Art Gallery Theorem

- The floor plan of an art gallery modeled as a simple polygon with *n* vertices.
- How many guards needed to see the whole room?
- Each guard is stationed at a fixed point, has 360° vision, and cannot see through the walls.

• Story: Problem posed to Vasek Chvatal by Victor Klee at a math conference in 1973. Chvatal solved it quickly with a complicated proof, which has since been simplified significantly using triangulation.

Formulation

- Visibility: p, q visible if $pq \in P$.
- y is visible from x and z. But x and z not visible to each other.

- \bullet g(P) = min. number of guards to see P
- $\bullet \ g(n) = \max_{|P|=n} g(P)$
- Art Gallery Theorem asks for bounds on function g(n): what is the smallest g(n) that always works for any n-gon?

Trying it Out

1. For n = 3, 4, 5, we can check that g(n) = 1.

2. Is there a general formula in terms of n?

Pathological Cases

- 1. Fig. on left shows that seeing the boundary \neq seeing the whole interior!
- 2. Even putting guards at every other vertex is not sufficient.
- 3. Fig. on right shows that putting guards on vertices alone might not give the best solution.

Art Gallery Theorem

Theorem: $g(n) = \lfloor n/3 \rfloor$

- 1. Every n-gon can be guarded with $\lfloor n/3 \rfloor$ vertex guards.
- 2. Some n-gons require at least $\lfloor n/3 \rfloor$ (arbitrary) guards.

Necessity Construction

Fisk's Proof

Lemma: Triangulation graph can be 3-colored.

- P plus triangulation is a planar graph.
- 3-coloring means vertices can be labeled 1,2, or 3 so that no edge or diagonal has both endpoints with same label.
- Proof by Induction:
 - 1. Remove an ear.
 - 2. Inductively 3-color the rest.
 - 3. Put ear back, coloring new vertex with the label not used by the boundary diagonal.

Proof

- Triangulate P. 3-color it.
- Least frequent color appears at most $\lfloor n/3 \rfloor$ times.
- Place guards at this color positions—a triangle has all 3 colors, so seen by a gaurd.
- In example: Colors 1, 2, 3 appear 9, 8 and 7 times, resp. So, color 3 works.