Representation of Conics in the Oriented Projective Plane*

GUILHERME A. PINTO AND PEDRO J. DE REZENDE

Instituto de Computacao
Universidade Estadual de Campinas, C.P. 6176
13083-970 Campinas, SP, Brasil

{guialbu,rezende}@dcc.unicamp.br

Abstract.

We present a geometric definition of conic sections in the oriented projective plane

and describe some of their nice properties. This definition leads to a very simple and unambiguous
representation for affine conics and conic arcs. A conic (of any type) is represented by the homo-
geneous coordinates of its foci and one point on it, hence, the metric plays a major role in this
case as opposed to the traditional algebraic characterization of conics as second degree polynomial
curves. This representation is particularly suitable for the implementation of geometric solutions of
problems that involve the concept of distance. Furthermore, we discuss point location with respect
to conic curves which constitutes an important elementary operation for the solution of many such

problems.

1 Introduction

We find that among the various concerns in the pro-
cess of designing data structures for representing ge-
ometric objects and the algorithms for manipulat-
ing them are dealing with numerical precision, var-
ious special cases, including ambiguity, and invari-
ance under affine transformations. When the objects
dealt with are limited to points, lines, line segments,
and other equally simple ones, various techniques are
available that can handle these difficulties either in-
dividually or globally. The situation is considerably
more complicated for objects whose boundaries are
described by curves. The coordinates of the end-
points are obviously not enough to represent an arc of
a curve and additional information about the shape
and position of the object is needed and in this case
the literature is not so rich.

We concentrate here on the study of conics and
conic arcs since these appear naturally in several ap-
plications including a large number of algorithms in
computational geometry whose inputs are just points
and straight line segments but whose output some-
times include all different types of conics.

Clearly, there are many ways to represent con-
ics and conic arcs and the choice depends on the
application. For instance, in one situation in com-
puter graphics, I. Herman [1] presents a representa-
tion suitable for viewing pipelines, where the conics
are described by a set of characteristic points and
the goal is to achieve first affine and then projective
invariance in order to reduce the cost of the pipeline
process. From the characteristic points it is shown
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how to obtain a parametric equation so that arcs
can be described by a subinterval of the parameter
domain. Perhaps because of the requirements, each
class of affine conics (i.e., ellipses, parabolas, and hy-
perbolas) has a different representation.

For geometric modeling applications, in [5] Farin
shows how to represent conic arcs as NURBS curves.
This representation is unique for all classes of con-
ics, and is affine invariant. This is, in fact, a gen-
eralization of the known de Casteljau procedure to
construct parabolic arcs.

In computational geometry, as far as we were
able to determine, the work of M. Held [2] is the only
one involving conics that discusses how to represent
them analytically. In the problem of constructing
offsets of boundaries formed by line segments and
circular arcs, the conic arcs appear in the diagram
used as a step to construct the offsets. Held uses
a representation that is itself a parameterization of
the conic arc. The parameter is the distance from
the boundary. The representation is convenient for
building offsets but is too specific to be used as a
protocol in other applications.

Our Contribution. In this paper, we address the
problem of representing conics and conic arcs in the
context of computational geometry and propose a
novel and simple representation which is particularly
suitable for implementation of geometric algorithms.
The majority of the problems in this field involves
only straight objects. Nevertheless, there are algo-
rithms whose output are planar subdivisions contain-
ing conic arcs. (We briefly review some of these algo-



rithms in section 5.) Since these planar subdivisions
are usually needed to allow for fast point location,
we also show how to use the proposed representation
for testing a point against the conic.

In general, text books on conic sections, such as
[7], give more emphasis on the algebraic characteriza-
tion than on the geometric one. Therefore, an ellipse
is defined as a second degree equation whose coeffi-
cients satisfy certain constraints, instead of a set of
points whose sum of distances from two given foci is
constant. This is the right thing to do, as even in
geometric computations we need a consistent math-
ematical semantic more than geometric intuition [3,
p. 153]. However, as will be shown in section 4 this
geometric definition, together with oriented projec-
tive geometry, leads to a simple representation that
unifies all classes of affine conics.

The oriented projective plane T? [3, 4] is the
underlying space we use to emulate Euclidean plane
and gain freedom to reason about conics in a simple
way. This embedding has been called the two-sided
Euclidean plane. For the convenience of the reader,
we briefly review, in the next section, some of the ba-
sic concepts. Section 3 defines conics in T?. Section 4
presents the proposed representation for conics and
conic arcs and discusses its use. Lastly, section 5 de-
scribes the occurrence and the use of conics in planar
computational geometry.

2 Oriented Projective Geometry

Oriented projective geometry [3, 4] is a geometric
model intended to serve as a better framework for
geometric computations than the Euclidean or the
classical projective geometries. It has the advan-
tages of the projective space regarding the unifica-
tion of concepts and simplification of computations,
and furthermore allows the definition of orientation
and convexity. These are among the most important
concepts in which geometric computations are based
on. We will present the ideas, and some notation, for
the planar case. We assume that the reader is some-
what familiar with the use of (signed or unsigned)
homogeneous coordinates.

In the oriented projective plane T? a point with
homogeneous coordinates [z,y, w] is not identical to
[-z, —y, —w]. They are called antipodal points. The
antipode of point p is denoted by —p. While the
classical projective plane P? is the Euclidean plane
R? plus one line at infinity, T? is composed by two
copies of R? plus one line at infinity. The set of points
with w > 0 is called the front range (or side) of the
plane, and those with w < 0 are the back range.
The set of points with w = 0 (except for the invalid
triplet [0,0,0]), which are referred to as improper

points, is the line Q at infinity. There are (at least)
two geometric models for T?: the flat model, with
the usual mapping [z,y,w] — (z/w,y/w) to Carte-
sian coordinates, and the spherical model with the
mapping [z,y,w] = (z,y,w)/\/2? + y? + w?. These
two models are related by central projection (see
Fig. 1(a)). Note that, in the flat model, antipodal
points are coincident but can be thought of as being
in opposite sides of the plane.

(b)

spherical v
model '

Figure 1: Models and conventions for T?

We represent elements in the front range by solid
dots and lines, and open dots and dashed lines for the
back range (see Fig. 1(b)).

The topology of T? is determined by the spheri-
cal model. This makes T? closely related to spherical
geometry [9]. This relation will be important in sec-
tion 3.

Lines and Segments. Lines in T? have the same
homogeneous equation of lines in P?, namely, ax +
by + cw = 0. If we multiply this equation by —1 we
get the oppositely oriented line —ax — by — cw = 0,
which is composed by the same set of points. In
the spherical model, lines are great circles on the
sphere (see Fig. 2(b)). It should be noted that a line
properly divides T? into two subspaces, unlike P2, so
that we can speak about the “left” and “right” sides
of a line based on its orientation.

The segment between two points in T? is defined
as the set of points of the shortest arc of the great
circle that contains the points. Note that, in the flat
model, segments with endpoints in different sides of
the plane have an unusual appearance (see segment
ab in Fig. 1(b)).

The Join and Meet Operations. The join oper-
ation corresponds to the statement “the line defined
by two points” and is denoted by the symbol V. Fig-
ure 2(a) shows the join a Vb which results in the line
oriented from a to b. This figure also shows the left
side of the resulting line, in the flat model. Note that



in T? two lines pass over two non-coincident points
a and b, one oriented from a to b and the other from
b to a.

(b)

Figure 2: The join and meet operations

The meet operation corresponds to the state-
ment “the point where two lines cross” and is de-
noted by the symbol A. In T? there are two (antipo-
dal) points where two lines cross. Figure 2(b) shows
how to decide which point is the meet of two given
lines, considering the order that they are operated.
If m = rAs, and we move an arrow along r, agreeing
with its orientation, m is the point where this arrow
goes from the left to the right side of s.

Relative Position of Points and Lines. If we
substitute the coordinates of a point p in the equa-
tion of a line r, we can decide in which side of r, p
lies by looking at the resulting sign. This operation
is denoted by the symbol ¢:

to the left of +1
pis on rifpor = 0
to the right of -1

2.1 Two-Sided Euclidean Plane

Problems in computational geometry are usually de-
fined in R?, so that their solutions depend on perpen-
dicularity, distance, and other Euclidean concepts.
All these concepts can be defined in T? if we assign
a special meaning to the line at infinity Q. Thus,
we use T? to emulate R? [3, chapter 17]. This has
been called the two-sided Euclidean plane. We be-
lieve that reasoning in this space can help the devel-
opment and implementation of geometric algorithms
in R%.

Perpendicularity. Let the line  be oriented so
that the front range is its left side. Consider a proper
line r. We say that dir(r) = 7 A Q, that is, the
direction of r is the point where r crosses {2 from the
front to the back range of the plane.

We say that two points a and b of T? are polar
to each other when their coordinates satisty a,b, +
ayby + ayb, = 0, that is, in the spherical model,
their corresponding vectors (z,y, w)/v/2? + y? + w?
are orthogonal. We call norm(r) the improper point
polar to dir(r) and contained in the left side of r.

Two lines r and s are said to be perpendicular if
dir(r) = norm(s) or dir(s) = norm(r) (see Fig. 3(b)).

Two-Sided Distance. The distance between two
points may be defined straight from the usual Carte-
sian distance:

a b\ 2 a b, \ 2
dist(a.b) = «[ [ &= _ o= Ay Y\
ist(a, ) <aw bw> * (aw bw)

However, this formula does not distinguish antipodal
points. We shall use the following signed expression:

\/(awbw — bay)? + (ayby — byay)?

dist(a,b) = =

The latter formula yields negative numerical values
when used with points in different sides of the plane,
and positive values for points in the same side. Note
that dist(a,b) = dist(b,a), and that dist(—a,b) =
dist(a, —b) = —dist(a, b). This unexpected behavior
will be exploited in sections 3 and 4 where it will
appear to be very convenient.

2.2 Relative Distance Between Proper and
Improper Points

In T? we can define without ambiguity the segment
between a proper and an improper point, that is,
what would be called a ray in R2. This allows the
extension, by projective tools, of a very intuitive con-
cept of R?: if we sweep the plane from infinity with
a straight line, in a given direction, and the line en-
counters point b before point a, we can say that b is
closer to infinity in that direction than a is.

(a)

Figure 3: Relative distance from improper points



Definition 1 Let a and b be two proper points and
¢ an improper point (Fig. 3(a). Note that segments
ac and be are parallel). Let 1, = aV c and v} =
a V norm(r,). We shall say that:

a |. b . 1 +1
{ b }zs closer tocthan{ a }zf bory = { 1 }

and that a is as close to c as b if bor: = 0.

We can also determine how much closer they
are, simply by computing §,(b,71), where §, is the
usual Euclidean distance from a point to a line. This
concept is called relative distance between proper and
improper points. Even though it may seem strange
to compare dist(a, ¢) and dist(b, ¢) since both are in-
finite (and thus, might be regarded as equal), the
comparison leads to no contradiction when we con-
sider improper points in algorithms. This concept
will help us establish the definition for conics in the
next section.

3 Conics in Two-Sided Euclidean Plane

The usual relation between R? and P? is the mapping
from Cartesian to homogeneous coordinates. Simi-
larly, for R?> and T?. When transporting formulas
and concepts from R? to T2, the work is usually
very simple: generally, all it takes is to substitute
Cartesian for homogeneous coordinates. When deal-
ing with polynomial equations, we should expect that
when a point satisfies the equation, so will do its an-
tipode. In the case of a straight line, the result of
this algebraic approach matches the geometric defi-
nition for lines given by the axiomatic presentation
of the spherical geometry. However, this is not the
case with conics.

(b)

Figure 4: An algebraic circle in the two-sided plane
and a geometric circle in the spherical geometry

We will first discuss the simpler case of the cir-
cle, and later generalize the discussion to the other
conics.

Consider the circle 2% + y? — 1 = 0. In homo-
geneous coordinates we have z? + y?> — w?> = 0. The

set of points which satisfy this equation has two con-
nected components (Fig. 4(a)), which is an undesir-
able situation. We can not properly define the cen-
ter of this circle unless we identify antipodal points
which would lead us to P? and its unorientable topol-
ogy, which we want to avoid. Instead, we will use the
geometric definition for circles in the spherical geom-
etry [9]. A circle is a set of points whose distance
from a center ¢ equals a radius r (Fig. 4(b)) — note
the explicit reference to distance. This is the same
set of points of the circle centered at —¢ and radius
—r. To distinguish these coincident circles, we can
assign opposite orientations to them. If we move a
point p along a circle in counterclockwise direction,
as seen from the outside of the sphere, the segment
cp rotates counterclockwise around ¢, but —¢p ro-
tates clockwise around —c¢. Finally, we will say that
those two connected components of the algebraic cir-
cle are, actually, antipodal circles, each one with two
possible orientations.

To define the other types of conics we pursue the
same approach. In order to help the reader’s intu-
ition, Fig. 5(a) shows the two connected components
of a hyperbola and Fig. 5(b) shows a pair of parabo-
las (each with two connected components), yw = x>
and (y — 100w)w = (z — 100w)?, which differ by a
translation of [100,100, 1]'. Notice that the parabo-
las are tangent to Q at two antipodal points, [0, 1, 0]
and [0, —1,0], which are the intersections of { with
their focal lines. Later in this section, we will see
how to distinguish between the two connected com-
ponents of these conics.

Figure 5: Algebraic conics in the two-sided plane

In spherical geometry, conics can be geometri-
cally defined as the set of points whose sum of dis-
tances from two given foci is constant [8, chapter
X]. This is the definition for ellipses in R*, and in
fact, sphero-conics “look” like ellipses. They are,
algebraically, the intersection of the sphere with a

TWe used the sphereView visualizer of the GeoPrO envi-
ronment [10] to simulate these conics from the point of view
of this figure.



second degree cone having its vertex in the center of
the sphere. The two foci of the sphero-conic are the
points where the focal lines of the cone intersect the
sphere. The intersection of such cones with planes
are second degree curves, namely affine conics in the
plane. Thus, we see that the images of affine conics
in the spherical model of T2 (see Fig. 5) are, indeed,
sphero-conics.

It is easy to see that the images of the foci of the
affine conic are not the foci of the projected sphero-
conic. Despite this, we can also apply the same defi-
nition with respect to the affine foci in the plane. To
see this, imagine a dynamic scenario with projective
maps. It is known that a parabola may be consid-
ered, in every aspect, as an ellipse with one of its
foci moved to infinity [7, page 202]. In the two-sided
plane we can push this focus beyond infinity and con-
sider the resulting hyperbola as an ellipse with foci
in different sides of the plane.

Definition 2 In the two-sided Euclidean plane, a
conic is a set of points whose sum of distances from
two given foci is constant.

(b)

Figure 6: The definition 2 as seen from affine conics

This definition yields an ellipse if the foci are in
the same range, a parabola if one focus is at infin-
ity and a hyperbola if they are in different ranges.
We need to show how the affine parabola and hy-
perbola fit this definition in the flat model. For the
parabola we use the ideas of section 2.2. Consider the
parabola in Fig. 6(a). As we move from b to b’ the
relative distance from the improper focus decreases
by t. From the definition of affine parabolas we know
that r+t = r+s, so that s = t and the distance from
the proper focus increases by t. For the hyperbola,
note that one of the distances is always negative. In
Fig. 6(b) we have dist(b,f) = —dist(b,~f). There-
fore, if the foci are in different sides of the plane, the
effect of adding the two distances is to subtract their
absolute values and we get a hyperbola.

Now, as in the case of circles, we consider the
two connected components of the algebraic conic as

antipodal conics. For instance, consider the conic
with foci f and f', and the constant sum c. If p is a
generic point, the equation is dist(p, f)+dist(p,f')=
c. To get the opposite oriented conic we multiply the
equation by —1: —dist(p,f)—dist(p,f')= —c¢, which
is the same as dist(p,~f)+dist(p,~f')= —c. To get
the antipodal conic we change the sign of the con-
stant sum: dist(p,—f)+dist(p,~f')= ¢. To change
the orientation of this latter conic we multiply by
—1: dist(p, f)+dist(p,f')= —c. Note that if we try to
extract the radicals, by appropriately squaring these
equations twice, we get the polynomial equation of
the algebraic conic which does not distinguish an-
tipodal points. We will discuss this issue in section 5.
Before proposing the computational representation,
we list three properties of the geometric conic given
by definition 2:

1. If we remove a conic from P? what remains are
two subspaces, one of them topologically equiv-
alent to an open disc and the other equivalent
to a Mdbius strip. If we remove a conic from T2
what remains are two subspaces, both equiva-
lent to an open disc.

2. Let us call the interior of a conic the subspace
which contains at least one of the foci. So, the
segments joining any point on a conic to its foci
are entirely contained in the interior of the conic,
as opposed to what happens on hyperbolas in
R?.

3. From the preceding property we see that the in-
terior of a conic is always star-shaped with re-
spect to the foci. Furthermore, if the conic is
oriented counterclockwise its interior is convex.
A conic is oriented counterclockwise if we move a
point on it, in counterclockwise direction as seen
from the outside of the sphere, and the segments
joining this point to the foci rotate counterclock-
wise around them.

4 Representation for Conics and Conic arcs

We represent a conic by the homogeneous coordi-
nates of three points in the two-sided Euclidean plane.
The points are the two foci f; and fs, and one point
d on the conic. By definition 2, this set of points
uniquely defines the conic. The affine class of the
conic is implicitly given by the location of the foci.
For all classes, to change the orientation of the conic,
we simply exchange the foci for their antipodes, which
means multiplying their coordinates by —1. To get
the antipodal conic, we exchange the point d for its
antipode.



Figure 7 shows, in the flat model, the parabolas
of Fig. 5(b). Their two connected components are
now different parabolas and have different represen-
tations. In Fig. 7(a), f1 = [0,0.25,1], fo» = [0,1,0],
d = [0,0,1], f{ = [100,100.25,1], f; = fa2, and
d' =[100, 100, 1]. Whereas in Fig. 7(b), d = [0,0, —1]
and d' = [-100, —100, —1].

Figure 7: Representation of parabolas in the flat
model

Representation for Arcs. The coordinates of the
endpoints of an arc may, themselves, be used to de-
termine the shape of the conic. This is the case in
the work of G. Farin [5]. However, as will be shown
in the next section, the coordinates of the foci of the
conic are usually present in the input of algorithms.
This means that we better constrain the representa-
tion of the conic to use these coordinates as its foci
directly, in order to minimize errors. Thus, we repre-
sent an arc of a conic with the same three points (fi,
f2 and d to represent the conic itself) and two more
points a; and ay to help determine the endpoints of
the arc.

Figure 8: Representing arcs in the two-sided Eu-
clidean plane

Due to the fact that the conic is star-shaped
with respect to the foci, all lines passing through
one focus intersect the conic in two points. Let r; =

fiVay and 12 = f1 Vas. We define the starting point
of the arc as the intersection between the conic and
when it leaves the interior of the conic (see Fig. 8(b)
for an arc of a hyperbola). Let this intersection be
called the first endpoint. The second endpoint is,
as expected, the intersection between the conic and
ro when it leaves the interior of the conic. Note that
there are two complementary arcs satisfying this rep-
resentation. We use the orientation of the conic to
decide which arc is represented. The arc is the one
traced by the first intersection when we rotate ry
counterclockwise around f; until r; coincides with
ro. For all classes, to exchange an arc for its comple-
ment, either change the orientation of the conic (see
Fig. 8(a)) or exchange a; for as. To get the antipodal
arc, exchange d, a; and ay for their antipodes.

Degenerate Cases. This representation can de-
scribe without redundancy any arc of non-degenerate
conics. However, one may set the coordinates of the
points f1, fo, d, a; and ay so that the resulting data
does not properly define a conic. We identify these
degenerate situations:

1. When a; (a2) and f; are coincident (equal or
antipodal), r; (r2) is not defined.

2. When both f; and fs are at infinity.
3. When f; and f5 are antipodal points.

4. When d is at infinity. We observe that if f;
and fy are in different sides of the plane, the
hyperbola is indeed well defined. In the other
cases, we should regard the conic to be equal
to Q. However, all these cases would require
special computational treatment.

An application, in order to be robust, must know
about all these degenerate cases that may need a spe-
cial treatment or even an exception. We should em-
phasize that there is no arc of non-degenerate conic
that cannot be represented in the proposed way.

Before discussing the use of the representation
we also observe that it is not affine invariant, as it
relies explicitly on distances. However, it is indeed
similarity invariant (e.g. translations, rotations, and
uniform scaling).

4.1 Testing points against a conic

The two-sided distance has the following behavior
when we move a point away from another fixed point:
the distance varies in [0, +00], and then in (—oo, —0].
We refer the reader to [3] for a formal interpretation
of these values. To perform point location with the
proposed representation it is enough to compare the



sum of distances with respect to that (unusual) do-
main.

When an ellipse is oriented counterclockwise,
dist(d, f1) + dist(d, f2) is a positive constant c¢. Con-
sider a query point ¢. If ¢ is not in the same range
of d, it is in the exterior of the ellipse and no com-
putation is needed. If this is not the case, set ¢/ =
dist(g, f1) + dist(q, f2). ¢ is in the interior of the el-
lipse if ¢’ is between 0 and ¢, on the ellipse if ¢’ = ¢,
and in the exterior otherwise. For the clockwise ori-
ented ellipse ¢ is a negative constant. The point ¢ is
in the exterior if ¢’ is between ¢ and 0.

When a hyperbola is oriented counterclockwise,
dist(d, f1) + dist(d, f2) is a negative constant c¢. The
point ¢ is in the interior of the hyperbola if ¢’ is
between —oo and c. For the clockwise oriented hy-
perbola c is a positive constant. The point ¢ is in the
exterior if ¢’ is between ¢ and +o0.

For the parabola we must use the relative dis-
tance from the improper focus f;. When the parabola
is oriented counterclockwise, dist(d, fp) is a positive
constant ¢, where f, is the proper focus. If ¢ is
not in the same range of d, it is in the exterior of
the parabola and no computation is needed. If this
is not the case, let ry = f, V f; and rq = d V
norm(ry). If gorg = —1, ¢ is closer to f; than d,
so set ¢ = dist(q, fp) — 6r(q,7a). If gorg =41, set
¢ = dist(q, fp) +0,(q,rq). Finally, ¢ is in the interior
of the parabola if ¢’ is between 0 and ¢, on it if ¢’ = ¢,
and in the exterior otherwise.

For the clockwise oriented parabola, ¢ is a neg-
ative constant. When ¢ is in the same range of
d, if gory = —1, d is closer to f; than ¢, so set
¢ = dist(q, fp) + 0r(q,7q). If gorg = +1, set ¢/ =
dist(q, fp) — dr(q,r4). Then, ¢ is in the exterior of
the parabola if ¢’ is between ¢ and 0.

Testing against arcs. For conic arcs we observe
that lines r; and ro are all we need to compose the
test together with the previous ones. These lines
define the sector of the conic which contains the arc.
So, besides being in the interior of the conic, the
query point ¢ must be inside this sector. If point as
is to the left of r{, ¢ must be to the left of ry and to
the right of ro. If the point as is to the right of r1, ¢
must be to the left of r1 or to the right of rs.

This sector can be used to decide the relative
position of ¢ in the neighborhood of the arc.

5 Applications in Planar Computational Ge-
ometry

Geometric conics arise naturally in problems involv-
ing distance. The most studied are the so called gen-
eralizations of the Voronoi diagram. Consider a set

of points, called sites, in the plane. Voronoi diagrams
are, conceptually, the partition of the plane into re-
gions, each one associated to one site, such that all
points inside a given region are closer to the corre-
sponding site than to all other sites. These regions
are bounded by line segments. The generalizations
are obtained when we have more complex objects
as sites, or when we change the meaning of “closer”
varying the underlying metric. We discuss, in more
detail, the Voronoi diagram of additively weighted
points [11].

The additively weighted points Voronoi diagram
is obtained when each site has an associated weight.
The distance between an ordinary point p and a site
s is given by d(p,s) — w(s), where § is the usual
Euclidean distance and w(s) the weight of s. The
regions are bounded by hyperbolic arcs having the
sites as foci (see Fig. 9(a), the numbers indicate the
weight of the sites).

(b)

Figure 9: Voronoi diagram of weighted points

We consider the hyperbolas of this diagram as
being of the geometric kind. Only one branch of the
algebraic hyperbola is present. Note that the only
way to decide if a given query point ¢ is inside the
region of site p, in the neighborhood of edge e, is to
test it against the hyperbola C (see Fig. 9(b)). If the
second degree polynomial equation is used, the two
branches of the hyperbola are not distinguished, so
that we must do some further test to avoid errors.

Many other Voronoi diagrams have conic arcs.
The diagram of line segments [11] has parabolic arcs.
The geodesic Voronoi diagram of points inside a poly-
gon [12] has hyperbolic arcs. In [13] the Voronoi
diagram of a set of points, line segments, and cir-
cular arcs is considered. This diagram has elliptic,
parabolic, and hyperbolic arcs all together.

Besides Voronoi diagrams, geometric conic arcs
appear, at least, in visibility diagrams and shortest-
path maps. The common point between all these
problems is the concept of distance in their defini-
tions, and the presence of the foci of the conics in
the input.



6 Conclusion

We have presented a geometric definition for con-
ics in the two-sided Euclidean plane that allow us
to reason about all classes of affine conics in a uni-
fied way. Straight from the definition, a simple com-
putational representation for comics and conic arcs
was proposed. This representation explicitly uses the
sign of the homogeneous coordinates to characterize
the conic. We also discussed point location with re-
spect to the conics. As this representation is based
on the concept of distance, it is suitable for the pla-
nar subdivisions which appear in many algorithms
in computational geometry. Even if the computation
is done in the Euclidean plane, the operations with
conics can be simplified with this representation.
This representation was implemented as a proto-
col for conics and conic arcs in the GeoPrQO environ-
ment for distributed visualization [10]. We are also
using it to construct generalizations of the Voronoi
diagram. We observe that rendering conic arcs from
this representation is straightforward. We can use
the parameterization based on the eccentricity and
directrix of the affine conic [6]. The interval of the
domain of parameterization is given by the angles
that lines r; and ro make with the focal line of the

conic (f1 V fa).
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