QQMV\MM?
@ P&S cap 7 £2.2
@ ch,H(,O,S C@F-Z



Intersection Problems

e Determine pairs of intersecting objects?

e Complex shapes formed by boolean
operations: intersect, union, diff.

e (Collision detection in robotics and motion
planning.

e Visibility, occlusion, rendering in graphics.

e Map overlay in GISs: e.g. road networks
on county maps.

Subhash Suri UC Santa Barbara



PNQ




S —— —— . ——— N — —

id

trapezoi
|

polygon forms a

Inside a slab each

g =N

-00000000000000 . * e
OO *

et e e et e et et
O OO0
NI I I I I I
DOOOOOOOT A

-
»
~







Line Segment Intersection

~

e The most basic problem: intersections
among line segments in R2.

™~

e General enough to capture polygons, 2D
projections of 3D scenes.

e Naive algorithm: Check all pairs. O(n?).

e If k intersections, then ideal will be
O(nlogn + k) time.

e We will describe a O((n + k)logn) solution.
Also introduce a new technique : plane
sweep.

Subhash Suri UC Santa Barbara



Primitive Operation

e How to decide if two line segments ab and
cd intersect?

e Write the equations of each segment in
parametric form:

p(s) = (1—s)a+ sb for 0 <s<1
q(t) = (1—t)c+ sd for 0 <t <1
e An intersection occurs if for some values
of s,t, we get p(s) = q(1).
e In terms of =,y , we get:
(1 —5s)ag +sby = (1 —1t)cy +td,
(1—-s)a, +sb, = (1—t)c,+td,

e Solve for s,t and see if they lie in [0, 1].

Subhash Suri UC Santa Barbara



Plane Sweep Algorithm

e Input S = {s1,9,...,s,}; each segment
given by pair of endpoints.

e Report all intersecting segment pairs.

¢ We move an imaginary vertical line from
left to right.

e Maintain vertical order of segments
intersecting the sweep line; order changes
only at discrete times.

e Intersections among S inferred by looking
at localized information along sweep line.

Subhash Suri UC Santa Barbara



Simplifying Assumptions

e In order to avoid dealing with technical
special cases, which obscure the main
ideas, we assume:

1. No segment is vertical.

2. Any two segments intersect in at most
one point.

3. No three or more lines intersect in a
common point.

//

Subhash Suri UC Santa Barbara



Data Structures

e Sweep Line Status: Maintain the
segments intersecting the sweep line / in
sorted order, from top to bottom.

1. Balanced binary tree.

2. Insert, delete, search in O(logn).

3. The choice of the key? The y-position of

s N changes as ¢/ moves.

4. Use “variable” key, the equation of the
line: y =mx + c.

. Plugging in x fixes y coordinate.

. All order-comparisons among segments
done for a fixed x-position of /.

Sy Ot

Subhash Suri UC Santa Barbara



Data Structures

e Event Queue: Events represent instants
when sweep line order changes.

1. While the y-coordinates of segments
along ¢/ change continuously, their
ordering changes only at discrete steps.

2. Order changes when a segment begins, a
segment ends, or two segments
intersect.

3. Segments begin/end events known in
advance; the intersection events
generated dynamically.

4. Maintain events in zr-sorted order, in a
balanced binary tree.

Subhash Suri UC Santa Barbara



What’s the Idea?

e The algorithm requires knowing the
intersection points (for event queue).

e But that’s whole problem we are trying to
solve!

¢ We don’t need all intersections up front;
only before the sweep line reaches them.

e Plane sweep’s idea is to maintain only the
“most immediate” intersections.

e At any time, the Event Queue schedules
only those intersections that are between
two neighboring segments in the sweep

line order.
Subhash Suri UC Santa Barbara




Algorithm

1. Initialize Event Queue with endpoints of
S, in sorted order.

2. While queue non-empty, extract the next
event. Three cases:

3. [Left endpoint of a segment s;]

e Insert s; into sweep line status tree;

o If s; intersects its above or below
neighbors, add those intersections to
Event Queue.

4. [Right endpoint of a segment s;]

e Delete s; from sweep line status tree;
e If s;’s neighbors intersect, add that
intersection to Event Queue.

5. [Intersection of s; and s,]

e Swap the order of s; and s;;

e Delete intersection events involving s;
and s; from the Event Queue.

e Possibly add new intersection events
between s;,s; and their new neighbors.

Subhash Suri UC Santa Barbara



Illustration

Subhash Suri UC Santa Barbara



Illustration

Sweep Line Status Sweep Line Status

SN eNogiaN

Subhash Suri UC Santa Barbara



Correctness

1. Algorithm only checks intersections
between segments that are adjacent along
sweep line at some point.

2. The algorithm obviously doesn’t report
false intersections.

3. But can it miss intersections?

4. No. If segments s; and s; intersect at
point p, then s; and s; are neighbors just
before the sweep line reaches p.

Subhash Suri UC Santa Barbara



e No three or more segments intersect at
one point, so only s; and s; intersect at p.

e For sweep line placed just before p, there
cannot be any segment between s; and s;;
otherwise, there must be another event
before p.

e Let ¢ be the event before p. Then, the
order of segments along sweep line after ¢
and before p must remain unchanged.

e Thus, s; and s; are adjacent in the sweep

line status tree when p is processed.
Subhash Suri UC Santa Barbara




Complexity

e Number of events processed is 2n + k.

¢ Number of events scheduled and
descheduled can be larger.

e But each intersection processing creates
at most 2 new events, and deletes at most
2 old events, so O(k) events handled.

e Handling an event require O(1) changes to
the status tree, and O(1) insert/delets in
Event Queue.

e Thus, processing cost per event is O(logn).

e Time complexity is O((n + k) log(n + k)).

Subhash Suri UC Santa Barbara



