: 

OPEN PROBLEM 26. What is the computational complexity of deciding whether a point 
set has an acute {or obtuse) tourl 

TSP with neighborhoods. In the TSP with neighborhoods, the goal is to find a shortest 
tour that visits at least one point in each of a set of k (possibly overlapping) neighbor-
hoods. The neighborhoods may be connected sets (e.g., disks or polygons), or possibly 
disconnected sets (e.g., pairs of discrete points, or sets of disjoint polygons). Since it is a 
generalization of TSP, the problem is clearly NP-hard. 

When the neighborhoods are connected and "well behaved" (e.g., disks, or having 
roughly equal-length and parallel diameter segments), Arkin and Hassin [26] have obtained 
0(1)-approximation algorithms, with running time 0{n -h k\ogk), where n is the total 
complexity of the k neighborhoods. Further, they prove a form of "combination lemma" 
that allows one to consider unions of sets of well-behaved neighborhoods; the resulting 
approximation factor is given by the sum of the approximation factors obtained for each 
class individually. For the general case of connected polygonal neighborhoods, Mata and 
Mitchell [272] obtained an O(log/:)-approximation algorithm, based on "guillotine rectan-
gular subdivisions," with time bound 0{n^). Gudmundsson and Levcopoulos [184] have 
recently obtained a faster method, which, for any fixed ^ > 0, is guaranteed to perform 
at least one of the following two tasks (although one does not know in advance which 
one will be accomplished): (1) it outputs in time 0{n -f k log/:) a tour with length at most 
0(\ogk) times optimal; or (2) it outputs a tour with length at most (1 + £) times optimal, 
in time 0{n^) (if 6: < 3) or 0{n^\ogn) (if s > 3). However, no polynomial-time method 
guaranteeing a constant factor approximation is known for general neighborhoods. 

If the neighborhoods are disconnected, then the problem seems to be even more diffi-
cult. The problem then is called the "one-of-a-set TSP" or the "group TSP," referring to 
the fact that the tour is required only to visit one point from each set (group). It has also 
been called the errand scheduling problem (see Slavik [364]), since it models the prob-
lem of finding the best order in which to perform a set of errands, each of which can be 
performed at some subset of the nodes of an edge-weighted graph. The one-of-a-set TSP 
in graphs generalizes both the set cover problem and the TSP. It is a special case of the 
"traveling purchaser problem" [307], in which a traveler is required to purchase each item 
on a shopping list, by visiting an appropriate subset of sites, in hopes of minimizing the 
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total cost of travel plus the amount paid for the items; each site has a given inventory of 
items, and the prices of items vary from site to site. Polylogarithmic approximation algo-
rithms follow from the results known on the closely related "group Steiner tree" problem 
(Section 7.1). Further, since the problem generalizes set cover, we cannot hope for a better 
approximation ratio than 6)(log/:) in general graphs ([270]). However, for sets of points 
in the plane, no reduction from set cover is known; it is possible that there is a constant-
factor approximation algorithm for general discrete sets of points in the plane. We note 
that a constant-factor approximation algorithm for the group Steiner tree problem implies 
a constant-factor approximation for the one-of-a-set TSP (just by doubling the Steiner tree 
to obtain a tour). 

OPEN PROBLEM 27. Does the TSP with (connected) neighborhoods problem have a 
polynomial-time O(I)-approximation algorithm! What if the neighborhoods are not con-
nected sets {e.g., if the neighborhoods are discrete sets of points)! 

Lawnmowing and milling. In the lawnmowing problem, the goal is to find a shortest cycle 
(or path) for the motion of a disk (representing a "lawnmower") such that every point of 
a given (possibly disconnected) region R is covered by the disk at some position of the 
disk. It is easy to see that the problem is NP-hard, in general; R may be a set of n well 
separated points, making the problem that of a TSP with disjoint circular neighborhoods. 
However, Arkin, Fekete, and Mitchell [24,25] have shown that the problem is NP-hard, 
even if R is simply connected (e.g., a simple polygon). Their proof also applies to the 
milling problem, which adds the constraint that the cutter stay within R, in a. multiply-
connected region. What is not yet known, though, is if the milling problem is hard when R 
is simply connected: 

OPEN PROBLEM 28. Is the milling problem NF-hardfor a region R that is simply con-
nected! 

A recent result that is potentially related to this question is that of Umans and 
Lenhart [376], who have shown that one can determine Hamiltonicity of a "solid grid 
graph" (a grid graph induced by the points that lie inside a simply connected region) in 
polynomial time. 

Approximation algorithms for the lawnmowing problem allow one to get within a con-
stant factor of optimal [24,25,224]; the best current factor is (3 -h ^), based on the algorithm 
of Arkin, Fekete, and Mitchell [25], together with recent PTAS results for TSP They also 
give a 2.5-approximation algorithm for the milling problem; the approximation factor be-
comes 11/5 if /? is a rectilinear simple polygon. 

The model of the milling problem as discussed above is oversimplified. In practice, there 
are several other issues in the milling process to consider; these are discussed in detail in 
the book of Held [196], who introduced computational geometry techniques to the pocket 
machining problem. (See also the survey by Guyder [188] and two recent special issues 
(March'94 and November'94) of the journal CAD devoted to machining.) It is important in 
practice to avoid re-milling a region where the cutter has already been, as this can damage 
the finished surface; the model of [24,25] allows for re-milling. The most common strate-
gies used in practice are based on contour-parallel ("window-pane") milling, in which the 
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cutter follows the boundary of the region and spirals inward, and zig-zag ("axis-parallel," 
"staircase") milling, in which the cutter sweeps out strips parallel to the coordinate axis. 
It both of these methods, if one is to avoid re-milling portions of the pocket, the cutting 
tool must be retracted and moved (rapidly) to a new location, where it can then resume 
cutting. In the case of zig-zag milling, Arkin, Held, and Smith [27] have considered the 
problem of finding tool paths that minimize the number of tool retractions. They prove that 
the problem is NP-hard in general, but give constant-factor approximation algorithms that 
are shown experimentally to perform well in practice. 

Watchman route problem. In the watchman route (path) problem, the goal is to find a 
shortest possible cycle (path) within a polygonal domain P, such that every point of P is 
seen by some point of the cycle. This problem is seen to be closely related to the TSP with 
neighborhoods, since it can be thought of as a shortest-path/cycle problem in which we 
have the constraint that the path/cycle must visit the visibility region associated with each 
point of the domain. 

The watchman route problem was first investigated by Chin and Ntafos [111,113], who 
give an 0(n)-time algorithm if P is a rectilinear simple polygon, and an 0(n'^)-time al-
gorithm if P is a simple polygon and we are given an anchor ("door") point, /?, on the 
boundary of P, through which the cycle is required to go. Their algorithms are based on 
identifying a set of essential cuts, which are directed line segment chords (extensions of 
selected polygon edges) that any watchman route must visit, in the order that they appear 
about the polygon. Further, a locally shortest watchman route that visits an essential cut 
without crossing it must do so either at a point where the cut intersects another cut, or at 
a point where the route "reflects" on the cut, with equal incidence and reflection angles. 
Given a subsequence of "active" essential cuts, where reflection is to occur, the polygon 
can be "unrolled," resulting in a shortest path problem in a simple polygon, which is readily 
solved in hnear time (Section 2). These facts allow Chin and Ntafos to devise an incremen-
tal "adjustment" algorithm for searching for the combinatorial type of a shortest watchman 
route, anchored at p. The complexity for this anchored version of the problem has been 
improved to 0{n^) [373] and then to 0(n^) [370], using a divide-and-conquer strategy. 
The requirement that there be an anchor point was removed by Carlsson, Jonsson, and 
Nilsson [85] (see the updated and corrected version in [301]), resulting in an 0(n^)-time 
algorithm for an unrestricted ("floating") shortest watchman cycle. (We should point out 
that there are some recent investigations ([189,372]) into omit errors (and how to correct 
them) in the "adjustment" algorithms used in some of the watchman route algorithms.) 

In the case of a polygonal domain P with holes, the problem is easily seen to be NP-hard 
(from Euclidean TSP) [111]. Mata and Mitchell [272] obtain an O(log«)-approximation 
algorithm, for a version that considers "rectilinear visibility," using dynamic programming 
on a class of guillotine rectangular subdivisions. In light of the recent PTAS results for 
TSP, based on guillotine subdivisions and their generalizations, it is interesting to ask if 
improved approximation results can now be improved: 

OPEN PROBLEM 29. Does the watchman route problem in a polygonal domain have a 
polynomial-time 0{\)-approximation algorithml Is there a PTASl 
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For the watchman path problem in a simple polygon, Carlsson and Jonsson [84] have 
obtained the first polynomial-time (0(n^^)) algorithm. The problem turns out to be consid-
erably more difficult than the cycle version, since one must determine the order in which 
the path visits essential cuts. An interesting problem that is solved as part of this work is 
the shortest postman path problem, in which the goal is to find a shortest path that visits 
all vertices of P; [84] give an 0(n^) algorithm. 

The robber route problem [303] requires that the watchman see only a specified subset 
of the edges of P, while avoiding to be seen from a set of point "threats" within P\ see 
also Gewali et al. [169]. 

There have been several other results on generalizations and variations of the watch-
man route problem, including watchman routes in "weak visibility" polygons [246], in 
"spiral" polygons [302], external to a simple polygon [305], external to two convex poly-
gons [171], under limited visibility distance [304], and for multiple watchmen [86,297, 
301] (in restricted simple polygons). Also, minimum-link watchman tours have been stud-
ied. In simple polygons, Alsuwaiyel and Lee [18,19] show that the problem is NP-hard 
and give an 0(1)-approximation algorithm. In polygonal domains, Arkin, Mitchell, and 
Piatko [29] show the problem to be NP-hard (even for convex obstacles) and give an 
O (log n)-approximation algorithm. We know of no results yet, though, for approximating 
watchman routes in three dimensions: 

OPEN PROBLEM 30. Give an efficient approximation algorithm for watchman routes in 
polyhedral domains in 3-space. 

Zookeeper's problem. The zookeeper's problem is to find a shortest cycle in a simple 
polygon P (the zoo), through a given vertex v (the zookeeper's chair), such that the cycle 
visits every one of a set of k disjoint convex polygons {cages), each sharing an edge with P, 
without entering any of the cages. 

This problem is a special case of the TSP with neighborhoods problem, constrained 
within a simple polygon. The simple polygon constraint helps to simplify the problem; 
it implies that an optimal cycle must visit the cages in the same order that they appear 
on the boundary of P (otherwise, the cycle would self-intersect and could be shortened). 
This observation, together with the reflection principle, allowed Chin and Ntafos [112] to 
solve the problem with a procedure that searches for the combinatorial type (sequence of 
cage edges) of an optimal cycle by incremental updates, at each stage computing a shortest 
path in a 2-manifold that results from "unfolding" a sequence of cage edges (according 
to the reflection principle). By showing that there are only Oin) updates, and each can be 
done in time 0(n), they achieve an 0(n^)-time algorithm. Hershberger and Snoeyink [204] 
have shown how each update can be done in time O(log^n), resulting in overall time 
O(nlog^n), using the structure of hourglasses in simple polygons, and the shortest path 
query data structures of [185,200] 

OPEN PROBLEM 31. Can the zookeeperproblem be solved in time 0(n)l 

The related safari route problem, introduced by Ntafos [304], requires that the cycle 
visit all of the cages, but it allows travel through a "cage." If the cages are not attached to 
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the boundary of a simple polygon P, then we get the (NP-hard) TSP with neighborhoods. 
However, for cages that are attached to P, Ntafos [304] obtains an Oikri^) algorithm. Tan 
and Hirata [371] improve the time bound to O(n^), while removing the constraint that the 
cycle pass through a given point v on the boundary of P. 

Aquarium keeper's problem. The aquarium keeper's problem is to find a shortest cycle in 
a simple polygon P (the aquarium), such that the cycle touches every edge of P. Thus, the 
aquarium keeper's problem is a special case of the zookeeper's problem (and thus of the 
TSP with neighborhoods) in which there is a "cage" erected on every edge of P, and each 
cage consists simply of the edge itself. This extra structure allows an 0(«)-time solution, 
as shown by Czyzowicz et al. [126], since there is no issue of obtaining the combinatorial 
type of the path. Carlsson and Jonsson [84] solve the path version of the problem in time 
O(w^); there is added complexity in searching for a shortest path, since we do not know 
the order in which a path must visit the edges of P. 
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