Referências:

(1) P&S cap. 7. §7.2...

(2) dB, vK, O, S cap. 2

Intersection Problems

• Determine pairs of intersecting objects?

- Complex shapes formed by boolean operations: intersect, union, diff.
- Collision detection in robotics and motion planning.
- Visibility, occlusion, rendering in graphics.
- Map overlay in GISs: e.g. road networks on county maps.

Line Segment Intersection

- The most basic problem: intersections among line segments in \mathbb{R}^2 .
- General enough to capture polygons, 2D projections of 3D scenes.
- Naive algorithm: Check all pairs. $O(n^2)$.
- If k intersections, then ideal will be $O(n \log n + k)$ time.
- We will describe a $O((n+k)\log n)$ solution. Also introduce a new technique : plane sweep.

Primitive Operation

- How to decide if two line segments ab and cd intersect?
- Write the equations of each segment in parametric form:

$$p(s) = (1-s)a + sb$$
 for $0 \le s \le 1$
 $q(t) = (1-t)c + sd$ for $0 \le t \le 1$

- An intersection occurs if for some values of s, t, we get p(s) = q(t).
- In terms of x, y, we get:

$$(1-s)a_x + sb_x = (1-t)c_x + td_x$$
$$(1-s)a_y + sb_y = (1-t)c_y + td_y$$

• Solve for s, t and see if they lie in [0, 1].

Plane Sweep Algorithm

- Input $S = \{s_1, s_2, \dots, s_n\}$; each segment given by pair of endpoints.
- Report all intersecting segment pairs.
- We move an imaginary vertical line from left to right.
- Maintain vertical order of segments intersecting the sweep line; order changes only at discrete times.

• Intersections among S inferred by looking at localized information along sweep line.

Simplifying Assumptions

- In order to avoid dealing with technical special cases, which obscure the main ideas, we assume:
 - 1. No segment is vertical.
 - 2. Any two segments intersect in at most one point.
 - 3. No three or more lines intersect in a common point.

Data Structures

- Sweep Line Status: Maintain the segments intersecting the sweep line ℓ in sorted order, from top to bottom.
 - 1. Balanced binary tree.
 - **2.** Insert, delete, search in $O(\log n)$.
 - 3. The choice of the key? The y-position of $s \cap \ell$ changes as ℓ moves.
 - 4. Use "variable" key, the equation of the line: y = mx + c.
 - 5. Plugging in x fixes y coordinate.
 - 6. All order-comparisons among segments done for a fixed x-position of ℓ .

Data Structures

- Event Queue: Events represent instants when sweep line order changes.
 - 1. While the *y*-coordinates of segments along ℓ change continuously, their ordering changes only at discrete steps.

- 2. Order changes when a segment begins, a segment ends, or two segments intersect.
- 3. Segments begin/end events known in advance; the intersection events generated dynamically.
- 4. Maintain events in *x*-sorted order, in a balanced binary tree.

What's the Idea?

- The algorithm requires knowing the intersection points (for event queue).
- But that's whole problem we are trying to solve!
- We don't need all intersections up front; only before the sweep line reaches them.

- Plane sweep's idea is to maintain only the "most immediate" intersections.
- At any time, the Event Queue schedules only those intersections that are between two neighboring segments in the sweep line order.

Algorithm

- 1. Initialize Event Queue with endpoints of S, in sorted order.
- 2. While queue non-empty, extract the next event. Three cases:
- 3. [Left endpoint of a segment s_i]
 - Insert s_i into sweep line status tree;
 - If s_i intersects its above or below neighbors, add those intersections to Event Queue.
- 4. [Right endpoint of a segment s_i]
 - Delete s_i from sweep line status tree;
 - If s_i 's neighbors intersect, add that intersection to Event Queue.
- 5. [Intersection of s_i and s_j]
 - Swap the order of s_i and s_j ;
 - Delete intersection events involving s_i and s_j from the Event Queue.
 - Possibly add new intersection events between s_i, s_j and their new neighbors.

Illustration

Illustration

d
c
b
Sweep Line Status

b Sweep Line Status c

Correctness

- 1. Algorithm only checks intersections between segments that are adjacent along sweep line at some point.
- 2. The algorithm obviously doesn't report false intersections.
- 3. But can it miss intersections?
- 4. No. If segments s_i and s_j intersect at point p, then s_i and s_j are neighbors just before the sweep line reaches p.

Proof

- No three or more segments intersect at one point, so only s_i and s_j intersect at p.
- For sweep line placed just before p, there cannot be any segment between s_i and s_j ; otherwise, there must be another event before p.
- Let q be the event before p. Then, the order of segments along sweep line after q and before p must remain unchanged.
- Thus, s_i and s_j are adjacent in the sweep line status tree when p is processed.

Complexity

- Number of events processed is 2n + k.
- Number of events scheduled and descheduled can be larger.
- But each intersection processing creates at most 2 new events, and deletes at most 2 old events, so O(k) events handled.
- Handling an event require O(1) changes to the status tree, and O(1) insert/delets in Event Queue.
- Thus, processing cost per event is $O(\log n)$.
- Time complexity is $O((n+k)\log(n+k))$.