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Abstract

A graph G is called well covered if every two maximal independent sets of G have
the same number of vertices. In this paper we shall use the modular and primeval
decomposition techniques to decide well coveredness of graphs such that, either all their
Pj-connected components are separable or they belong to well known classes of graphs
that, in some local sense, contain few P,’s. In particular, we shall consider the class of
cographs, Ps-reducible, P,-sparse, extended Pj-reducible, extended P,-sparse graphs,
Pj-extendible graphs, P;-lite graphs, and P,-tidy graphs.

1 Introduction

In this paper we are concerned with the so called well coveredness of a graph. To introduce
this concept we need the following definitions. Let G be a graph. A subset I of G is an
independent set if every pair of distinct vertices of I are not adjacent in G. An independent
set is maximal if it is not properly contained in any other independent set of G. The
maximum number of vertices in a maximal independent set of G is the independence number,
a(G), of G. A graph G is called well covered if every two maximal independent sets of G
have the same number of vertices. In other words, a graph G is well covered if every maximal
independent set of G is a maximum independent set of G. The concept of well covered graph
was introduced by Plummer [21]. Since the problem of finding the independence number of
a general graph is NP-complete, an interesting algorithm property of well covered graphs
is that the greedy algorithm for producing a maximal independent set always produces a
maximum independent set when applied to well covered graphs.

The problem of deciding if a graph is well covered is coNP-complete. This was inde-
pendently proved by Chvatal and Slater [4] and by Sankaranarayana and Stewart [26]. The
problem remains coN’P-complete even when the input graph is K 4-free [3].

One of the main directions of the work on well covered graphs has been done towards
exploring structural properties of some classes of graphs in order to characterize subclasses

* Partially supported by CNPq and FAPERJ.

M, COPPE/Sistemas, Universidade Federal do Rio de Janeiro, Brazil
HInstituto de Computacio, Universidade de Campinas, Brazil
$Dipartimento di Matematica, Universitd di Roma “La Sapienza”, Ttaly.



2 Klein, de Mello and Morgana

of well covered graphs. Some of these characterizations lead to polynomial algorithms that
recognize if a graph of such classes is well covered. For example [2, 7, 9, 20, 22, 23, 24].

In this paper we consider some classes of graphs that have been characterized in terms
of special properties of the unique primeval decomposition tree associated to each graph of
the class. The primeval decomposition tree of any graph can be computed in linear time [1]
and therefore it is the natural framework for finding polynomial time algorithms of many
problems.

We shall characterize well coveredness for graphs such that, either all their Py-connected
components are separable or they belong to well known classes of graphs with few Pj’s
having non-separable Pj;-connected components of special type. In particular we shall
consider the class of cograph [5, 6], Ps-reducible [14], Ps-sparse [12, 16|, extended P4-
reducible [10], extended Pj-sparse graphs [10], Py-extendible graphs [15], Py-lite graphs [13],
Py-tidy graphs [11].

In Section 2 we give some definitions and preliminary results. In Section 3 we prove
some general results about the well coveredness of graphs. In Section 4 we use modular
decomposition to describe an algorithm that decides, in linear time, if a graph is well covered
under the hypothesis that all its Pj-connected components are separable. In Section 5 we
use primeval decomposition to describe an algorithm that decides, in linear time, if a Py-
tidy graph is well covered. This result implies linear time algorithms for deciding well
coveredness of any graph belonging to the above mentioned classes.

2 Preliminaries

2.1 Basic Notions

Throughout this paper, G = (V, E) is a finite simple undirected graph with |V| = n and
|E| = m. The complement graph of G = (V, E) is the graph G = (V, E), where uwv € FE if
and only if uv & E.

For a vertex v € V the neighborhood of v in G is N(v) = {v|luv € E}. A clique of G
is a set of pairwise adjacent vertices of G. Given a subset U of V, let G[U] stand for the
subgraph of G induced by U. Let P, denote the chordless path on n vertices and n — 1
edges. Let C, denote the chordless cycle with n vertices. A graph is called split graph if its
vertex set can be partitioned in a clique K and an independent set S. A split graph is a
spider if and only if |K| = |S| > 2 and there exists a bijection f between S and K such that
either N(v) = {f(v)} for v € S (thin legs) or N(v) = K\ {f(v)} for v € S (thick legs). The
simplest spider is a P4. In a P, with vertices u,v,w,z and edges uv, vw, wx, the vertices v
and w are called midpoints whereas the vertices u and x are called endpoints.

Let G and G’ be two vertex disjoint graphs. The parallel graph G U G’ is defined by
V(GUG) =V(G)UV(G) and E(GUG') = E(G) U E(G"). The serial graph G + G’ is
defined by V(G+ G') = V(G) UV (G') and E(G + G') = E(G)U E(G") U {vv’ for each v €
V(G) and v' € V(G")}.
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2.2 Modular and primeval decomposition

A module of G is a set of vertices M of V' such that each vertex in V' \ M is either adjacent
to all vertices of M, or to none. The whole V' and every singleton vertex are trivial modules.
Whenever G has only trivial modules is called a prime graph. We say that M is a strong
module if for any other module A the intersection M N A is empty or equals either M or
A. The unique partition of the vertex set of a graph G into maximal strong modules is
used recursively to define its unique modular decomposition tree T(G). The module M is
parallel (P) if G[M] is disconnected and its maximal strong submodules are the connected
components of G[M]; M is serial (S) if G[M] is disconnected and its maximal strong
submodules are the connected components of G[M]; M is neighbourhood (N) if both G[M]
and G[M] are connected. Similarly, we say that G[M] is a parallel, serial or neighbourhood
graph when M is respectively so. The leaves of T'(G) are the vertices of G and the internal
nodes of T'(G) are modules labeled with P, S or N (for parallel, serial, or neighbourhood
module, respectively). The modular decomposition tree of any graph can be computed in
linear time [19, 25].

Let t be an internal node of the modular decomposition tree T'(G) of the graph G.
We denote by M (t) the module corresponding to ¢, which consists of the set of vertices
of G associated with the subtree of T'(G) rooted at node t. Note that M (t) is a strong
module for every (internal or leaf) node t of T'(G). Let t1,t2,...,t, be the children of the
node ¢t in T(G). We denote by G(t) the representative graph of node t defined as follows:
V(G(t)) = {t1,t2,...,tp}, and t;t; € E(G(t)) if there exists an edge vyv; € E(G) such that
v € M(t;) and v; € M(t;).

It is easy to see that if ¢ is a node labelled by S, then G(¢) is a complete graph, if ¢ is
a node labelled by P, then G(t) is an edgeless graph and if ¢ is a node labelled by N, then
G(t) is a prime graph.

The structure of a neighborhood module have been further investigated by Jamison and
Olariu [17] that introduced the notion of Pj-connected and separable Pj-connected graphs.
Following their terminology, a graph G is p-connected (or, more extensively, Pj-connected)
if, for each partition V7, V5 of V into two sets, there exists a chordless path of four vertices
P, which contains vertices from V; and V5. Such Py is a crossing between V; and Vo, A
p-connected graph is called separable if its vertex set can be partitioned into two sets V
and V5 in such a way that each crossing P, has its midpoints in V; and its endpoints in V5.

The p-connected components of a graph G are the maximal induced p-connected sub-
graphs. Vertices of G that do not belong to any p-connected component of G are termed
weak vertices.

The following theorem gives general structure for arbitrary graphs.

Theorem 1 [17] For an arbitrary graph G exactly one of the following conditions is sat-
isfied:

1. G is disconnected;

2. G is disconnected;
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3. There is a unique proper separable p-connected component H of G with a partition
(Hy, Hs) such that every vertex outside H is adjacent to all vertices in Hy and to no
vertex in Ho;

4. G is p-connected.

This theorem implies a decomposition scheme for arbitrary graphs called primeval de-
composition, that refines the modular decomposition in the following way. If M is a neigh-
borhood module of G, then G[M] is either a p-connected graph or it can be decomposed
according to condition 3 of Theorem 1 and M, in this last case, is called a decomposable
neighborhood module. Similarly we say that G[M] is a decomposable neighborhood graph.
The primeval decomposition tree T'(G) of the graph G is a unique labelled tree associated
with the primeval decomposition of G in which the leaves of T'(G) are either the p-connected
components or the weak vertices of G and an internal node is labelled by P for parallel mod-
ule, or S for serial module, or DN for decomposable neighborhood module.

For separable p-connected components the following theorems hold:
Theorem 2 [17] If a p-connected graph is separable then its partition is unique.

Theorem 3 [17] A p-connected graph is separable if and only if its representative graph
is a split graph.

Note that as a consequence of the above theorems, the partition (K,S) of the split
representative graph of a separable p-connected graph is unique.

The theorem 3 implies the following:

Lemma 1 The representative graph G' of a decomposable neighborhood graph G is a split
graph.

Proof. Let H be the unique proper separable p-connected component of G. Then G\ H is
a non-empty module of G, by condition 3 of Theorem 1. By Theorem 2 the representative
graph H' of H is a split graph with partition (K, S). Then the representative graph G’ of
G is also a split graph with partition (K’,5"), K’ = K and S’ = S U {u}, where u is the
representative vertex of G\ H and it is connected to every vertex v € K and to none of S.
|

Note that by choosing S’ of maximum cardinality (as in the proof of Lemma 1), the
split partition (K’,S’) of G’ is also unique.

3 Some general results about the well coveredness of graphs

In this section we will give some general results about the well coveredness of graphs and
present an algorithm that decides, in linear time, if a graph is well covered under the
hypothesis that all its P,-connected components are separable.
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The next lemma plays an important role in the following results.
Lemma 2 If G is a well covered graph, then each module M of G is well covered.

Proof. Assume G is a well covered graph. If the module M is a single vertex, then M is
trivially well covered. Suppose on the contrary that there exists a module M that is not well
covered. Then there exist maximal independent sets [; and Iy in M with |I;| # |I2|. Let
us consider the set V/ =V \ (M UN(v)), where v is any vertex of M. If V' = (), then every
vertex of G[V'\ M] is adjacent to v and therefore to every other vertex of M, by definition
of module. Then I; and Iy are maximal independent sets of different cardinalities in G.
This contradicts the well coveredness of G. If V' # (), and I is a maximal independent set
of G[V'], by definition of module T U I; and I U Iy are maximal independent sets of different
cardinalities in GG. This contradicts the well coveredness of G. [ |

In the following we will associate to each vertex t; of the representative graph G(t) a
weight w(t;) equal to the independence number of its corresponding module M (¢;). If I is
an independent set of G(t) we will denote w(l) = >_, -y w(t;) the weight of set I.

Lemma 3 A graph G is well covered if and only if all its strong mazimal modules are well
covered and all the mazimal independent sets of its weighted representative graph G' have
the same weight.

Proof. If a strong maximal module of G is not well covered, then G is not well covered by
Lemma 2. Let us assume that every strong maximal module of G is well covered. Therefore,
if a vertex v of G’ has weight w(v), all the maximal independent sets of the corresponding
module of G have cardinality w(v). Let I be a maximal independent set of G'. By definition
of module, it is easy to see that by replacing each vertex v € I with any maximal independent
set of the corresponding module of GG, we obtain a maximal independent set of G. Moreover,
all these sets have cardinality w(I). Now, consider all the maximal independent sets of G'.
If all of them have the same weight then all the maximal independent sets of G have the
same cardinality and G is well covered. Therefore GG is well covered if and only if all its
strong maximal modules are well covered and all maximal independent sets of G’ have the
same weight. [ |

Theorem 4 A parallel graph G is well covered if and only if every maximal strong module
of G is well covered. The independence number of G is the sum of the independence number
of its maximal strong modules.

Proof. Let G = G1 UG>U...UG), p > 2, be a parallel graph. The representative graph
G’ of G is an edgeless graph with p vertices. Since there is a unique independent set in G’,
then if every maximal strong module of G is well covered, by Lemma 3, GG is well covered.
Moreover, the independence number of G is clearly the sum of the independence number of
its maximal strong modules. [ |
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Theorem 5 A serial graph G is well covered if and only if every maximal strong module of
G is well covered and all of them have the same independence number. The independence
number of G is the same of the independence number of its mazimal strong modules.

Proof. Let G = Gy + Ga+ ...+ Gp, p > 2, be a serial graph. Its representative graph G’
is isomorphic to K, where each vertex v of G’ has weight w(v) equal to the independence
number of the corresponding maximal strong module. Every vertex of K, is a maximal
independent set. Therefore, by Lemma 3, G is well covered if and only if every maximal
strong module of G is well covered and all of them have the same independence number. m

In the next theorem we will consider a separable p-connected graph G. Recall that its
corresponding representative graph G’ is a split graph with a unique partition (K, S), by
theorems 2 and 3.

Theorem 6 Let G be a separable p-connected graph. Let G' be its corresponding weighted
representative split graph with partition (K,S). G is well covered if and only if every
mazimal strong module of G is well covered and, in G', w(v) = 3 ,cn()ns w(2) for every
v € K. Furthermore the independence number of G is equal to Y, cqw(u).

Proof. Let G be a separable p-connected graph and G’ its corresponding weighted rep-
resentative split graph with partition (K,S). By Theorem 2, G’ is a split graph with a
unique partition (K, S). Then the maximal independent sets of G’ are either S or the sets
(SU{v})\(N(v)NS), where v is any vertex of K. The maximal independent sets of G’ have
weight either 3°,cqw(u) or w(v) + 3 ,cqw(u) — 3 cn@w)ns w(2). Therefore, by Lemma 3,
G is well covered if and only if all its maximal strong modules are well covered and for each
v € K we have w(v) = 3 ,cn()ns w(2). Thus the independence number of G is equal to

EuES w(u) u

Theorem 7 Let G be a decomposable neighborhood graph. Let G' be the weighted represen-
tative split graph of G with partition (K',S"). G is well covered if and only if every mazimal
strong module of G is well covered and, in G', w(v) = X ,cn()ng w(2) for every v € K'.
Furthermore the independence number of G is equal to Y-, cq w(u).

Proof. The proof is the same as in the previous theorem. [ |

Theorems 6 and 7 imply the following result.

Theorem 8 If G is a well covered decomposable neighborhood graph and H the unique
proper separable p-connected component of G, then H is not well covered.

Proof. Let G be a well covered decomposable neighborhood graph and let H be the proper
separable p-connected component of GG. The representative graph of H is a split graph H’,
with partition (K,.S) by Theorem 2. The representative graph of G, by Lemma 1, is also a
split graph G’, with partition (K,S U {u}), where u is the representative vertex of G \ H
and it is connected to every vertex v € K and to none of S. Let us assume that H is also
well covered. Then, by Lemma 3 and Theorem 6, every maximal independent set of H' has
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weight equal to >, cgw(z). Since every vertex v € K is connected to the vertex u, in G’,
the set ({v}US)\ (N(v) NS)) is a maximal independent set of both H' and G'. But if G
is well covered, by Lemma 3 and Theorem 7, all the maximal independent sets of G’ have
weight w(u) + >, cqw(2), a contradiction. [ |

4 The well coveredness of graphs that have only separable
p-connected components

Now using the results of the last section, we describe an algorithm for deciding if a graph
G is well covered under the hypothesis that every p-connected component of G is separable.
In the affirmative case, the algorithm will also compute the independence number of G.

Our algorithm is based on the modular decomposition of G. Let My, My, ..., M, be the
maximal strong modules of G. If G is a parallel graph, then by Theorem 4, GG is well covered
if and only if each G[M;] is well covered. Next, for each module M;, if G[M;] is a serial
graph, then by Theorem 5, G[M;] is well covered if and only if each module of G[M;] is well
covered and all of them have the same independence number. If both G[M;] and G[M;] are
connected, then G[M;] is either a decomposable neighborhood graph or a p-connected graph
by Theorem 1. Under the hypothesis that every p-connected components of G is separable,
the representative graph of G[M;] is a split graph by Theorem 2 and Lemma 1. Then it is
enough to verify if the representative graph of G[M;] is a split graph. In the negative case,
G contains a p-connected components which is not separable. In the affirmative case, we
consider the weighted representative graph of G[M;]. By theorems 6 and 7, G[M;] is well
covered if and only if if every maximal strong module of G[M;] is well covered and, for every
v € K, we have w(v) = 3 cn@w)ns w(u). The independence number of G[M;] is equal to
> ues w(u). For each new submodule, we can now proceed recursively.

We can now give a formal description of a recursive Boolean procedure for deciding
if a graph G is well covered, under the hypothesis that its p-connected components are
separable and, in the affirmative case, computing its independence number. As we have
already pointed out, our algorithm is based on the modular decomposition tree T'(G) of G.
For each node ¢ in T'(G), we denote by ch(t) the set of its children. Every internal node ¢
of T(G) is labelled by P for parallel module, or S for serial module, or N for neighborhood
module and every leaf has label(t) € {1,2,...,n}, where n = |V(G)|. For each node t the
algorithm computes s(t) that is the minimum label of the leaves of the subtree of T(G)
rooted at node t and the independence number a(t) of G[M (t)].

procedure WellCovered(G,T(G),t, a(t), s(t))

Input: the graph G and its modular decomposition tree T'(G) labelled as above.
Output: TRUE and the independence number a(G) of G, if G is well covered, or FALSE
otherwise.

if t is a leaf, then a(t) = 1 and s(t) = label(t)
else
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if label(t) = P or label(t) = S, then
fori=1,...,|ch(t)| do
WellCovered(G[M (t;)], T(G[M (t;)]), ti, a(t;), s(t;))
if label(t) = P, then
a(t) = Yiz1,. fen() (ti) and s(t) = ming_q _jen(ey| s(ti)
else
if label(t) = S and a(t1) = a(tz) = -+ = a(t|eny)), then a(t) = a(t1)
else return FALSE and STOP
else (label(t) = N)
Construct the weighted representative graph G'(t) with
V(G'(t)) = {s(ti) Yim1,....|cn(e) }
if G'(t) is not a split graph, then
return FALSE and STOP (G does not satisfy the hypothesis)
else
find the partition K and S of V(G'(t))
if w(s(ti)) = X, )en(s))ns w(s(t;)) for every s(t;) € K, then
a(t) = Xsuyes w(s(ty)) and s(t) = ming—y __jen(r) s(ti)
else return FALSE and STOP
return TRUE and «a(t).

Theorem 9 The algorithm to decide well coveredness of a graph G, whose p-connected
components are separable, is correct and runs in linear time.

Proof. The correctness follows by the above discussion. Let n = |[V(G)| and m = |E(G)|.
The modular decomposition tree T'(G) can be constructed in O(n+m) and |V (T(G))| < 2n.
The traversal of T(G) and the computation of a(t) and s(t) for each node t of T(G) can
be done in O(|V(T(G))|). Constructing the representative graphs of all the N-nodes of G
can be done in O(n + m). In fact the total number number of edges of all representative
graphs is less or equal than m and the total number of vertices is O(n), since the vertex set
of the representative graph of two different N-nodes have at most one vertex in common.
Finally verifying that all of them are split graphs can also be done in O(n + m) time [18].
Therefore the whole algorithm runs in linear time. [ |

5 The well coveredness of graphs with few P,’s

In the last section, we have described an algorithm that given a graph G with the property
that all p-connected components are separable, it decides if G is well covered. Now we are
going to consider special classes of graphs which are obtained by forbidding in the primeval
decomposition the presence of p-connected components or restricting the p-connected com-
ponents, not necessarely separable, to be some particular graphs.

The graphs we shall consider are graphs which in a local sense contain only a restricted
number of P,’s, and they have been extensively studied.
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It all started with the class of cographs, which is a class of graphs where no Py is allowed
to exist. In particular they are characterized by having only serial and parallel nodes in
their modular decomposition tree. These graphs have been investigated independently by
many authors and many nice structural properties are known [5, 6], which have motivated
researchers to define classes of graphs obtained as extension of cographs.

Hodang [12] introduced the class of Pj-sparse graphs, which is the class such that no set
of five vertices induces more than one Pj. Its p-connected components are spiders [16].

Jamison and Olariu [14, 15, 13] introduced the class of P;-reducible graphs, Pj-extendible
and Py-lite. The Pj-reducible graphs are the graphs such that no vertex belongs to more
than one Py, and its p-connected components are P;’s. The Pj-extendible are graphs where
each p-connected component consists of at most five vertices. Each p-connected component
is either P5 or P5 or Cs, or Py with one vertex eventually substituted by a homogeneous set
with cardinality two. The Py-lite are graphs such that every induced subgraph with at most
six vertices either contains at most two P,’s or is isomorphic to a spider. The p-connected
components of a Py-lite graph are either a spider (possibly with one vertex replaced by a
homogeneous set of cardinality 2) or one of the graphs Ps, Ps.

Giakoumakis and Vanherpe [10] studied structural and algorithmic properties of ez-
tended Py-reducible and extended Pj-sparse graphs. These classes are obtained from Pj-
reducible and Pj-sparse graphs, respectively, by also allowing C5’s as p-connected compo-
nents.

Another generalization of the previously mentioned graph classes are the Py-tidy graphs.
They were studied by Giakoumakis et al. in [11]. A graph is Ps-tidy if for every Pj there
exists at most one vertex outside which, together with three of its vertices, induces a Pj.
The structure of the p-connected components of Ps-tidy graphs can be described as follows:

Theorem 10 [11] A p-connected component of a Py-tidy graph is either isomorphic to a
spider (possibly with one vertex replaced by a homogeneous set of cardinality 2) or to one

of the graphs Ps, Ps and Cs.

The Py-tidy graphs strictly contain the classes of cographs, Pj-reducible, Pj-sparse,
Pj-extendible, extended Pj-reducible, extended Pj-sparse, and Py-lite graphs.

We recall from [11] the Figure 1 that shows the previous classes partially ordered by
inclusion.

Theorem 11 A p-connected tidy graph G is well covered if and only if it is a Cs, or Ps,
or a thin spider with a vertex possibly substituted by a Ko.

Proof. The permitted p-connected tidy graphs by Theorem 10 are either isomorphic to a
spider (possibly with one vertex replaced by a homogeneous set of cardinality 2) or to one
of the graphs Ps, Ps or a Cs. Clearly C5 and P5 are well covered while Ps is not. If G is a
spider with at most one vertex possibly replaced by a homogeneous set of cardinality 2, it
is easy to see that the conditions for well coveredness of Theorem 6 are verified if and only
if G is a thin spider with a vertex possibly substituted by a K. [ |

Theorem 12 FEvery decomposable neighborhood Py-tidy graph G is not well covered.
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P, extensible ext. Py~ sparse

ext. P,- reducible

\/

redu0|ble

Figure 1: A Hasse diagram.

Proof. The only possible separable p-connected component H is a spider with at most one
vertex possibly replaced by a homogeneous set of cardinality 2. If H is a thin spider with
a vertex possibly substituted by a Ks then H is well covered and G is not well covered
by Theorem 8. In the remaining cases it is easy to verify that the conditions for well
coveredness of Theorem 7 are never satisfied. [ |

Theorem 13 Let G be a Py-tidy graph G and let T'(G) be its unique primeval decomposition
tree. Then G is well covered if and only if in T(G) the following conditions hold:

(i) every strong mazimal submodule of a parallel module of T'(G) is well covered,

(ii) every strong mazimal submodule of a serial module of T'(G) is well covered and all of
them have the same independence number,

(iii) T'(G) does not contain any strong mazimal decomposable neighborhood module,

(iv) T(G) contains only p-connected components isomorphic to Cs, or Ps, or a thin spider
with a vertex possibly substituted by a Ko.

Proof. It follows by Lemma 2 and Theorems 1, 4, 5, 11, 12. [ |
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We can now describe an algorithm that decides if a P;-tidy graph G is well covered and,
in the affirmative case, computes its independence number. Our algorithm is based on the
primeval decomposition tree T'(G) of G. For each node ¢ in T'(G), we shall denote by ch(t)
the set of its children. Associated to every node t of T'(G) there is a label as follows:

P for parallel node

S for serial node

N D for decomposable neighborhood node

W for weak vertex

P for the p-connected component Ps

P5C for the p-connected component Ps

Cj5 for the p-connected component Cjy

SP(SPC) for the thin (thick) spider

SP1(SPC1) for the thin (thick) spider with a vertex replaced by Ko
SP2(SPC2) for the thin (thick) spider with a vertex replaced by Kj.

label(t) =

Associated to every leaf of T'(G) there is also the number of vertices n,. of the corres-
ponding p-connected component or 1 if it is a weak vertex.

A description of the recursive procedure is given below:

procedure WellCovered(T(G),t, a(t))

Input: the primeval decomposition tree 1" of a Py-tidy graph G, labelled as above.
Output: FALSE if G is not well covered or TRUE otherwise. In the last case «(t) contains
the independence number of G.

if label(t) = N D, then return FALSE and STOP
else
if label(t) = P or label(t) = S, then
fori=1,...,|ch(t)| do WellCovered(T(G[M (t;)]),t:, a(t;))
if label(t) = P, then a(t) = a(t1) + a(tz) + - + alt|cw))

else
if label(t) = S and a(t1) = a(tz) = -+ = a(t|ny)), then a(t) = a(t1)
else return FALSE and STOP

else

if label(t) = W, then a(t) =1
else if label(t) = PsC or label(t) = Cs, then a(t) = 2
else if label(t) = SP or label(t) = SP1, then a(t) = [ 5|
else return FALSE and STOP
return TRUE and a(t).

Theorem 14 The algorithm to decide if a Py-tidy graph is well covered is correct and runs
in linear time.
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Proof. The correctness follows by Theorem 13. Let n = |V(G)| and m = |E(G)|. The
primeval decomposition tree T(G) can be constructed in O(n + m) and |V (T(Q))| < 2n.
Verifying if each leaf of T'(G) is a permitted p-connected component can be done in O(n).
Finally the traversal of T(G) can be done in O(|V(T(G))]). Therefore the algorithm runs
in linear time. [

Finally we would like to observe that the above algorithm can be used to decide if a
graph belonging to any of the classes mentioned in this section is well covered. In fact,
the primeval decomposition tree of graphs belonging to any of those classes is characterized
either by the absence of p-connected components (the class of cographs) or by the absence
of some type of p-connected components that are present in a Py-tidy graph. In particular,
we can also apply the algorithm of Section 3 for cographs (which have no p-connected
components) and for Py-sparse graphs and Pj-reducible graphs (which have only separable
p-connected components).
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