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A New Discretization Method for Automatic Test Generation

for Timed Systems

Adilson Luiz Bonifácio∗ Arnaldo Vieira Moura�
Abstract

Devising formal techniques and methods that can automatically generate test case
suites for timed systems has remained a challenge. In this work we use Timed In-
put/Output Automata (TIOA) as a formal specification model for timed systems. We
propose and prove the correctness of a new and more general discretization method that
can be used to obtain grid automata corresponding to specification TIOA, using almost
any granularity of interest. We also show how test purposes, for modeling specific sys-
tem properties, can be used together with the specification TIOA in order to generate
grid automata that captures the behavior of both the specification and the test purpose.
From such grid automata one can, then, algorithmically extract test suites that can be
used to verify whether given implementations conform to the specification and reflect
the desired properties.

1 Introduction

In order to verify the correctness of computational systems, automatic test case generation
methods have been intensively investigated. One of the most important and promising
among such techniques is model-based testing [21, 6, 17, 20]. Although mathematical mod-
els of system requirements and formally specified system functionalities allow for some
automation in the process of efficient generation of test case suites, devising techniques and
methods that properly deal with critical and real-time systems has remained a challenge.

In this work we deal with timed system specifications and, in particular, with Timed
Input/Output Automata (TIOA) [14, 7] which are a variant of the classical timed automata
model [2, 1, 9, 5]. TIOA models can be used to specify timed systems and their executions,
allowing continuous time evolution also to be represented in the models. In order to obtain
a discrete representation for such models we use the notion of grid automata [8, 9], and
show how they can be automatically obtained from the original timed models.

Discretization has already been proposed in connection with timed automata, in the
form of clock regions [2, 16]. Here, however, we propose a different and more general notion
of discretization, using adjusted values and limiting boundaries. This new proposal allows

∗Computing Institute, University of Campinas, adilson@ic.unicamp.br, Supported by CNPq grant
141978/2008-2�Computing Institute, University of Campinas, arnaldo@ic.unicamp.br, Supported by CNPq grant
472504/2007-0, and FAPESP grant
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2 Bonifácio, and Moura

for a more relaxed way of choosing the granularities of interest. In fact, depending on
the accuracy of the physical system being modeled, a corresponding grid automaton can
be obtained for any desired granularity. In the next sections we expose the relationship
between a specification TIOA and the corresponding grid automaton that results when the
new discretization method is applied to the former. We also present proofs of correctness
showing that the TIOA homomorphically simulates the grid automaton, and vice-versa.
This forms the basis that will allow for the automation of test case generation methods that
use the grid automata as a basis.

In order to test implementations against given specifications, we use the notion of a
test purpose [19, 13]. A test purpose is a particular kind of TIOA that can be used to
model specific properties of the system under test. Given a specification TIOA and a test
purpose, their joint behavior is captured by computing the synchronous product between
both models. Once the product is obtained, we can apply the discretization method to it,
thus obtaining a grid automaton. Test sequences can then be automatically extracted from
the resulting grid automaton. Having the test case suite, one can use conformance testing
methods to verify whether implementations conform to the desired behaviors modelled by
the original TIOA specification and test purpose [21].

This work is organized as follows. In Section 2, we define the TIOA model and some other
important concepts. In Section 3, we present the new discretization method. We start with
some basic concepts concerning bounding values and limiting functions in Subsection 3.1.
Then, the grid construction and its properties are presented in Subsection 3.2, establishing
the correctness of the homomorphic relationship between the TIOA and its corresponding
grid automaton. Section 4 briefly discusses the process of generating timed test suites using
the notions of test purpose and synchronous product. In Section 5 we discuss some related
works. Finally, some concluding remarks appear in Section 6.

2 The TIOA model

In this section we define the Timed I/O Automata (TIOA) model. But first, we need the
notions of timed words, clock variables and clock conditions.

2.1 Timed words

Time instants and time delays will be taken from the set of non-negative rationals1, Q≥.

Definition 1 (Timed word) Let Σ be an alphabet. A timed word over Σ is a finite sequence
〈σ1, σ2, · · · , σn〉, where n ≥ 0 and σi ∈ Σ ∪Q≥, for all i, 1 ≤ i ≤ n.

For example, let Σ = {a, b, c, d}. Then 〈1, b, 2.3, d, d, 5.1, a〉 is a timed word over Σ, and so
is 〈c, 5, a, 4〉. The intended interpretation is that a timed word like 〈1, c, 2, a〉 can be seen
as a symbol c arriving after one time unit and a symbol a arriving at 1 + 2 = 3 time units,
counting from the start. A time word like 〈1, c, a〉 can be interpreted as 〈1, c, 0, a〉, saying
that symbols c and a arrive at the same time, but with c preceding a. Also, syntactically,

1Q is the set of rationals, Q≥ is the set of non-negative rationals and Q> is the set of positive rationals.
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a timed word like 〈1, c, 2, 5, a〉 is not the same as the timed word 〈1, c, 7, a〉, although they
convey the same intended information.

When there is no risk of confusion, we may also write σ1, σ2, . . . , σn, or even σ1σ2 . . . σn,
in place of 〈σ1, σ2, · · · , σn〉. The empty timed word will be denoted by ε. The set of all
timed words over Σ will be denoted by ΨΣ, or simply Ψ if there is no room for confusion.
The concatenation of timed words follows the standard definition for concatenation of finite
sequences. That is, if ψ1 = 〈σ1, . . . , σn〉 ∈ ΨΣ and ψ2 = 〈σn+1, . . . , σn+m〉 ∈ ΨΣ, with
n,m ≥ 0, then ψ1 · ψ2 = 〈σ1 . . . σn, σn+1, . . . , σn+m〉. We may also write ψ1ψ2 instead of
ψ1 · ψ2. As an example, let ψ1 = 〈1, a, 2, 5, b, c, 3〉 and ψ2 = 〈4, a, d, 2〉. Then, we have
ψ1 · ψ2 = 〈1, a, 2, 5, b, c, 3, 4, a, d, 2〉.

2.2 Clocks

We will also need a set of clock variables, or clocks for short, denoted by C. The set of all
clock conditions, ΦC , is comprised by all expressions δ that can be finitely generated using
the rules

δ := true | c ≤ τ | τ ≤ c | ¬δ | δ1 ∧ δ2,

where c is a clock variable and τ ∈ Q≥ is a time instant. We will take the usual liberties
when writing clock conditions, e.g., we may write c ≥ τ for τ ≤ c, or c < τ instead of
¬(τ ≤ c), or τ1 ≤ c ≤ τ2 for (τ1 ≤ c) ∧ (c ≤ τ2). A clock interpretation over C is a partial
function from C into Q≥. A total clock interpretation over C is a clock interpretation
over C whose domain2 is C. The set of all clock interpretations over C will be denoted
by [C y Q≥], and [C → Q≥] will denote the set of all total clock interpretations over C.
Clearly, [C y Q≥] ⊆ [C → Q≥]. When the intended set C is clear from the context, we
may write clock interpretation, or simply interpretation, instead of clock interpretation over
C.

Let δ ∈ ΦC and let ν ∈ [C y Q≥] be such that all clock variables occurring in δ are in
dom(ν). Then we say that ν satisfies δ, denoted by ν � δ, if δ evaluates to true when every
clock c is replaced by ν(c) in δ and the value of the resulting propositional logic sentence
is computed in the usual manner. When dom(ν) = ∅ we have that ΦC = {true}, and so
ν � true always holds, for all clock interpretation ν ∈ [C y Q≥].

Let ν ∈ [C y Q≥] be an interpretation and let τ ∈ Q≥ be a time delay. The interpre-
tation ν + τ is defined as

(ν + τ)(c) =

{
ν(c) + τ if c ∈ dom(ν)

undefined otherwise.

Let µ ∈ [C y Q≥]. We define the interpretation ν ⊕ µ thus

(ν ⊕ µ)(c) =






µ(c) if c ∈ dom(µ)

ν(c) if c ∈ (dom(ν)− dom(µ))

undefined if c 6∈ (dom(ν) ∪ dom(µ)),

2dom(f) will denote the domain of a function f .
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for all c ∈ C. That is, ν ⊕ µ assigns clock values first according to µ and, baring that, then
it assigns values according to ν, if at all possible. Note that when ν or µ is total, then so
is ν ⊕ µ.

2.3 Timed Input Output Automata

The Timed I/O Automata (TIOA) model is based on the BTDA (Bounded Time Domain
Automaton) model of Gawlick et al [14]. A BTDA is composed by states, action symbols,
clock variables, state invariants and transitions. The system progresses by a sequence of
continuous time evolutions interrupted by discrete transitions [1, 4, 18]. During a continuous
time evolution, the state does not change and its invariant must stay verified at all instants.
A discrete transition is specified by a source and a target state, an action symbol, a transition
guard and a (partial) clock reset function. We now make these concepts precise.

Definition 2 (BTDA) A BTDA is a tuple (S, s0,Σ, C, ν0, Inv, T ), where S is a finite set
of states, s0 ∈ S is the initial state, Σ is the set of action symbols, C is a set of clocks, ν0 ∈
[C → Q≥] is the initial clock interpretation, where ν0(c) = 0 for all c ∈ C, Inv : S → ΦC

maps states to state invariants, and T is the set of transitions, where T ⊆ (S×Σ×ΦC×[C y

Q≥]× S).

The intended meaning for a transition (s, z, δ, θ, r) is that the machine can move to
state r from state s over the symbol z provided that the guard δ is enabled. Further, upon
moving to state r, the mapping θ ∈ [C y Q≥] indicates which clocks are reset and to which
values. These notions will be made precise shortly. As an example, Figure 1 shows a BTDA
with one clock variable, c, and two action symbols, Σ = {on, off }. The set of states is
S = {q0, q1}, with the initial state q0 being marked by an incoming arrow with no source
node. The invariants are indicated right next to the corresponding state; for example,
Inv(q0) is c ≤ K, where we take K > 5. The remaining arrows indicate transitions. Next
to each arrow we can see the corresponding action symbol, the logical expression is the
transition guard and the attribution like notation indicates the clock resetting partial map.
For example, the transition from q0 to q1 would write as (q0, on, c ≤ K, θ, q1), where θ(c) = 0.

q0, c ≤ K q1, c ≤ 5

on, c ≤ K

c := 0

off , c = 5

c := 0

on, c < 5

c := 0

Figure 1: A BTDA model of a simple switch.

From now on, B will always denote a BTDA B = (S, s0,Σ, C, Inv, T ), and we let any
decorations carry over uniformly to the components of B, e.g., B′ = (S′, s′0,Σ

′, C ′, Inv ′, T ′).
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In order to specify the movements of a BTDA, we need the notion of a configuration.
A configuration of a BTDA B is a pair (s, ν), where s ∈ S is a state and ν ∈ [C → Q≥] is
a total clock interpretation over C. The set of all configurations of B is denoted by ΓB, or
simply by Γ if no confusion can arise. The initial configuration is (s0, ν0), where ν0(c) = 0
for all c ∈ C. We require that ν0 � Inv(s0). In order to ease the notation, when the set of
clocks is small we indicate a configuration simply by listing the corresponding state followed
by a list of the clock values, in some pre-arranged order. For example, from Figure 1 we can
see that (q0, ν) is a configuration, where ν(c) = 1.5. We may also write (q0, 1.5) to indicate
this same configuration.

We are now ready to specify the transitions of a BTDA.

Definition 3 (BTDA semantics) Let B be a BTDA and let γi = (si, νi) ∈ ΓB, i = 1, 2, be
two configurations of B. We define:

1. Let τ ∈ Q≥ be a time delay. Then there exists a continuous movement from γ1 to γ2

over τ , denoted by γ1 →τ
γ2, if and only if : (i) s1 = s2; (ii) ν2 = ν1 + τ ; and (iii)

ν1 + η � Inv(s1) for all η, 0 < η ≤ τ . When τ is positive, we have a non-trivial
continuous movement.

2. Let x ∈ Σ be an action symbol. Then there exists a discrete movement from γ1 to γ2

over x, denoted by γ1
x
→ γ2, if and only if there exists a transition (s1, x, δ, θ, s2) ∈ T

such that: (i) ν1 � δ; (ii) ν2 = ν1 ⊕ θ; and (iii) ν2 � Inv(s2).

In a discrete movement the state changes while the clock interpretation remains fixed,
except for a subset of the clocks that are reset as indicated by the partial function θ.
Moreover, we also require that the corresponding transition guard is enabled and that the
new clock interpretation satisfies the invariant of the target state. By way of contrast, in
a continuous movement the state does not change and the clock interpretation absorbs the
delay τ . Note that the state invariant must remain satisfied during the whole period of the
continuous movement. Clearly, we always have γ →

0
γ, for all configurations γ.

As an example, from Figure 1 we have: (q0, 0)
on
→ (q1, 0), (q1, 0) →

5
(q1, 5), (q1, 5)

off
→

(q0, 0), and (q0, 0)→
1

(q0, 1).

Note that when α→
τ
β, with α, β ∈ ΓB, then for all η, 0 ≤ η ≤ τ , there is a β′ ∈ ΓB such

that α→
η
β′. Furthermore, we may also have infinite sequence of continuous movements,

α→
τ1
β1 →

τ2
β2 →

τ3
β3 · · · ,

where βi ∈ ΓB and, e.g., τi = τ/2i, for all i ≥ 1.
Starting from a configuration, a timed word induces a movement in a BTDA.

Definition 4 (BTDA movement) Let B be a BTDA. The movement relation of B, ⊢
B
, is a

binary relation over ΨΣ×ΓB given by (ψ1, γ1) ⊢
B

(ψ2, γ2) if and only if ψ1 = 〈σ, σ1, . . . , σn〉,

ψ2 = 〈σ1, . . . , σn〉, with n ≥ 0, and either (i) σ ∈ Q≥ and γ1 →σ
γ2; or (ii) σ ∈ Σ and

γ1
σ
→ γ2.
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The k-th power of ⊢
B

will be indicated by
k

⊢
B

, k ≥ 0, and its reflexive transitive closure by
⋆

⊢
B

. As usual, we may drop decorations when no confusion can arise.

As an example, consider the timed word ψ = 〈K/2, on, 3, on, 5, off ,K/3〉 and the BTDA
in Figure 1. Then, we have

(
ψ, (q0, 0)

)
⊢

(
〈on, 3, on, 5, off ,K/3〉, (q0,K/2)

)
⊢

(
〈3, on, 5, off ,K/3〉, (q1, 0)

)

⊢
(
〈on, 5, off ,K/3〉, (q1, 3)

)
⊢

(
〈5, off ,K/3〉, (q1 , 0)

)

⊢
(
〈off ,K/3〉, (q1, 5)

)
⊢

(
〈K/3〉, (q0, 0)

)
⊢

(
ε, (q0,K/3)

)
.

Further, when (ψ, γ) ⊢ (ε, ρ) we also write γ
ψ


 ρ, or γ 
 ρ when the particular timed word
is not relevant.

When γ
ψ


 ρ we say that ψ is a run starting at γ and ending at ρ. If, moreover, γ is
the initial configuration of the BTDA, then ψ is an execution ending at ρ. A configuration
γ is reachable if there is an execution ending at γ. Likewise, a state s is reachable if
there is a reachable configuration (s, ν), for some interpretation ν. Clearly, as can be seen

from Figure 1, we can write (q0, 0)
〈on,5〉


 (q1, 5), thus configuration (q1, 5) and state q1 are
reachable. Also, it is easy to see that configuration (q1, 6) is not reachable.

Timed I/O Automata [7] extend the BTDA model by partitioning the set of actions
into input and output actions. Input actions are considered stimulus from the environment
while output actions will be generated by the system.

Definition 5 (TIOA) A Timed Input/Output Automaton is a triple M = (B,X, Y ) where:

1. B = (S, s0,Σ, C, ν0, Inv, T ) is a BTDA, the subjacent BTDA of M , and

2. {X,Y } partitions Σ into a set X of input actions and a set Y of output actions.

By letting X = {on} and Y = {off } in Figure 1, we partition the actions of the
BTDA, thereby obtaining a TIOA. From now on, M will always denote the TIOA M =
(B,X, Y ), and any decorations will carry over uniformly to the components of M . The set
of configurations of M , ΓM , as well as the notion of movements of M are taken directly
from the corresponding notions for the subjacent BTDA B, as in Definitions 2 and 3.

3 TIOA Discretization

The number of test sequences for any TIOA is infinite. Clearly, it is not practical to consider
the set of all such sequences when putting a system to the test. An alternative is to use
some sort of discretization of the original TIOA. Such discretizations lead to the notion of
a grid automaton [8, 9]. In this section we make these notions precise.
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3.1 Bounded values and functions

In what follows, given t ∈ Q≥, we will denote the integral and fractional parts of t by ⌊t⌋
and ⌈t⌉, respectively. Hence, t = ⌊t⌋ + ⌈t⌉ always holds. For further reference, we note the
following simple facts that will be useful later.

Fact 6 Let x, y ∈ Q≥. If x ≥ y then ⌊x⌋ ≥ ⌊y⌋.

Proof Assume ⌊x⌋ < ⌊y⌋. Then ⌊x⌋ ≤ ⌊y⌋ − 1. So x < ⌊x⌋ + 1 ≤ ⌊y⌋ − 1 + 1 = ⌊y⌋ ≤ k.
Hence, x < y, contradicting the hypothesis.

Fact 7 Let x, y ∈ Q≥ and let k a positive integer. If x = y + k then ⌈x⌉ = ⌈y⌉ and
⌊x⌋ = ⌊y⌋+ k.

Proof We have that x = y+k = (k+⌊y⌋)+⌈y⌉. Since k+⌊y⌋ is an integer and 0 ≤ ⌈y⌉ < 1,
we have ⌊x⌋ = k + ⌊y⌋ and ⌈x⌉ = ⌈y⌉.

Fact 8 Let x, y, z ∈ Q≥. If x = y+z then ⌈x⌉ =
⌈
⌈y⌉+⌈z⌉

⌉
and ⌊x⌋ = ⌊y⌋+⌊z⌋+

⌊
⌈y⌉+⌈z⌉

⌋
.

Proof We have x = (⌊y⌋+ ⌊z⌋) + ⌈y⌉+ ⌈z⌉ = (⌊y⌋+ ⌊z⌋+
⌊
⌈y⌉+ ⌈z⌉

⌋
) +

⌈
⌈y⌉+ ⌈z⌉

⌉
. But

⌊y⌋+⌊z⌋+
⌊
⌈y⌉+⌈z⌉

⌋
is an integer and 0 ≤

⌈
⌈y⌉+⌈z⌉

⌉
< 1. Then ⌊x⌋ = ⌊y⌋+⌊z⌋+

⌊
⌈y⌉+⌈z⌉

⌋

and ⌈x⌉ =
⌈
⌈y⌉+ ⌈z⌉

⌉
.

Fact 9 Let x, y, z ∈ Q≥. If ⌈x⌉ = ⌈y⌉ then ⌈x+ z⌉ = ⌈y + z⌉.

Proof We have ⌈x + z⌉ =
⌈
⌈x⌉ + ⌈z⌉

⌉
, using Fact 8. Now, using the hypothesis we get⌈

⌈x⌉+ ⌈z⌉
⌉

=
⌈
⌈y⌉+ ⌈z⌉

⌉
. But

⌈
⌈y⌉+ ⌈z⌉

⌉
= ⌈y + z⌉, using Fact 8 again.

Next, we turn to the notion of bounded interpretations.

Definition 10 (L bounds) Let L ∈ Q≥ be a bound. Let x ∈ Q≥ be a value, let A be a set
and let α ∈ [A→ Q≥] be a function. We define

1. The L-bounded x value, denoted xL, is given by

xL =

{
x if x ≤ L

⌊L⌋+ ⌈x⌉ otherwise.

2. The L-bounded α function, denoted αL, is obtained by letting αL(a) = (α(a))L, for all
a ∈ A.

Next, a few simple facts that will be used later.

Fact 11 Let L ∈ Q≥ be a bound and let x ∈ Q≥ be a value. Then ⌈xL⌉ = ⌈x⌉ and xL ≤ x.

Proof The equality is immediate from Definition 10. Now, if x ≤ L, then xL = x and
so xL ≤ x. When x > L, then xL = ⌊L⌋ + ⌈x⌉. From Fact 6, we get ⌊x⌋ ≥ ⌊L⌋. Then,
xL ≤ ⌊x⌋+ ⌈x⌉ = x, and we are done.
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Fact 12 Let L ∈ Q≥ be a bound and let x ∈ Q≥ be a value. If x < ⌊L⌋+ 1 then xL = x.

Proof If x ≤ L then we know that xL = x. If x > L then we have ⌊x⌋ ≥ ⌊L⌋, using Fact 6.
From the hypothesis we get ⌊x⌋ < ⌊L⌋+ 1, and so ⌊x⌋ ≤ ⌊L⌋. Then, ⌊x⌋ = ⌊L⌋ and we get
xL = ⌊L⌋+ ⌈x⌉ = ⌊x⌋+ ⌈x⌉ = x, as desired.

Fact 13 Let L ∈ Q≥ be a bound and let x ∈ Q≥ be a value. Then xL < ⌊L⌋+ 1.

Proof If x < ⌊L⌋ + 1 then xL = x, using Fact 12. So, xL < ⌊L⌋ + 1. If x ≥ ⌊L⌋ + 1 then
x > L, and we get xL = ⌊L⌋+ ⌈x⌉. Then, xL < ⌊L⌋+ 1, since ⌈x⌉ < 1.

Fact 14 Let L ∈ Q≥ be a bound and let x ∈ Q≥ be a value. Then (xL)L = xL.

Proof From Fact 13, we know that xL < ⌊L⌋+ 1. Now, using Fact 12 we get (xL)L = xL.

The next three propositions state that the L-bound of a sum of terms is the same as
the L-bound of the sum of the L-bounds of the individual terms.

Proposition 15 (L sum 1) Let L ∈ Q≥ be a bound and let x, y ∈ Q≥. Then (x + y)L =
(x+ yL)L.

Proof There are two cases.

Case 1: y < ⌊L⌋+ 1. Then, by Fact 12, y = yL and we are done.

Case 2: y ≥ ⌊L⌋+ 1. Then, yL = ⌊L⌋+ ⌈y⌉.

Also, x+ y ≥ ⌊L⌋+ 1 and so (x+ y)L = ⌊L⌋+ ⌈x+ y⌉. There are two subcases.

Case 2A: x+ yL < ⌊L⌋+ 1. Then, by Fact 12, (x+ yL)L = x+ yL = x+ ⌊L⌋+ ⌈y⌉.

But x+ yL < ⌊L⌋+ 1 and so x+ ⌊L⌋+ ⌈y⌉ < ⌊L⌋+ 1, and we have x+ ⌈y⌉ < 1.
Then x = ⌈x⌉ and we get ⌈x⌉ + ⌈y⌉ < 1, and so ⌈⌈x⌉ + ⌈y⌉⌉ = ⌈x⌉+ ⌈y⌉. Using
Fact 8 we get ⌈x + y⌉ = ⌈x⌉ + ⌈y⌉ = x+ ⌈y⌉. This gives (x + y)L = (x + yL)L,
as desired.

Case 2B: x+ yL ≥ ⌊L⌋+ 1. Then (x+ yL)L = ⌊L⌋+ ⌈x+ yL⌉.

But, by Fact 7, ⌈x+ yL⌉ = ⌈x+ ⌊L⌋ + ⌈y⌉⌉ = ⌈x+ ⌈y⌉⌉. And, by Fact 7 again,
⌈x+y⌉ = ⌈x+⌊y⌋+⌈y⌉⌉ = ⌈x+⌈y⌉⌉. Then (x+yL)L = ⌊L⌋+⌈x+y⌉ = (x+y)L,
as desired.

Proposition 16 (L sum 2) Let L ∈ Q≥ be a bound and let x, y ∈ Q≥. Then (x + y)L =
(xL + yL)L.

Proof From Proposition 15 we get (x + y)L = (x + yL)L. From Proposition 15 again,
we get (x + yL)L = (yL + x)L = ((yL + xL)L)L = ((xL + yL)L)L. Now, from Fact 14,
((xL + yL)L)L = (xL + yL)L. Then, (x+ y)L = (xL + yL)L.
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Proposition 17 (L sum 3) Let L ∈ Q≥ be a bound and let x, y ∈ Q≥. Let x′ = x or
x′ = xL and let y′ = y or y′ = yL. Then (x+ y)L = (x′ + y′)L.

Proof If x′ = x and y′ = y we are done. If x′ = x and y′ = yL use Proposition 15.
Similarly, if x′ = xL and y′ = y. Finally, if x′ = xL and y′ = yL, use Proposition 16.

We can now extend these results for larger sums.

Proposition 18 (Arbitrary L sum) Let L ∈ Q≥ be a bound and let xi ∈ Q≥ be values, for
i = 1, . . . , n, with n ≥ 1. Let yi = xi or yi = (xi)L, for i = 1, . . . , n. Then

( n∑

i=1

xi
)
L

=
( n∑

i=1

yi
)
L
.

Proof We denote (xi)L by xiL and proceed inductively on n.

When n = 1, if y1 = x1 we are done, and when y1 = x1
L we use Fact 14.

Now, assume the result holds for some n ≥ 1. Using Proposition 17, we get

( n+1∑

i=1

xi
)
L

=
(
(
n∑

i=1

xi) + xn+1
)
L

=
(
(
n∑

i=1

xi)L + yn+1
)
L
.

Using the induction hypothesis and proposition 17, we get

( n+1∑

i=1

xi
)
L

=
(
(

n∑

i=1

yi)L + yn+1
)
L

=
(
(

n∑

i=1

yi) + yn+1
)
L

=
( n+1∑

i=1

yi
)
L
,

as desired.

Proposition 19 (Bounding functions) Let L ∈ Q≥ be a bound. Let W = {w1, . . . , wn} be
a set, with n ≥ 1. Also let ki ≥ 0 be integer constants, i = 1, . . . , n. Take α ∈ [W → Q≥].
Then

[ n∑

i=1

kiα(wi)
]

L
=

[ n∑

i=1

kiαL(wi)
]

L
.

Proof Using Proposition 18 we get
[∑n

i=1 kiα(wi)
]

L
=

[∑n
i=1

(
kiα(wi)

)
L

]

L
.

Now,
[
kiα(wi)

]

L
=

[∑ki

j=1 α(wi)
]

L
.

Hence, using Proposition 18 again, we obtain
[
kiα(wi)

]

L
=

[∑ki

j=1(α(wi))L

]

L
=

[
kiαL(wi)

]

L
.

Putting it together, we have
[∑n

i=1 kiα(wi)
]

L
=

[∑n
i=1

(
kiαL(wi)

)
L

]

L
.

Finally, using Proposition 18 once more, we get
[∑n

i=1 kiα(wi)
]

L
=

[∑n
i=1 kiαL(wi)

]

L
,

as desired.
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In order to obtain a finite number of clock interpretations in the grid automata, to be
defined shortly, we impose an upper bound on clock values. This notion is similar to the
idea of clock regions [2, 22].

Definition 20 (Clock bounds) Let C be a set of clocks and let L ∈ Q≥ be a time instant.
For any ν ∈ [C → Q≥], the L-bounded clock interpretation νL ∈ [C → Q≥], is constructed
as in Definition 10 (2).

We also refer to νL as the clock interpretation ν bounded by L. Note that we could have
specified a different bound Lc for each clock c. In order to keep the notation uncluttered,
however we will consider a single bound L for all clock variables. It should be a simple
matter to generalize all results to the case when some clock bounds may be distinct.

The next two propositions express the result of L-bounding time delays and clock resets.

Proposition 21 (Bounding time delay) Let C be a set of clocks and let ν ∈ [C → Q≥] be
a clock interpretation, η ∈ Q≥, and let L be a positive integer. Then (ν + η)L = (νL + η)L.

Proof It suffices to show that (ν + η)L(c) = (νL + η)L(c), for all c ∈ C. We know that, by
definition, (ν + η)L(c) =

[
(ν + η)(c)

]
L

=
[
ν(c) + η

]
L
. Using Proposition 18, we now obtain[

ν(c) + η
]
L

=
[
(ν(c))L + η

]
L
. Using the definitions again,

[
(ν(c))L + η

]
L

=
[
νL(c) + η

]
L

=
(νL + η)L(c), and the result follows.

Proposition 22 (Bounding clock reset) Let C be a set of clocks and let ν ∈ [C → Q≥] and
θ ∈ [C y Q≥] be clock interpretations, and let L be a positive integer. Then (ν ⊕ θ)L =
(νL ⊕ θ)L.

Proof It suffices to show that (ν ⊕ θ)L(c) = (νL ⊕ θ)L(c), for all c ∈ C. If c 6∈ dom(θ), we
have (ν⊕ θ)L(c) = νL(c) and (νL⊕ θ)L(c) = (νL)L(c) = νL(c), using Fact 14. If c ∈ dom(θ),
we have (ν ⊕ θ)L(c) = θL(c) and (νL ⊕ θ)L(c) = θL(c), completing the proof.

In the next two lemmas we present some useful relationships between limited interpre-
tations, interpretations and evaluating conditions.

Lemma 23 (Bounded evolution) Let C be a set of clocks and let αi, βi ∈ [C → Q≥],
i = 1, 2, be clock interpretations. Assume that βi = αi or βi = (αi)L for all i ∈ {1, 2}.
Further, let I ∈ ΦC be a clock condition and let L be a positive integer greater than all
constants occurring in I. Then α1 + α2

� I iff β1 + β2
� I.

Proof If I is true we are done. Assume now that I is not true.
From Fact 6 we know that βi(c) ≤ αi(c), for all c ∈ C and all i ∈ {1, 2}.
We treat first the four simple cases when I is (c ≤ τ), (c ≥ τ), ¬(c ≤ τ) or ¬(c ≥ τ).

Case 1: I is (c ≤ τ), for some c ∈ C and some τ ∈ Q≥.

If α1 + α2
� I then (α1 + α2)(c) = α1(c) + α2(c) ≤ τ . Then β1(c) + β2(c) ≤ τ and so

β1 + β2
� I.
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For the converse, assume β1(c) + β2(c) ≤ τ . From the hypothesis, β1(c) + β2(c) ≤ L.

If α1(c) > L then either (i) β1(c) = α1(c) > L, or (ii) β1(c) = (αi(c))L = ⌊L⌋ +
⌈α1(c)⌉ = L+⌈α1(c)⌉, since L is an integer. In any case, we contradict β1(c)+β2(c) ≤
L.

Similarly, we cannot have α2(c) > L. Hence, αi(c) ≤ L and we get βi(c) = αi(c),
for i = 1, 2. Then, since β1(c) + β2(c) ≤ τ , we also get α1(c) + α2(c) ≤ τ , and so
α1 + α2

� I.

Case 2: I is (c ≥ τ), for some c ∈ C and some τ ∈ Q≥.

First, let β1 + β2
� I. Then β1(c) + β2(c) ≥ τ and so α1(c) + α2(c) ≥ τ , since

αi(c) ≥ βi(c), i = 1, 2. Then, α1 + α2
� I.

For the converse, assume α1(c) + α2(c) ≥ τ . If α1(c) ≥ L + 1, then β1(c) = ⌊L⌋ +
⌈α1(c)⌉ = L + ⌈α1(c)⌉, since L is an integer. Thus, β1(c) ≥ τ , since L > τ from the
hypothesis. Hence β1(c) + β2(c) ≥ τ and so β1 + β2

� I.

Similarly, when α2(c) ≥ L+ 1 the result also holds.

Now let αi(c) < L+ 1 = ⌊L⌋+ 1 for i = 1, 2. From Fact 12, we get βi(c) = αi(c) and
so β1(c) + β2(c) ≥ τ , and again β1 + β2

� I.

Case 3: I is ¬(c ≤ τ), for some c ∈ C and some τ ∈ Q≥. Equivalently, we have α1 + α2
�

(c > τ). We proceed as in Case 2.

Case 4: I is ¬(c ≥ τ), for some c ∈ C and some τ ∈ Q≥. Equivalently, we have α1 + α2
�

(c < τ). We proceed as in Case 1.

Let n ≥ 0 be the number of propositional connectives occurring in I. We proceed by
induction on n.

Basis: n = 0. The result holds by Cases 1 and 2.

Induction step: assume the result holds for all I with at most n propositional connectives,
where n ≥ 0. Now, take some I ∈ ΦC with n+ 1 propositional connectives. We have
two cases:

Case I-1: I is δ1 ∧ δ2.

Since δi has at most n propositional connectives, i = 1, 2, from the induction
hypothesis we get α1 + α2

� δi iff β1 + β2
� δi, for i = 1, 2. Then, clearly,

α1 + α2
� I iff β1 + β2

� I.

Case I-2: I is ¬δ.

Then δ has n ≥ 0 propositional connectives. When n = 0, δ is (c ≤ τ) or (c ≥ τ),
and the result follows by Cases 3 and 4, respectively.

Assume now that n ≥ 1. We have two sub-cases:

I-2A: δ is ¬δ1 and δ1 has n−1 propositional connectives. Then ¬δ is equivalent
to ¬¬δ1, that is, I is equivalent to δ1. We can use the induction hypothesis
and conclude that α1 + α2

� I iff β1 + β2
� I.
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I-2B: δ is (δ1 ∧ δ2), that is, I is equivalent to (¬δ1) ∨ (¬δ2). Note that δ has n
propositional connectives. Then δi has at most (n − 1) propositional con-
nectives, that is, ¬δi has at most n propositional connectives, for i = 1, 2.
Using the induction hypothesis we get α1 + α2

� ¬δi iff β1 + β2
� ¬δi.

Thus, α1 + α2
� (¬δ1) ∨ (¬δ2) iff α1 + α2

� ¬δi for some i ∈ {1, 2} iff
β1 + β2

� ¬δi for some i ∈ {1, 2} iff β1 + β2
� (¬δ1) ∨ (¬δ2), completing

the proof.

Lemma 24 (Bounded reset) Let C be a set of clocks and let ν ∈ [C → Q≥] and θ ∈ [C y

Q≥] be clock interpretations and let I ∈ ΦC be a clock condition. If ν⊕θ � I then νL⊕θ � I,
when L is a positive integer greater than all constants occurring in I.

Proof When I is true we are done. Now, assume that I is not true.

Now we treat the four cases when I is (c ≤ τ), (c ≥ τ), ¬(c ≤ τ) or ¬(c ≥ τ), where
c ∈ C and τ ∈ Q≥. If c 6∈ dom(θ), we get (ν ⊕ θ)(c) = ν(c) and so ν � I. From Lemma 23,
we get νL � I. Since (νL ⊕ θ)(c) = νL(c) we conclude that νL ⊕ θ � I. If c ∈ dom(θ), we
get (ν ⊕ θ)(c) = θ(c) = (νL ⊕ θ)(c). Then, νL ⊕ θ � I.

Now, we proceed by induction on the number n ≥ 0 of propositional connectives occur-
ring in I.

Basis: n = 0. The result follows by the first two cases discussed above.

Induction step: assume the result holds for all I with at most n propositional connectives,
where n ≥ 0.

Now, take some I ∈ ΦC with n+ 1 propositional connectives. We have two cases:

Case I-1: I is δ1 ∧ δ2.

We have ν ⊕ θ � δi, i = 1, 2. But δi has n− 1 propositional connectives, and the
induction hypothesis gives νL ⊕ θ � δi, for i = 1, 2. Hence, νL ⊕ θ � I.

Case I-2: I is ¬δ.

Then δ has n ≥ 0 propositional connectives. When n = 0, δ is (c ≤ τ) or (c ≥ τ),
and the result holds by third and forth cases discussed above.

Assume now that n ≥ 1. We have two sub-cases:

I-2A: δ is ¬δ1 and δ1 has n− 1 propositional connectives. Then ¬δ is equivalent
to ¬¬δ1, that is, to δ1. Then, from the original hypothesis, ν ⊕ θ � δ1. By
the induction hypothesis, νL⊕θ � δ1, that is νL⊕θ � ¬¬δ1. Then νL⊕θ � I.

I-2B: δ is (δ1 ∧ δ2), that is I is equivalent to (¬δ1) ∨ (¬δ2). Hence, ν ⊕ θ � ¬δ1,
or ν ⊕ θ � ¬δ2. Note that δ has n propositional connectives. Then δi
has at most (n − 1) propositional connectives, that is, ¬δi has at most n
propositional connectives, for i = 1, 2. Using the induction hypothesis, we
have νL⊕ θ � ¬δ1 or νL⊕ θ � ¬δ2. So, νL⊕ θ � ¬(δ1 ∧ δ2), that is νL⊕ θ � I.
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3.2 Grid automata

Given a TIOA M , in order to deal with a finite set of useful interpretations we choose a
time granularity and discretize the movements of M . The granularity has to be chosen in
a such way that neither it is too small, rendering the system almost continuous, nor is it
too large, making the approximations too coarse. Some works [8, 9, 16] suggest a possible
discretization step of 1/(n+ 1), if n = 1, and 1/(n+ 2), with n ≥ 2, where n is the number
of clocks in M .

In this work we show how to use any granularity g = 1/k, k being a positive integer,
and still obtain an adequate discretization. Once a boundary L is also chosen, the behavior
of M should be reproducible in the time interval of interest, from 0 to L, using L-bounded
interpretations.

We start with the notion of adjusted values.

Definition 25 (Adjusted values) Let g ∈ Q≥. Then

1. A value ℓ ∈ Q≥ is g-adjusted iff ℓ is an integer multiple of g.

2. Let C be a set of clocks. A clock condition δ ∈ ΦC is g-adjusted iff all constants
occurring in δ are g-adjusted values.

3. Let C be a set of clocks. A clock interpretation ν ∈ [C y Q≥] is g-adjusted iff ν(c)
is a g-adjusted value, for all c ∈ dom(ν).

When the value g can be inferred from the context, we may write adjusted instead of
g-adjusted.

Two simple facts about adjusted values follow.

Proposition 26 (Adjusted parts) Let g = 1/k, with k a positive integer, and let ℓ ∈ Q≥.
Then ℓ is a g-adjusted value iff both ⌊ℓ⌋ and ⌈ℓ⌉ are g-adjusted values.

Proof Assume that ⌊ℓ⌋ = mg and ⌈ℓ⌉ = ng, wherem and n are non-negative integers. Then
ℓ = (m+ n)g and so ℓ is also a g-adjusted value. Conversely, assume that ℓ = mg for some
non-negative integer m. Then mg = (⌊ℓ⌋g)/g+⌈ℓ⌉ and so ⌈ℓ⌉ = (m−⌊ℓ⌋/g)g = (m−k⌊ℓ⌋)g.
Since (m− k⌊ℓ⌋) is an integer, ⌈ℓ⌉ is also g-adjusted. Also, clearly, ⌊ℓ⌋ = ℓ− ⌈ℓ⌉ and so ⌊ℓ⌋
is g-adjusted since ℓ and ⌈ℓ⌉ are g-adjusted.

Proposition 27 (Adjusted bounded) Let g = 1/k, with k a positive integer, and let L ∈ Q≥

be a g-adjusted value. Also, let C be a set of clocks and let ν ∈ [C y Q≥] be a g-adjusted
clock interpretation. Then νL is also a g-adjusted clock interpretation.

Proof Let c ∈ C. From Definition 20, we get νL(c) = ν(c) or νL(c) = ⌊L⌋+ ⌈ν(c)⌉. From
Proposition 26, we know that ⌊L⌋ and ⌈ν(c)⌉ are g-adjusted. So, clearly, νL(c) is g-adjusted
for all c ∈ C, and the result follows.

Another simple fact states that extending g-adjusted clock interpretations, or resetting
a g-adjusted clock interpretation, always results in a new clock interpretation that is also
g-adjusted.
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Proposition 28 (Adjusted interpretation) Let C be a set of clocks, let ν, η ∈ [C y Q≥] be
two g-adjusted clock interpretations, and let ℓ be a g-adjusted value. Then ν + ℓ and ν ⊕ η
are also g-adjusted clock interpretations.

Proof Assume that ν(c) ∈ dom(ν). Then, (ν + ℓ)(c) = ν(c) + ℓ, which is, clearly, a
g-adjusted value. Thus, by Definition 25, ν + ℓ is also g-adjusted.

Now, when c ∈ dom(ν⊕ η) there are two cases. If η(c) ∈ dom(η), then (ν⊕ η)(c) = η(c)
is g-adjusted. When c ∈ (dom(ν) − dom(η)) then (ν ⊕ η)(c) = ν(c) is also g-adjusted.
Clearly, ν ⊕ η is a g-adjusted clock interpretation.

Next, we show that any set of L-bounded clock interpretations is finite, provided that
L is properly adjusted.

Lemma 29 (Number of bounded clock interpretations) Let C be a set of clocks, and let g =
1/k with k a positive integer. Let R ⊆ [C y Q≥] be a set of g-adjusted clock interpretations,
and let L ∈ Q≥ be a g-adjusted value. Consider the L-bounded set RL = {νL | ν ∈ R}. Then
|RL| ≤ (k⌊L⌋+ k)|C|.

Proof Consider some νL ∈ RL and some c ∈ C. Let t = νL(c). By Proposition 27, t is
always g-adjusted. Moreover, t < ⌊L⌋+1, by Fact 13. But ⌊L⌋ = ng, for some non-negative
integer n, and so ⌊L⌋+1 = ng+(1/g)g = (n+k)g. Hence, t can have at most n+k distinct
g-adjusted values (counting from zero).

We conclude that any clock c ∈ C can be mapped to at most n+ k distinct g-adjusted
values, by νL bounded interpretations. Therefore, there are at most (n + k)|C| distinct νL
interpretations. Since n = ⌊L⌋/g = k⌊L⌋, the result follows.

Had we used a distinct g-adjusted bound Lc for each clock c, the lemma would yield the
bound |RL| ≤

∏
c∈C

(k⌊Lc⌋+ k).

A timed word is adjusted if all its time instants are properly adjusted.

Definition 30 (Adjusted timed word) Let Σ be an alphabet. A timed word 〈σ1, . . . , σn〉 ∈
ΨΣ is g-adjusted if σi is a g-adjusted value whenever σi ∈ Q≥, for all i, 1 ≤ i ≤ n.

The set of all g-adjusted timed words over Σ will be denoted by Ψg,Σ. As before, we
may drop subscripts if there is no reason for confusion.

A TIOA will be said adjusted if both its guards and invariants are also adjusted. The no-
tion of an adjusted TIOA will be important in reducing the set of L-bounded interpretations
to a finite size.

Definition 31 (Adjusted TIOA) Let M be a TIOA. Then M is g-adjusted iff for all tran-
sitions (s, z, δ, θ, r) ∈ T we have that δ is a g-adjusted clock condition and θ is a g-adjusted
clock interpretation. Moreover, for all states s ∈ S, we require that Inv(s) be a g-adjusted
clock condition.

A run over a g-adjusted timed word implies the g-reachability of the terminal configu-
ration.
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Definition 32 (TIOA g-reachability) Let M be a g-adjusted TIOA, s ∈ S and ν ∈ [C →
Q≥]. We say that (s, ν) is g-reachable in M iff there is a g-adjusted timed word ψ ∈ Ψg,Σ,

such that (s0, ν0)
ψ


M (s, ν).

The result obtained by the discretization of a TIOA M will be a labelled transition
system, called a grid automaton [9, 8].

Definition 33 (Grid Automaton) Let g = 1/k with k a positive integer. Let M be a g-
adjusted TIOA and let L ∈ Q≥ be a g-adjusted value. Then the L, g-grid automaton, or
simply L, g-grid, associated with M is the labelled transition system constructed by Algo-
rithm 1.

Note that the input alphabet of ML,g, ΣG, is formed by the set Σ of all action symbols of
M , together with the new symbol g. As usual, we may drop the qualifications L and g,
when no confusion can arise.

Consider the TIOA depicted in Figure 2. Note that we have two clocks. Some previous
works [8, 9, 16] suggest a granularity of at least 1

4 when discretizing a TIOA with 2 clocks.
Here, instead, we may choose coarser values. In fact, for this example we will choose the
granularity g = 1

2 and the bound L = 6. Further, let K = 3 in Figure 2. Under these
assumptions, Figure 3 shows part of the grid automaton obtained from Algorithm 1, given
Figure 2 as the input TIOA.

s0, c1 ≤ K, c2 ≤ 1.5K s1, c1 ≤ 5

on, c1 ≤ K

c1 := 0

off , c1 = 5

c1 := 0, c2 := 0

on, c1 < 5

c1 := 0

Figure 2: A TIOA model for a variation of the simple switch.

The next result proves that Algorithm 1 always terminates. Moreover, it also establishes
a bound on the number of states in the resulting labelled transition system.

Lemma 34 (Finite grid) Consider the procedure depicted as Algorithm 1. Then, it always

halts with |SG| ≤ |S| ×
(
k⌊L⌋+ k

)|C|
.

Proof Since L is g-adjusted and g = 1/k, Lemma 29 states that there are at most
(
k⌊L⌋+

k
)|C|

L-bounded distinct clock interpretations, that is, |[C y Q≥]L| ≤
(
k⌊L⌋+k

)|C|
. Then,

there are at most |S| ×
(
k⌊L⌋+ k

)|C|
configurations of the form (s, νL), where s ∈ S and νL

is an L-bounded clock interpretation of M .
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Input: A value g = 1/k, with k a positive integer; a g-adjusted TIOA1

M = (S, s,Σ, C, ν, Inv, T ), and a g-adjusted boundary L ∈ Q≥.
Output: The L, g-grid ML,g = (SG, sG,ΣG, TG) associated with M .2

begin3

TG ← ∅ // the set of transitions;4

RS ← sG = (s, ν) // where ν(c) = 0 for all c ∈ C;5

HS ← ∅ // the set of visited states;6

while RS \HS 6= ∅ do7

get a state (s, ν) from RS \HS // choose a state;8

move (s, ν) from RS to HS;9

foreach (s, z, δ, θ, r) ∈ T do10

if ν � δ and ν ⊕ θ � Inv(r) then11

let η = (ν ⊕ θ)L ;12

add the transition ((s, ν), z, (r, η)) to TG ;13

add the state (r, η) to RS, if (r, η) 6∈ HS;14

end15

end16

if ν + h � Inv(s) for all 0 < h ≤ g then17

let η = (ν + g)L ;18

add the transition ((s, ν), g, (s, η)) to TG;19

add the state (s, η) to RS, if (s, η) 6∈ HS;20

end21

end22

SG ← HS;23

ΣG ← Σ ∪ {g};24

return;25

end26

Algorithm 1: Grid algorithm.

Notice that ν0, at line 5, is also g-adjusted and L-bounded, trivially. Then, using
Proposition 28 and Proposition 27 we know that the interpretations constructed at lines 12
and 18 are also g-adjusted. Clearly, then whenever a configuration (p, η) is added to RS at
lines 14 and 20, we have that η is a g-adjusted clock interpretation.

Note that at lines 14 and 20 a state (s, η) is added to RS only if it is not already in
HS. Thus, a state (s, η) ∈ S × [C y Q≥]L enters RS at most once. Since the loop at
line 7 moves one state (s, ν) from RS \HS into HS, we conclude that the loop at line 7

executes for at most |S| × (k⌊L⌋ + k
)|C|

times. Thus, clearly, the procedure halts and

|HS| ≤ |S| × |[C y Q≥]L|. From line 23, we get |SG| ≤ |S| ×
(
k⌊L⌋+ k + 1

)|C|
.

Note that, when we specify a possibly different bound Lc for each clock c ∈ C, the number
of states in the grid automaton will be bounded by k|C|×

∏
c∈C

(⌊Lc⌋+ k), which can be much
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s0, 0, 0 s1, 0, 0 s1,
1
2 ,

1
2

s1, 0,
1
2 s1,

1
2 , 1

s1, 5, 5

s1,
1
2 ,

5
2 s1, 4, 6

s1, 0, 6s0,
1
2 ,

1
2 s0, 2, 2

s1, 0, 2s1, 5, L

. . .

. . .

. . .

. . .

. . .

. . .

on
1
2

1
2

1
2

1
2

1
2

1
2

1
2

on

on

off

on
1
2

on

off

Figure 3: The partial grid automaton for Figure 2.

smaller then k|C| × (⌊L⌋+ k)|C|, if we take the safe value L = max
c∈C
{Lc}.

Next, we want to prove that the grid and the corresponding TIOA display compatible
behaviors, provided that the common input timed word is g-adjusted. But, before, we need
to define grid movements.

Definition 35 (Grid movement) Let MG be a grid automaton. The movement relation of
MG, ⊢

G
, is a binary relation over Σ⋆

G × SG given by (σ · ψ, s1) ⊢
G

(ψ, s2) if and only there

is a transition (s1, σ, s2) ∈ TG, for all ψ ∈ Σ⋆
G and σ ∈ ΣG.

The k-th power of ⊢
G

will be indicated by
k

⊢
G

, k ≥ 0, and its reflexive transitive closure

by
⋆

⊢
G

. When (ψ, γ)
⋆

⊢
G

(ε, ρ) we also write γ
ψ



G
ρ, or γ 


G
ρ when the particular input grid

word is not relevant.
The next technical result will be useful later.

Lemma 36 (Grid run) Let M be a TIOA and let MG be the corresponding grid. Let L
be a positive integer greater than all constants occurring in M , and let g = 1/k with k a
positive integer. Also, take µ ∈ [C → Q≥] and p ∈ S with (p, µL) ∈ SG. Finally, assume
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that µ+ η � Inv(p), 0 < η ≤ ig for some i ≥ 0. Then (p, ωL) ∈ SG and (p, µL)
gi



G

(p, ωL),

with ω = µ+ ig.

Proof Define µj = µ+ jg, for all j, 0 ≤ j ≤ i. It suffices to prove that3 (p, µjL) ∈ SG and

(p, µL)
gj



G

(p, µjL), for all j, 0 ≤ j ≤ i. Note that µiL = (µ+ ig)L = ωL.

We proceed by induction on j ≥ 0.

Basis: when j = 0 we get gj = ε. Then, trivially, (p, µL)
gj



G

(p, µL). We show µL = µjL.

We have µj = µ+ 0g = µ+ 0 = µ and so µjL = µL, as desired.

Induction step: assume the result holds for some j, 0 ≤ j < i.

The induction hypothesis gives (p, µL)
gj



G

(p, µjL) and (p, µjL) ∈ SG. Note that (p, µjL) ∈

SG gives (p, µjL) ∈ HS at line 23 of Algorithm 1. Also, pairs are moved from RS into

HS one at a time at line 9. Hence, at some iteration, (p, µjL) was chosen at line 8. We
show that now line 17 applies.

Let 0 < η ≤ g. We show that µjL + η � Inv(p). We have 0 < jg + η ≤ (j + 1)g ≤ ig.
From the hypothesis we get µ + (jg + η) � Inv(p), that is (µ + jg) + η � Inv(p),
and so µj + η � Inv(p). Using Lemma 23 we get µjL + η � Inv(p), as desired.

Thus, Algorithm 1, lines 18–20, will put ((p, µjL), g, (p, ρL)) in TG, with ρ = µjL +

g. So, (p, µjL)
g



G

(p, ρL). Also, by line 20, (p, ρL) will be added to RS if it is not

already in HS. In any case, when the loop at line 7 terminates, we get (p, ρL) in

HS and, by line 23, (p, ρL) ∈ SG. Moreover, since (p, µL)
gj



G

(p, µjL), we also get

(p, µL)
gj+1



G

(p, ρL). We extend the induction by showing that ρL = µj+1
L . Since

ρL = ((µj)L + g)L, using Fact 21 we get ρL = (µj + g)L = (µ+ jg + g)L = (µ+ (j +
1)g)L = (µj+1)L = µj+1

L , as desired.

The next definitions map adjusted timed words into grid words, and vice-versa.

Definition 37 (To grid word) Let Σ be an alphabet and let ψ ∈ Ψg,Σ be a g-adjusted timed
word. The mapping h : Ψg,Σ → Σ⋆

G is defined by letting h(ε) = ε, and for all ψ ∈ Ψg,Σ and
all σ ∈ Σ ∪Q≥ :

h(ψ · 〈σ〉) =

{
h(ψ) · σ if σ ∈ Σ

h(ψ) · gk where σ = kg, for some k ≥ 0.

Definition 38 (To adjusted timed word) Let Σ be an alphabet and let ψ ∈ Σ⋆
G be a grid

word. The function ĥ : Σ⋆
G → Ψg,Σ is defined by letting ĥ(ε) = ε and, for all ϕ ∈ Σ⋆

G and

all σ ∈ ΣG, ĥ(ϕ · σ) = ĥ(ϕ) · 〈σ〉.

3Here, µ
j
L denotes (µj)L.
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Next we note that ĥ(ψ) is also g-adjusted.

Fact 39 Let ψ ∈ Σ⋆
G. Then ĥ(ψ) is g-adjusted.

Proof Immediate from Definition 38.

The following lemma states that g-reachable configurations in a TIOA are states in the
corresponding grid.

Lemma 40 (Grid states) Let MG be a grid corresponding to a TIOA M and let L be a
positive integer greater than any constant occurring in M . If (s, ν) ∈ S × [C → Q≥] is
g-reachable in M then (s, νL) ∈ SG.

Proof Using Definition 32, we know that (s0, ν0)
ψ


M (s, ν) for some g-adjusted timed word
ψ ∈ Ψg,Σ. We proceed by induction on the length of ψ.

If ψ = ε then s0 = s and ν0 = ν. Algorithm 1, line 5, puts (s, ν) in RS. Now, the while
loop at line 7, together with lines 8 and 9, will put (s0, ν0) in HS. Then, by line 23, we get
(s, ν) ∈ SG.

Now, assume the result for any g-adjusted timed word ψ of length at most n, n ≥ 0.
Take ϕ ∈ Ψg,Σ and σ ∈ Σ ∪Q≥ with ψ = ϕ · 〈σ〉, where ϕ has length n.

From (s0, ν0)
ψ


M (s, ν) we obtain (s0, ν0)
ϕ


M (r, µ) and (r, µ)
〈σ〉


M (s, ν) for some r ∈ S
and µ ∈ [C → Q≥]. Since ψ is g-adjusted, we have that ϕ is g-adjusted. By the induction
hypothesis, we get (r, µL) ∈ SG. Then, (r, µL) ∈ HS (line 23). Clearly, from line 6 of
Algorithm 1, together with the while loop at line 7 and lines 8 and 9, we can conclude that
(r, µL) will be in RS. So, at some point, (r, µL) will be chosen at line 8.

We have two cases:

Case 1: σ ∈ Σ.

Since (r, µ)
〈σ〉


M (s, ν) we must have in M a transition (r, σ, δ, θ, s), for some δ ∈ ΦC

and some θ ∈ [C y Q≥], where µ � δ and µ⊕ θ � Inv(s), with ν = µ⊕ θ.

From Lemma 24, we obtain µL⊕θ � Inv(s) and, from Lemma 23, we get µL � δ. Since
(r, µL) will be chosen at line 8, from lines 12–14, the state (s, η), with η = (µL ⊕ θ)L,
will be put into RS, if it is not already in HS. In any case, by the loop at line 7,
we will get (s, η) in HS, and so by line 23 we will have (s, η) ∈ SG. But, using
Proposition 22, we have η = (µL⊕ θ)L = (µ⊕ θ)L. Since ν = µ⊕ θ, we obtain η = νL
and so (s, νL) ∈ SG, as desired.

Case 2: σ ∈ Q≥.

Since ψ is g-adjusted, σ is also g-adjusted. Hence, σ = kg, for some k ≥ 0. From

(r, µ)
〈kg〉


M (s, ν) we get s = r, ν = µ + kg and µ + η � Inv(r), for all 0 < η ≤ kg.
Since we already have (r, µL) ∈ SG, Lemma 36 gives (r, νL) ∈ SG, completing the
proof.
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Now we show that all grid states correspond to reachable configurations in the corre-
sponding TIOA.

Lemma 41 (Reachable grid states) Let MG be the grid corresponding to a TIOA M . Let
L be a positive integer greater than any constant occurring in M . If (s, ν) ∈ SG then there

is a ρ ∈ [C → Q≥] and a g-adjusted timed word ψ ∈ Ψg,Σ such that (s0, ν0)
ψ


M (s, ρ) and
ρL = ν.

Proof From line 23 of Algorithm 1, we know that SG is the set HS when the loop at line 7
terminates. From line 6, HS starts empty and elements are added to it one at a time and
only at lines 14 and 20. Hence, it suffices to show that the result holds for all pairs (s, ν)
added to RS at these lines.

Let (ri, µi), i ≥ 0, be the elements added to RS, in order. Clearly, (r0, µ0) = (s0, ν0) by
line 5. Taking ψ = ε, the result is seen to hold for (r0, µ0). Note also that ν0 = (ν0)L, since
ν0(c) = 0, for all c ∈ C.

Assume the result holds for (rj, µj), for all 0 ≤ j < k, for some k ≥ 1. Consider (rk, µk).
Since k ≥ 1, (rk, µk) was added to RS at line 14 or at line 20. Hence, at that iteration, some
(rj , µj) with j < k was chosen at line 8. The induction hypothesis gives some ψ ∈ Ψg,Σ

such that (s0, ν0)
ψ


M (rj , ρ) and ρL = µj. There are two cases.

Case 1: At line 14. Then, from lines 10 and 11, we get a transition (rj , z, δ, θ, rk) in T
with µj � δ and µj ⊕ θ � Inv(rk). From lines 12 and 14, µk = (µj ⊕ θ)L.

Since ρL = µj , we get ρL � δ and ρL ⊕ θ � Inv(rk). From Lemma 23 we get ρ � δ
and from Lemma 23, with η = 0, we have (ρL ⊕ θ)L � Inv(rk). From Proposition 22
we may write (ρ ⊕ θ)L � Inv(rk) and so, from Lemma 23, with η = 0, we have
(ρ⊕ θ) � Inv(rk).

Collecting, we have (rj , z, δ, θ, rk) in T , ρ � δ and (ρ⊕ θ) � Inv(rk). Then (rj , ρ)
z


M

(rk, ρ⊕ θ). Therefore, (s0, ν0)
ψ·〈z〉


M (rk, ρ⊕ θ).

We complete this case by showing (ρ ⊕ θ)L = µk. From Proposition 22, (ρ ⊕ θ)L =
(ρL ⊕ θ)L. Since ρL = µj and µk = (µj ⊕ θ)L, we get (ρ ⊕ θ)L = (µj ⊕ θ)L = µk, as
desired.

Case 2: At line 20. Then from line 17 we obtain µj + η � Inv(rj), 0 < η ≤ g. And from
lines 18 and 20 we get µk = (µj + g)L and rk = rj , respectively. Since µj = ρL we
get ρL + η � Inv(rj) and so ρ + η � Inv(rj) by Lemma 23, for all 0 < η ≤ g. Then

(rj , ρ)
〈g〉


M (rj , ρ + g) and, since rj = rk we get (rj , ρ)
〈g〉


M (rk, ρ + g). Therefore,

(s0, ν0)
ψ·〈g〉


M (rk, ρ+ g).

We complete this case by showing that (ρ + g)L = µk. Since µk = (µj + g)L and
ρL = µj, we get µk = (ρL+g)L. Using Proposition 21, we conclude that µk = (ρ+g)L,
as desired.
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The induction is extended and we are done.

Next we show that a grid automaton can simulate the corresponding TIOA over a g-
adjusted timed word.

Theorem 42 (Grid simulates TIOA) Let MG be the grid corresponding to a TIOA M .
Let s, r ∈ S and ν, ω ∈ [C → Q≥] be such that (s, ν) is g-reachable in M with g = 1/k
and k a positive integer. Also let ψ ∈ Ψg,Σ be a g-adjusted timed word, and L ∈ Q≥

be a positive integer greater than all constants occurring in M . If (s, ν)
ψ


M (r, ω) then

(s, νL), (r, ωL) ∈ SG and (s, νL)
h(ψ)



G

(r, ωL).

Proof Since (s, ν) is g-reachable in M , we get a g-adjusted timed word ψ′ such that

(s0, ν0)
ψ′


M (s, ν). Then (s0, ν0)
ψ′·ψ


M (r, ω). Since ψ′ · ψ is also g-adjusted, (r, ω) is
also g-reachable in M . Thus, by Lemma 40, we get (s, νL), (r, ωL) ∈ SG. It remains to show

that (s, νL)
h(ψ)



G

(r, ωL).

We proceed by induction on the length n ≥ 0 of ψ, noting that (s, ν)
ψ


M (r, ω).

Basis: when n = 0, we get ψ = ε and so s = r and ν = ω. Thus (s, νL) = (r, ωL) and we

get (s, νL)
ε



G

(r, ωL). Since h(ψ) = ε, the basis is complete.

Induction step: assume the result holds for all g-adjusted timed words of length at most

n. Take ψ = ϕ · 〈σ〉, where ϕ has length n, and σ ∈ Σ ∪ Q≥. Then, (s, ν)
ψ


M (r, ω)

gives (s, ν)
ϕ


M (p, µ) and (p, µ)
〈σ〉


M (r, ω).

By the induction hypothesis, (p, µL) ∈ SG and (s, νL)
h(ϕ)



G

(p, µL). Since, by definition,

h(ψ) = h(ϕ) · h(〈σ〉), it remains to show that (p, µL)
h(〈σ〉)



G

(r, ωL).

There are two cases: when σ ∈ Σ and when σ ∈ Q≥.

Case 1: σ ∈ Σ.

Since (p, µ)
〈σ〉


M (r, ω), we must have a transition (p, σ, δ, θ, r) in M , with µ � δ,
ω = µ ⊕ θ, and ω � Inv(r). Recall that (p, µL) ∈ SG. Hence, at some point,
Algorithm 1 has chosen (p, µL) at line 8. From µ � δ, Lemma 23 gives µL � δ.
From µ⊕ θ � Inv(r) and Lemma 24 we get µL⊕ θ � Inv(r). Then Algorithm 1,
lines 12 and 13, adds ((p, µL), σ, (r, ρL)) to TG, where ρ = µL ⊕ θ. Hence,

(p, µL)
h(〈σ〉)



G

(r, ρL), since h(〈σ〉) = σ.

We complete this case by showing that ρL = ωL. Since ρL = (µL ⊕ θ)L, Propo-
sition 22 gives ρL = (µ⊕ θ)L. Then ρL = ωL since ω = µ⊕ θ.
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case 2: σ ∈ Q≥.

Since ψ = ϕ · 〈σ〉 is g-adjusted, we have that σ is also g-adjusted. Let σ = ig, for

some i ≥ 0. Moreover, since (p, µ)
〈ig〉


M (r, ω), we conclude that p = r, ω = µ+ ig
and µ + η � Inv(r), for all 0 < η ≤ ig. Since we already have (p, µL) ∈ SG,

Lemma 36 gives (p, ρL) ∈ SG and (p, µL)
gi



G

(p, ρL), with ρ = µ + ig = ω. But

h(〈σ〉) = gi and p = r. So, we have (r, ωL) ∈ SG and (p, µL)
h(〈σ〉)



G

(r, ωL),

completing the proof.

In order to illustrate Theorem 42, consider the TIOA shown in Figure 2 and the corre-
sponding partial grid depicted in Figure 3. The chosen granularity is g = 1

2 . Recall that
we chose K = 3 and L = 6. Take the g-adjusted timed word α = 2on4on5off . The
corresponding grid word is h(α) = β = (1

2 )4 on (1
2 )8on(1

2 )10 off.

We represent a configuration (s, ν) of the TIOA by (s, t1, t2), where t1 = ν(c1) and
t2 = ν(c2). Then, the start configuration is (s0, 0, 0). Computing over the input timed word
α, from Figure 2, we get

(s0, 0, 0)→
2

(s0, 2, 2)
on
→ (s1, 0, 2)→

4
(s1, 4, 6)

on
→ (s1, 0, 6)→

5
(s1, 5, 11)

off
→ (s0, 0, 0).

Now we apply β to the grid, starting the run in the state (s0, 0, 0). From Figure 3, the
grid moves as follows

(s0, 0, 0)

1

2



G

(s0,
1
2 ,

1
2 )

1

2



G
· · ·

1

2



G

(s0, 2, 2)
on



G

(s1, 0, 2)

1

2



G

(s1,
1
2 ,

5
2)

1

2



G
· · ·

1

2



G

(s1, 4, 6)
on



G

(s1, 0, 6)

Now we follow the grid movements from Figure 4:

(s1, 0, 6)

1

2



G

(s1,
1
2 ,

13
2 )

1

2



G

(s1, 1, 6)

1

2



G

(s1,
3
2 ,

13
2 )

1

2



G

(s1, 2, 6)

1

2



G

...

(s1,
9
2 ,

13
2 )

1

2



G

(s1, 5, 6)
off



G

(s0, 0, 0)

Note that when, at state s1, clock c2 reaches the ⌊L⌋ + 1 = 6 + 1 = 7 boundary, then
the corresponding grid state goes from (s1, t, 6) to (s1, t+ 1

2 ,
13
2 ), and back to (s1, t+ 1, 6),

and then cycles between 6 and 13
2 in the value of clock 2. When the value of the first clock

reaches 5, then a discrete movement is forced and both clocks are reset to zero. See Figure 4.
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s1, 0, 6 s1,
1
2 , 6

1
2

s1, 0, 6
1
2s1,

1
2 , 6

s1, 1, 6

s1,
3
2 , 6

1
2 s1, 2, 6 s1, 5, 6

s0, 0, 0

s1, 0, 7

s1, 1, 7

s1,
3
2 , 7

1
2

s1,
1
2 , 7

s1,
1
2 , 7

1
2

. . .

. . .

. . .

1
2

on
on

1
2

1
2

on

on 1
2

1
2

off

Figure 4: The partial grid L-bound for TIOA in Figure 2.

The next theorem shows that a TIOA imitates the corresponding grid automaton.

Theorem 43 (TIOA imitates grid) Let MG be the grid corresponding to a TIOA M and
let g = 1/k with k a positive integer. Let (s, ν), (r, ω) ∈ SG. Also let L ∈ Q≥ be a positive

integer greater than all constants occurring in M . If (s, ν)
ψ



G

(r, ω) for some ψ ∈ Σ⋆
G, then

there are ρ, µ ∈ [C → Q≥] such that (s, ρ)
bh(ψ)


M (r, µ), with ν = ρL and ω = µL.

Proof We proceed by induction on the length n ≥ 0 of ψ.

Basis: when n = 0, we get ψ = ε, s = r and ν = ω. So, ĥ(ψ) = ε. Using Lemma 41, we get

ρ ∈ [C → Q≥] with ρL = ν. Take µ = ρ. Then (s, ρ)
bh(ψ)


M (r, µ). Moreover, ρL = ν
and µL = ρL = ν = ω, completing the basis.

Induction step: assume the result holds for all grid words of length at most n. Take

ψ = ϕ · σ ∈ Σ⋆
G, where ϕ has length n and σ ∈ ΣG. Then, (s, ν)

ψ



G

(r, ω) gives

(s, ν)
ϕ



G

(p, λ) and (p, λ)
σ



G

(r, ω). By the induction hypothesis we get ν̂, λ̂ ∈ [C →

Q≥], where ν̂L = ν and λ̂L = λ, and such that (s, ν̂)
bh(ϕ)


M (p, λ̂). Since ĥ(ψ) =

ĥ(ϕ) · ĥ(σ), it remains to show that (p, λ̂)
bh(σ)


M (r, ω̂), for some ω̂ ∈ [C → Q≥], where
ω̂L = ω.

There are two cases: when σ ∈ Σ and when σ = g.
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Case 1: σ ∈ Σ.

Since (p, λ)
σ



G

(r, ω), we must have a transition ((p, λ), σ, (r, ω)) in TG. From

Algorithm 1, lines 10 to 14, we have (p, σ, δ, θ, r) in T , for some δ ∈ ΦC , θ ∈
[C y Q≥], and such that λ � δ, λ⊕ θ � Inv(r) and ω = (λ⊕ θ)L.

Since λ = λ̂L, we get λ̂L � δ. Using Lemma 23 we get λ̂ � δ. Also λ̂L⊕θ � Inv(r),
since λ ⊕ θ � Inv(r). Now, from Lemma 23 (with η = 0) we get (λ̂L ⊕ θ)L �

Inv(r). But (λ̂L⊕θ)L = (λ̂⊕θ)L, using Proposition 22. Then (λ̂⊕θ)L � Inv(r),
and so from Lemma 23 (with η = 0) we get λ̂⊕ θ � Inv(r).

Collecting, we have λ̂ � δ, λ̂⊕ θ � Inv(r) and (p, σ, δ, θ, r) ∈ T . Then (p, λ̂)
bh(σ)


M

(r, λ̂ ⊕ θ), since ĥ(σ) = σ. Let ω̂ = λ̂ ⊕ θ. To complete this case, we need
ω̂L = ω. But ω̂L = (λ̂ ⊕ θ)L = (λ̂L ⊕ θ)L, by Proposition 22. Since λ̂L = λ we
get ω̂L = (λ⊕ θ)L = ω, as desired.

Case 2: σ = g.

Since (p, λ)
g



G

(r, ω), we must have a transition ((p, λ), g, (r, ω)) in TG. From

Algorithm 1, lines 17– 20, we have p = r, ω = (λ+ g)L, and λ+ η � Inv(p), for
all 0 < η ≤ g.

Fix any η, 0 < η ≤ g. Since λ = λ̂L, we get λ̂L + η � Inv(p). Using Lemma 23
we get (λ̂L + η)L � Inv(p), and so (λ̂ + η)L � Inv(p), using Proposition 21.
Hence λ̂ + η � Inv(p), using Lemma 23 again. Therefore, λ̂ + η � Inv(p),

0 < η ≤ g. Then (p, λ̂)
〈g〉


M (p, λ̂ + g). Since p = r, by letting ω̂ = λ̂+ g we get

(p, λ̂)
bh(σ)


M (r, ω̂), because ĥ(σ) = ĥ(g) = 〈g〉.

In order to complete this case, we need ω̂L = ω. But ω̂L = (λ̂+ g)L = (λ̂L + g)L
by Proposition 21. Since λ̂L = λ, we get ω̂L = (λ+ g)L = ω, as desired.

This concludes the proof.

For the TIOA depicted in Figure 2 a corresponding partial grid is shown in Figure 4.
In that figure, the gray states represent possible TIOA configurations corresponding to the
nearest grid state.

4 Generating test cases based on test purposes

In this section we use the notion of a test purpose [15] in order to generate test sequences
for TIOA.

4.1 Test purposes

We start by noticing that several types of faults or desired properties, of practical interest,
can be modeled by a specific family of TIOA.
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Definition 44 (Acyclic TIOA) A TIOA is acyclic iff its subjacent directed graph, defined
by taking states as nodes and transitions as edges, is acyclic.

Test purposes are acyclic TIOA equipped with fail and desired states.

Definition 45 (Test purposes) A test purpose is an acyclic TIOA with two special sets of
states: a set F ⊆ S, of fail states, and a set D ⊆ S, of desired states, with F ∩D = ∅.

A test purpose focuses on specific parts of the system, with the aim of verifying whether
the implementation meets certain properties. The fail states in F represent undesired, or
fail, properties of the system. Later, a test purpose can be combined with the specification
TIOA so that both are driven synchronously. Then, using the test purpose as a guide, one
can extract certain input test sequences that drive the specification and the test purpose
TIOA to fail states. Such a set of test sequences can then be applied to the implementation
in order to determine if the implementation also reaches a fail condition. A similar reasoning
applies to the desired states in D.

Consider the following example.

Example 46 The acyclic TIOA depicted in Figure 5 is related to the specification TIOA
shown in Figure 1. Its intention is to verify whether the implementation accepts the input

s0, c
′ ≤ 3 s1, c

′ ≤ 5

s2, c
′ ≤ 10s3, true, F

on, c′ ≤ 3

on, c′ ≤ 5

off , 5 ≤ c′ ≤ 10

c′ := 0

Figure 5: An example of test purpose for the switch system.

on within three time units followed by another on symbol which arrives within five time
units, counting from the start. Then, the implementation must respond with an off symbol
within no more than ten time units from the start, and no less than five time units also
from the start. In this case, the special sets are F = {s3} and D = ∅.

Using test purposes one can focus only on parts of the specification model, thus avoid-
ing generating test cases for the whole system. Together with a test purpose, verifying an
implementation requires that it satisfies both the specification model and the test purpose.
This will be formalized by constructing the (synchronous) product [3, 9] of the specification
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and the test purpose. Next, in order to control the number of states, we obtain the grid au-
tomaton associated with the product [9]. Then, we can traverse the resulting grid searching
down for faulty or desired states, collecting along a set of input sequences. Test sequences
are then derived from these input sequences. The test sequences can, then, be used to test
implementation candidates in order to identify desired behaviors or faults, when those have
been modeled by the test purpose.

4.2 The synchronous product

The intended meaning of a product of two TIOA is to force the synchronism between the
participating TIOA, whenever possible. For that, states in the product are modeled as
pairs of states from the participating TIOA. When at a state (s1, s2) is in the product and
there are transitions out of s1 and of s2 on a same action symbol a, then these transitions
must be taken in parallel. In the product, this is modeled by inserting a transition out
of (s1, s2), over the same symbol a, and in such a way as to capture the effects of the
individual transitions in the participating TIOA. When only one of the states, s1 or s2, has
an outgoing transition on a symbol a, then the product reflects that action, while keeping
the other state unchanged. Clearly, the initial state in the product is the pair of initial
states in the participating TIOA. Finally, in order to avoid clock reset conflicts, we require
that both sets of clocks in the participating TIOA to be disjoint.

The synchronous product is constructed algorithmically.

Definition 47 (Synchronous product) Let M1 and M2 be two TIOA, with C1 ∩ C2 = ∅.
The synchronous product of M1 and M2 is the TIOA M1⊗M2 constructed by Algorithm 2.

Algorithm 2 constructs the synchronous product for two TIOA by first pairing the initial
state of both participating TIOA in order to create the initial state of the product TIOA.
Then, the product transitions are constructed by an exhaustive search for new transitions
and new states in the product.

We want a state (s1, s2) to be a fail state in the product when s2 is a fail state in the
purpose model. Similarly for the desired states.

Definition 48 (Special states in the product) Let M1 be a TIOA and M2 be test purpose.
A state (s1, s2) in the product is a desired or fail state iff s2 is a desired or fail state,
respectively, in M2.

Next, we present an example of a synchronous product.

Example 49 Consider the specification given in Figure 1 and the test purpose given in
Figure 5. The resulting product is shown in Figure 6. The invariant conditions are shown
in Table 1. Note that (q0, s3, F ) and (q1, s3, F ) are the fail states in the product automaton.
Also, note that some input words that are accepted by the specification may not be accepted
by the product, since some timing requirements in the specification may not be satisfied
simultaneously by the test purpose. For instance, taking K = 5, the timed word “14

3 on”
induces a run in the specification but not in the synchronous product since the invariant at
(q0, s0) requires c′ ≤ 3 and we have 14/3 > 3.
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Input: TIOA M1 and M2 with C1 ∩ C2 = ∅.1

Output: The synchronous product MP = M1 ⊗M2.2

begin3

CP ← C1 ∪C2 // the set of clock variables;4

XP ← X1 ∪X2, YP ← Y1 ∪ Y2, ΣP ← Σ1 ∪ Σ2 // action symbols;5

RS ← sP0 = (s10, s
2
0), InvP (sP0 )← Inv1(s

1
0) ∧ Inv2(s

2
0) // initial state;6

TP ← ∅, HS ← ∅ // transitions and visited states;7

while RS \HS 6= ∅ do8

Choose s = (s1, s2) from RS \HS;9

Move s from RS to HS;10

foreach a ∈ Σ do11

if (si, a, δi, θi, si+2) ∈ Ti for some si+1 ∈ S, δi ∈ ΦCi
, θi ∈ [Ci y Q≥],12

i = 1, 2 then

let (p, q) = (s3, s4), δ = δ1 ∧ δ2, θ = θ1 ⊕ θ2, I = Inv1(s3) ∧ Inv2(s4)13

end14

if (s1, a, δ1, θ1, s3) ∈ T1 for some s3 ∈ S, δ1 ∈ ΦC1
, θ1 ∈ [C1 y Q≥] and15

(s2, a, δ2, θ2, s4) 6∈ T2 for all s4 ∈ S, δ2 ∈ ΦC2
,θ2 ∈ [C2 y Q≥] then16

let (p, q) = (s3, s2), δ = δ1, θ = θ1, I = Inv1(s3) ∧ Inv2(s2)17

end18

if (s2, a, δ2, θ2, s4) ∈ T2 for some s4 ∈ S, δ2 ∈ ΦC2
, θ2 ∈ [C2 y Q≥] and19

(s1, a, δ1, θ1, s3) 6∈ T1 for all s3 ∈ S, δ1 ∈ ΦC1
,θ1 ∈ [C1 y Q≥] then20

let (p, q) = (s1, s4), δ = δ2, θ = θ2, I = Inv1(s1) ∧ Inv2(s4)21

end22

Add (p, q) to RS, let InvP (p, q)← I, add ((s1, s2), a, δ, θ, (p, q)) to TP ;23

end24

end25

SP ← HS;26

end27

Algorithm 2: Synchronous product.

4.3 Test case generation and the grid automaton

We can generate timed test cases using the notion of a grid automaton extracted from the
product of the specification and the test purpose, when both the latter are given by their
respective TIOAs.

The grid automaton is obtained from the resulting product following the method pre-
sented in Subsection 3.2. Then, test sequences are extracted by traversing the grid. The
traversal operation starts at the initial state of the grid and searches down until it finds
fail or desired states, depending on the nature of the test. Upon finding one such state,
the corresponding test sequence is output. A recursive traversal procedure is depicted
in Algorithm 3. Clearly, the set of all test sequences is generated by a call in the form
TestGeneration(s0, ǫ), where s0 is the initial state of the grid obtained from the product
automaton and ǫ is the empty string. Note that one can construct g-adjusted timed
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(q0, s0) (q1, s1)

(q1, s2)(q0, s3, F )

(q0, s1)

(q1, s3, F )

on , c ≤ K ∧ c′ ≤ 3

c := 0

c := 0
on, c < 5 ∧ c′ ≤ 5

off , c = 5 ∧ 5 ≤ c′ ≤ 10

c := 0, c′ := 0

off , c = 5

c := 0

on , c ≤ K ∧ c′ ≤ 5

c := 0

c := 0

on, c ≤ K

off , c = 5

c := 0

on , c < 5 , c := 0

on , c < 5 , c := 0

Figure 6: The product of a specification and a test purpose.

State Invariant

(q0, s0) (c′ ≤ 3) ∧ (c ≤ K)
(q1, s1) (c′ ≤ 5) ∧ (c ≤ 5)
(q1, s2) (c′ ≤ 10) ∧ (c ≤ 5)
(q0, s3) (c ≤ K)
(q0, s1) (c′ ≤ 5) ∧ (c ≤ K)
(q1, s3) (c ≤ 5)

Table 1: Invariants for the product

words from all grid words extracted from the grid automaton, using the mappings given at
Definition 37 and Definition 38. Note also that delay transitions in the grid represent the
continuous evolution in the original specification, up to the chosen boundary.

When the test purpose models desired behaviors of a system, the verification process
issues a “pass” verdict only when the implementation respects the specification and it
satisfies the test purpose, for all sequences in the test suite. If, on the other hand, the
testing if based on a purpose automaton with fail states, then the verification process issues
a positive verdict only when the implementation satisfies the specification and also reaches
a faulty state, for any of the sequence in the test suite.

Revisiting Example 49, with K = 5, we see that the sequence β = 8
3on

7
3
on5off is an

execution for the product. If an implementation under test conforms to the specification
and the test purpose, we should be able to observe the same behavior when β is applied
in this implementation. In Figure 7 we present a partial grid automaton resulting from
the synchronous product shown in Figure 6, and where we have chosen a granularity of
1
3 . Note that we have relabeled the states in the figure in order to keep the notation
uncluttered. Next, we can traverse the grid and extract grid words, as previously indicated
by Algorithm 3. For example, the sequence α = (1

3 )2on(1
3
)4on(1

3
)15off can be so extracted.

Using the reverse mapping of Definition 38 we obtain the product timed word 2
3on

4
3
on5off .
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TestGeneration(INPUT: state s of a grid MG; OUTPUT: A timed test sequence1

TTS;)
begin2

if s is a leaf then3

Write TTS;4

else5

foreach neighbor, r, of s reached over a transition on z do6

Concatenate z with TTS;7

TestGeneration(r,TTS);8

end9

end10

end11

Algorithm 3: The traversal algorithm TestGeneration.

Some other sequences that would be extracted from the grid and then mapped to timed
words are:

1

3
on

14

3
on5off

2

3
on

13

3
on5off 1on4on5off

4

3
on

11

3
on5off

5

3
on

10

3
on5off 2on3on5off

7

3
on

8

3
on5off

8

3
on

7

3
on5off 3on2on5off .

Note that some sequences cannot be obtained by traversing the grid, although they might
be executions over the specification. For example, sequences onon4off and 2

3on
13
3

on 17
3

off
cannot be extracted in the grid in Figure 6. The first one has a total time elapsed of less
than five time unit after the last on and this is not allowed in the test purpose although
it is a valid execution in the specification model. In the second one, the last off symbol
occurs more than five time units after the previous on symbol, which is not allowed in the
specification, even though it is allowed in the test purpose.

5 Related works

In this section we describe some related works.

In [9], En-Nouaary and Dssouli also discuss a timed model-based testing on TIOA spec-
ifications which uses test purposes and synchronous products. However, their discretization
technique is based on the classical notion of clock regions, thus imposing a strict relationship
between the number of clock variables present in the models and the granularity that must
be chosen in order to obtain the corresponding discrete automaton. Instead of constructing
a grid automaton directly, the notion of a region graph is first used to represent a possibly
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r0, 0, 0 r0,
1
3 ,

1
3 r0,

2
3 ,

2
3 r0, 1, 1 r0, 3, 3

r1, 0,
2
3 r1,

1
3 , 1 r1,

2
3 ,

4
3 r1, 1,

5
3 r1,

4
3 , 2

r2, 0, 2 r2,
1
3 ,

7
3 r2,

14
3 ,

20
3 r2, 5, 7 r3, 0, 0, F

. . .

. . .

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3 off

on

on

(0, 0) (0, 1
3) (0, 1)

(0, 2
3) (0, 1) (0, 4

3) (0, 5
3)

Figure 7: The partial grid automaton for Figure 6.

infinite transition system and, then, by a process of sampling, a grid automaton is derived.
Moreover, it is not mentioned how one could apply the timed test cases that are generated.

Another test generation method based on TIOA is proposed in [12], and test purposes
are also discussed like in [9]. In these works, following similar lines, region graphs are also
sampled in order to obtain a grid automaton. But no guarantees are postulated about the
algorithms presented therein, which are used in an exhaustive test generation process. Also,
dense time has but a superficial treatment, making it difficult to see how to generate precise
timed test cases when combining test purposes and TIOA models.

In [11], Fouchal and co-workers discuss a test execution strategy similar to the one
discussed in this work. But, whereas our work deals with dense time in order to capture
timed properties, in [11] the notion of timed elements are used to imitate continuous time
evolution, thus offering no guarantees of accuracy about the extracted timed test sequences.

Another approach is taken in [15], now using enumeration of data values in order to avoid
the state space explosion problem. In this work the ioSTS formalism is used as the formal
specification model. Since a discretization method is not used to obtain a grid automaton,
time evolution is not captured in appropriate manner for testing timed properties. Also,
the method could incur in high cost when calculating constraints using approximations in
order to find test sequences.
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Many similar approaches [10, 8, 7] use the classical notion of clock regions in order to
obtain grid automata. In these cases, the large number of clock variables present in models
will often lead to huge grid automata, due to the exponential number of clock regions and the
need to enforce the relationship between the number of clocks and the chosen granularity.
By contrast, our approach allow for an ample range of choice for appropriate granularity
values, thus leading to more controllable grid automata and to more manageable test suites.

6 Concluding Remarks

Many approaches have been proposed to automatically construct test suites for timed sys-
tems. The problem is specially challenging since timed systems exhibit continuous time
evolution and, often, formal models techniques for dealing with such systems incur in the
state explosion problem.

In this work we proposed a new way of discretizing timed system models. In the process,
we noticed that the classical notion of clock regions were unnecessary, giving rise to a more
general notion that allowed for an ample range of granularity values that could be chosen
in the discretization process. We also demonstrated that the grid automaton thus obtained
was capable of homomorphically simulating the original timed system, and vice-versa. This
formed the basis for the development of automatic methods for generating test suites.

In order to test more specific system properties over the implementations, we made use
of the notion of a timed test purpose model. Using the notion of a synchronous product
between a timed system and a timed purpose model, the discretization algorithm is able
to generate a corresponding grid automaton that reflects both the behavior of the orig-
inal timed system, as well as the desired properties specified by the timed test purpose
model. From this grid automaton, one can then automate the process of extracting test
case sequences. Detailed proofs of correctness were provided for all properties of interest.

As suggestions for expanding this work, we cite the possible representation of data flow
within the formal models, thus also capturing the idea of system context variables. With
that notion in place, one should be able to deal both with control flow and time evolution, as
well as with data flow issues, the latter being captured by context variables manipulations.
Finally, the discretization ideas presented here could also be used for future investigations
that could lead to automatic test case generation when context variables are also present
in the formal models.
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