| INSTITUTO DE COMPUTACAO
(=000 UNIVERSIDADE ESTADUAL DE CAMPINAS

Components meet Aspects: Assessing Design
Stability of a Software Product Line

Leonardo P. Tizzei Marcelo Dias
Cecilia M.F. Rubira Alessandro Garcia
Jaejoon Lee

Technical Report - 1C-09-25 - Relatério Técnico

July - 2009 - Julho

The contents of this report are the sole responsibility of the authors.
O conteddo do presente relatério é de Gnica responsabilidade dos autores.

Components meet Aspects: Assessing Design Stability of a
Software Product Line

Leonardo P. Tizzei* Marcelo Dias' Cecilia M.F. Rubirat

Alessandro Garcia Jaejoon Lee I

Abstract

A Product Line Architecture (PLA) should remain stable accommodating evolution-
ary changes of stakeholder’s requirements. Otherwise, architectural modifications may
have to be propagated to products of a product line, thereby increasing maintenance
costs. Hence, it is important to understand which techniques better cope with PLA
stability through evolution. This paper presents a comparative study to evaluate the
positive and negative change impact on PLA designs based on components and aspects.
The objective of the evaluation is to assess when aspects and components promote PLA
stability in the presence of various types of change. To support a broader analysis, we
compare the stability of the joint application of components and aspects to a PLA design
against the isolated use of aspect-oriented, object-oriented, and component-based design
techniques. The results show that the combination of aspects and components tends to
promote superior PLA resilience than the other PLAs in most of the circumstances.

1 Introduction

Software product line (SPL) engineering aims to improve development efficiency for families
of software systems in a given domain. This aim at facilitating large-scale reuse through a
Product Line Architecture (PLA) that is common to a variety of similar products in terms
of their architectural elements [5][7].

The combination of SPL and Component-based Development (CBD) is a well-known
technique to rapidly and efficiently derive products from a SPL [4]. In the CBD, software
systems are developed composing interoperable and reusable blocks called software com-
ponents [23]. Moreover, software components explicitly expose their services as provided
interfaces and their dependencies as required interfaces. A component-based PLA fosters
explicit representation of component specification and contributes to reduce coupling and
increase cohesion, thereby improving SPL modularity and evolvability.

*Institute of Computing, University of Campinas, Brazil
TInstitute of Computing, University of Campinas, Brazil
Hnstitute of Computing, University of Campinas, Brazil
$Pontifical Catholic University of Rio de Janeiro, Brazil
YComputing Department, Lancaster University, United Kingdom

2 Tizzei, Dias, Rubira, Garcia e Lee

It is known that software systems evolve, otherwise their use become progressively less
satisfactory [17]. In particular, in the context of PLA, there are several different types of evo-
lutionary changes, such as: introduction and removal of features, and changing a mandatory
feature optional and vice-versa. They can potentially end up with architecturally-significant
changes and thus causing high maintenance costs for the products. As such, it is important
for organisations to achieve a controlled evolution and a stable PLA lies at the heart of it

The reuse of a PLA, among other factors, depends on the ability of its design to remain
stable [19]. A stable PLA means that it can endure evolutionary changes by sustaining its
modularity properties [9]. One of the promising approaches to support enhanced modularity
is Aspect-Oriented (AO) programming [15] and some works advocate that AO programming
improves PLA stability [3][9][21]. On the other hand, there is also initial evidence that the
isolate use of aspect-oriented decompositions can lead to modularity instabilities in various
circumstances [9][20]. Yet, there is a lack of studies assessing whether an AO approach
combined with a component-based PLA can reduce these modularity instabilities.

This paper presents a comparative study to evaluate the positive and negative impact
of software evolution on PLAs. The objective of its evaluation is to quantitatively and
qualitatively assess to what extent the synergistic use of component and aspect promotes
architecture design stability in the presence of various types of change. We evaluate the
PLA stability of a hybrid approach (i.e. combined application of aspects and components)
against the isolated use of component-based, OO, and AO approaches.

Our investigation focuses on eight releases of a SPL called MobileMedia, which were im-
plemented using Java and AspectJ. Four different versions of MobileMedia product line were
involved in our empirical study: (i) an OO version, (ii) an AO version, (iii) a component-
based version, and (iv) a hybrid version where both component and aspects are employed.
We used conventional metrics suites based on change impact [22] and modularity [24] for
the architecture stability evaluation of the four versions. We observed that in the hybrid
approach provided a more stable PLA in most of the eight releases. In this paper, we have
adopted a component implementation model called COSMOS* [13], which can explicit map
the architectural components and connectors of a PLA to source code and also contributes
to achieve a modular design by implementing explicit provided and required component
interfaces.

This paper is organized as follows: Section 2 presents some concepts about COSMOS*
implementation model and aspects and PLA. Section 3 describes the empirical study, which
provides data for the change impact analysis on Section 4 and for the modularity analysis
on Section 5. Section 6 presents some works related to this one and in Section 7 we draw
the conclusions and plan the future work.

2 Background

2.1 COSMOS* Component Implementation Model

The main advantages of COSMOS*, when compared with other component models such as
Corba Component Model (CCM)[2] and Enterprise Java Beans, is twofold. First, COSMOS*
explicitly represents architectural units, such as components, connectors and configuration,

Components meet Aspects 3

thus providing traceability between the software architecture and the respective source code.
Second, COSMOS* is considered a platform-independent model, since it is based on a set of
design patterns. Based on these advantages, we have chosen the COSMOS* implementation
model to realize the component-based PLAs involved in our empirical study. However, our
proposal could be applied to other component models, such as CCM[2] and Enterprise Java
Beans.

COSMOS* defines five sub-models, which address different aspects of component-based
systems: (i) the specification model specifies the components using UML; (ii) the imple-
mentation model explicitly separates the definition of the provided and required interfaces
of the components from the implementation of its provided services; (iii) the connector
model specifies the link between components using connectors, thus enabling two or more
components to be connected in a configuration; (iv) composite components model specifies
high-granularity components, which are composed by other COSMOS* components; and
(v) system model defines a software component which can be executed straightforward, thus
encapsulating the necessary dependencies.

2.2 Aspects and Product Line Architectures

Aspect-Oriented Software Development (AOSD) [11] is an approach that aims to modularize
the crosscutting concerns of both standalone applications and software product lines. These
concerns are widely-scoped properties and usually crosscut several modules in the software
system. Aspects are the abstractions used to encapsulate otherwise crosscutting concerns.
As advocated by some authors [3][9][21] AO design decompositions is a promising approach
to support modularity and stability of crosscutting features in SPLs. The use of aspects rely
on three majors mechanisms to modularize and vary crosscutting concerns (in this paper,
concerns are considered equivalent to features): (i) joinpoints are the identifiable executions
points, such as method calls or object attribute assignments; (ii) pointcuts are composition
queries that select a set of joinpoints from the space available of joinpoints; and (iii) advices
are the new behaviour that extend, refine or replace the computation at selected joinpoints.

3 Empirical Settings

The stability assessment of PLAs involved in this empirical study is based on conventional
metric suites for change impact [22] (Section 4) and modularity [24] (Section 5). These
metrics were chosen as they have been worked as effective stability indicators in a number
of previous studies (e.g. [9], [20], [24]). We also relied on the same change impact and
modularity measures from the study of Figueiredo et al. [9], so that we could directly
contrast their observations with our findings. Their study was only based on the comparison
of conventional OO and AO implementations of MobileMedia (Section 3.1). They did not
evaluate the complementary role of components and aspects on the design of stable SPLs.
Then, we have replicated and extended their evaluation in order to compare the PLA
stability of aspect-oriented COSMOS* implementations to the original implementations of
MobileMedia.

4 Tizzei, Dias, Rubira, Garcia e Lee

Legend
Mandatory\. Optional Yy Alternative ‘0\. Album {lq(o\ z]
Photo
MobileMedia \O S—
(a) | (b))\ £

MobilePhone &]

Media

Management m
<<Advises>>1

Create/DeIetel | Label Media | View Photo | Q :
| Persistence & | <----- -] Favourites £
<<Advises>>

Figure 1: A feature model and COSMOS*-AO PLA model of MobileMedia SPL

Favourites

We componentized eight releases of both versions of MobileMedia using COSMOS*
implementation model. Hence, four implementations of MobileMedia were involved in this
empirical study: (i) an OO version, (ii) an AO version, (iii) a COSMOS* version, and a
(iv) COSMOS*-AO version. The first two versions were the original ones [9] and the last
two versions were refactored from the two original ones, respectively.

3.1 Target software product line

In the following, in order to exemplify and evaluate our solution, we present a software
application, called MobileMedia [9], which is a SPL for mobile applications that manipulates
photo, music, and video on mobile devices, such as mobile phones. The system uses various
technologies based on the Java ME platform, such as SMS, WMA and MMAPI. It has
two versions with the same functionalities but implemented with different approaches: one
uses AO programming and the other only OO programming. MobileMedia endured seven
evolution scenarios, which led to eight releases. The scenarios comprises different types of
changes involving mandatory, optional, and alternative features, as well as non-functional
concerns. Both AO and OO versions of MobileMedia follow the same change scenario. The
purpose of these changes is to exercise the implementation boundaries and, thus, assess the
design stability of the PLA.

Figure 1(a) presents a partial view of the feature model of MobileMedia, following the
notation proposed by Ferber et al. [8]. It is presented the features of the MobileMedia
release four, such as Create/Delete Photo, View Photo, and Label Photo. In order to
illustrate a evolution scenario, the optional feature Favourites is shown in gray, because
it was added in release four.

Figure 1(b) shows a partial view of the component-based PLA with aspects of the release
four. It is highlighted in gray the component Favourites, which was added in release four
owing to the inclusion of the optional feature Favourites.

3.2 Case Study Definition and Execution

In order to execute the comparative study, we have performed the following steps:

Components meet Aspects 5

e Step 1. Refactor eight releases (R1-R8) of the original OO version to COSMOS*

version;

e Step 2. Refactor eight releases (R1-R8) of the original AO version to COSMOS*-AO

version;

e Step 3. Collect change impact and modularity metrics for eight (R1-R8) COSMOS*
releases;

e Step 4. Collect change impact and modularity metrics for eight (R1-R8) COSMOS*-
AOQ releases;

e Step 5. Compare the results of COSMOS*-AO against COSMOS*, AO, and OO

versions.

As a result of the refactoring Step 1 and Step 2, two different versions of MobileMedia
SPL were generated, with eight releases each version. The size of the eight releases of
the COSMOS* version is approximately 69 KLOC and 67 KLOC for the COSMOS*-AO
version. During the execution of Step 1 and Step 2, we were strict in following the same
implementation decisions made by the original MobileMedia developers, such as extracting
exception handling code according to Castor et al. [10], and aspectizing all optional and
alternative features. In addition, we have followed a number of well-known design practices
to build modular designs[7]. During the execution of Step 3 and Step 4, we have used the
same metrics suites of the original MobileMedia case study [9].

4 Change Impact Analysis

In this section, we discuss the change impact on components and on operations. The
more resilient a PLA is, the minor is the change impact on its components and operations.
The impact is measured by the number of components or operations added, changed, and
removed in each release. The change impact is classified in two groups: components (Table
1(a)) and operations (Table 1(b)). Each group is divided in three subgroups: changed,
removed, and added. Tables 1(a) and 1(b) show the impact in each release (R2 to R8) and
the total impact of each version. The total number of removed operations and changed
operations were minor on COSMOS*-AO PLA than on other PLAs. The total number
of added components and added operations on COSMOS* PLA were slightly minor than
on COSMOS*-AO PLA. In order to discuss these results from the feature point of view,
we have classified the evolutionary changes into three groups: addition of optional features
(R4, R5, and R6), addition of alternative features (R7 and R8), and addition of mandatory
features (R2 and R3).

Addition of Optional Features. The overall results for these releases show that the
COSMOS*-AO PLA required fewer changes and removals of components and operations
than other PLAs. This COSMOS*-AO approach rely on pointcuts and advices (Section

6 Tizzei, Dias, Rubira, Garcia e Lee

Table 1: Change impact on components (a) and on operations (b)

Releases : Releases
(a) R2JR3|R4|R5|R.6|R.7|R.8[Total] * (b) R.2JR.3]JR4] R.5]R.6 | R.7 | R.8 JTotal
00 5]8|5[8]6 |12]22] 66 : 00 28|12 7 |10] 7 |22 |23} 109
Changed Cosmos* 417 |47 |6 |10]14] 52 : Changed Cosmos* [14| 4 | 0| 3 |0 |29 |22] 72
AO 5|10 |2 | 8|5 |16 9]55 1 AO 25116 1 |20 | 4 | 69 | 10 | 145
Cosmos*-AO| 4 | 7 | 3 |13 | 3 | 10| 6 | 46 : Cosmos*-AO| 10| 6 | 0 | 3 | 0 | O 0] 19
% 00 ojo|0]O0]|O0]|8]1 9 : [00 o[l2fo]19]0]|71]13]105
g Removed Cosmos* ojo0oj|0 |1 0| 5|0 6 : -(,9%, Removed Cosmos™ Ofofo0of[40) 0 |45 1] 86
E’ AO 1/0]0|0|0|8|0]09 X tg AO 2| 2|0]20]0]63]13]100
8 Cosmos*-AO| 0 | 0 | O | 0O | 0| 4]0 4_ : o Cosmos™AO| 0 [0 [0 [34] 0 |38 2 l
00 911057 |17]6]45 : 00 32[21] 3 36|37 [110[45284
Cosmos™ 3|00 5|6 |11]5]30 ¥ Cosmos™ | 11| 12| 0 | 42|49 | 84 | 39 | 237
Added AO 121 2|3 |6 |8 /|21 |16] 68 : Added AO 49 | 28| 10 | 37 | 47 (118 71 | 360
Cosmos™AO| 2 | 2 | 2 | 4|5 |17 | 8 | 40 1 Cosmos™AO | 11| 23 | 14| 42 | 26 | 89 | 58 | 263

2) to modularly implement optional features creating new components, instead of gener-
ating scattered code in existent ones. For instance, in the addition of the optional fea-
ture Favourites, as shown in Figure 1(b), the main modification was the inclusion of the
Favourites component on COSMOS*-AO PLA. In contrast to COSMOS*-AO PLA, this
feature implementation was scattered in COSMOS* PLA design, thus increasing the change
impact on its elements. However, creating components to implement optional features on
COSMOS*-AQ version increased the number of added components and operations more
than other approaches. The results for addition of optional features highlights an interest-
ing stability benefit of the joint use of aspects and components: the COSMOS*-AO PLA
is more open to extensions and closed to modifications, conforming to the Open-Closed
Principle [18].

Addition of Alternative Features. The overall measures were similar to those de-
scribed in the addition of optional features, which means that the COSMOS*-AO PLA was
the least impacted on the number of components and operations changed and removed.
Once more, the COSMOS*-AO approach takes advantage of the obliviousness properties
of aspects and the high cohesion of component-based approach to avoid change propaga-
tion on other architectural elements. For example, in the R8 of COSMOS*-AO PLA, we
have created a cohesive component that supports and mediates the use of all alternative
media (photo, music, and video) decreasing the impact on its architectural elements. It was
not possible to create such component in other PLAs. In the COSMOS* and OO PLAs,
the code necessary to combine the use of different media types was scattered in several
components. In the AO PLA, it was required to create an aspect for each combination of
media types. Similar to the addition of optional features, COSMOS*-AO PLA added more
components and operations than COSMOS* PLA, because the COSMOS*-AQO approach
relies on pointcuts and advices to extend components creating new ones instead of changing
them.

Addition of Mandatory Features. The overall results are similar for addition of
mandatory features on COSMOS*-AO PLA and on COSMOS* PLA. COSMOS*-AO PLA
has a slightly better measures in R2 than COSMOS* PLA. Nevertheless, COSMOS*-AO
PLA has a slightly worse measures in R3 than COSMOS* PLA. The results are similar

Components meet Aspects 7

because most of mandatory features in COSMOS*-AO were implemented using pure OO,
which led to a code structure similar to the COSMOS™* implementation.

5 Modularity Analysis

This section presents the results for the modularity analysis according to three metrics
suites, namely separation of features (Section 5.1), coupling, and cohesion (Section 5.2).
These metrics were chosen because they are previously-validated stability indicators as
presented in several experimental studies(e.g. [9][10][12]).

The metrics for coupling and cohesion were defined based on conventional OO metric
suites [6]. Furthermore, this metric suite includes the Feature Diffusion over Modules metric,
in order to quantify the degree to which a single a feature is scattered on a system [22].
In the component-based PLAs, modules are considered as equivalent to components. The
majority of these metrics can be automatically collected by applying metric tools, such as
Aopmetrics [1] and AJATO [9].

5.1 Separation of Features

Figure 2 presents how three features, namely Favourites, Label Media, and Persistence, are
scattered on the PLAs involved in this study. Figures 2(a) and (d) show that the optional
feature Favourites is less scattered on COSMOS*-AO than on other versions thanks to the
use of pointcuts and advices. Similar behaviour is also observed in other optional features
implemented with aspects (e.g. Sorting), but due to space limitations they are not presented
in this paper. This result indicates that the implementation of optional features combining
components and aspects increase PLA modularity, which contributes to reduce the change
impact caused by the addition of these features (see Section 4).

The scattering of Label Media (Figures 2 (b) and (e)) is similar on all PLAs because this
feature was implemented in a similar way on all versions (i.e. not using aspects). Figures 2
(c) and (f) present the scattering of the Persistence feature. The COSMOS* implementation
managed to separate the persistence feature better than COSMOS*-AO implementation.
Our decision to implement optional and alternative features using aspects on COSMOS*-
AO version harmed the modularity of some mandatory features. For instance, Photo, Music
and Video alternative features depend on Persistence, once every photo, song or video must
be persisted. Hence, as new optional and alternative features are included over the different
releases, the number of components that contains mandatory features increases. These
results are similar to those presented by Figueiredo et al.[9]

5.2 Cohesion and Coupling

Figure 3 shows the average lack of cohesion of methods (LCOM) from R1-R8. The COSMOS*-
AO version has the lowest lack of cohesion. First, because COSMOS* model explicits the
mapping between a component-based software architecture and source code, which main-
tains architectural modularity at the implementation level. Second, all COSMOS*-AO

8 Tizzei, Dias, Rubira, Garcia e Lee
Favourites ! Label Media Persistence
1
10 1 60 I 80~
A0 ' o H
o 8 < Cosmos*-AO E 50 \._./g/g : 60 -
2 s o _— ’
2 1 30 ' 404
g ! 20 s ; 20
8 H & Cosmos*-A0 H 4 & Cosmos*-AO
g 2 10 !
0+ T T T y 1 0+——T—7——T—1 ! © — T
R4 R5 R6 R7 RS i R2 R3 R4 R5 R6 R7 R8; Rl R2Z R3 R4 R5 R6 R7 R8
@ (b) ()
35 ' 60 170 =00
30 00 : 50 A A : 60 4 < Cosmos*
o 25 < Cosmos* H H 50 4
5 20 § 40 —— 40 —
g J
éls _\ E 30 o © ° T : 307 4 4 ¢ > !
]
S 10 ° 3 ! 20 woo 1 20-
é 5 : 10 & Cosmos* : 10 4
= 0+ T T T 1 : 0+ T T T T T 1 : 0 T T T T T T 1
R4 R5 R6 R7 R8 1 R2 R3 R4 R5 R6 R7 R8 ! Rl R2 R3 R4 R5 R6 R7 R
]]
1 .

(e)

(f)

Figure 2: Feature Diffusion over Modules of all versions of MobileMedia

, 10 110

£ 09 19

28 '8

5 7 v

E .

S 6 16

g .

s 15

%3]

3 2 12

§1 i1

< 0\t | 0+
RL R2 R3 R4 R5 R6 R7 R8 ! RL R2 R3 R4 R5 R6 R7 RS

() : (b)

Figure 3: Average Lack of Cohesion of Methods

releases have a number of components greater than the number of components of COS-
MOS* releases. Then, there is a greater number of components implementing the same
functionalities. Hence, each component of COSMOS*-AO PLA has a smaller scope than
those of COSMOS* PLA, which increases its cohesion. Since high cohesion is a property of
a modular architecture, the low lack of cohesion of the COSMOS*-AO PLA contributes to
reduce the change impact on its architectural elements (see Section 4).

Figure 4 presents the average efferent coupling between components in each release,
comparing original and refactored versions. COSMOS*-AO PLA has a higher coupling
between its architectural elements than COSMOS* PLA. COSMOS*-AO components are
usually more coupled than COSMOS* components, because COSMOS*-AO components
must know the component they advise. For instance, in order to implement in a single
component the Favourites feature, this component depends on two other components, Photo
and Persistence (see Figure 1(b)). On the COSMOS* version, the Favourites feature is
implemented in a scattered way by Photo and Persistence components, avoiding the creation
of the Favourites component and its dependencies.

Components meet Aspects 9

Average Efferent Coupling

o RPN W A OO N

oL N W N oo N

RI R0 R3 R4 R5 Re R7 RS, RI Rz RS R4 Rs Re R7 K8
(a) H (b)
Figure 4: Average Efferent Coupling between Components

6 Related Work

The work of Figueiredo et al. [9] present a case study which assesses qualitatively and
quantitatively the positive and negative impacts of AOP on design stability. Two SPLs were
involved in their case study: MobileMedia (see Section 3.1) and BestLap. They conclude
that AO versions of the SPLs tend to have more stable design, particularly when a change
targets optional and alternative features.

Hoffman and Eugster [14] present a case study that aids in understanding the trade-offs
between obliviousness and modularity. The exception handling mechanisms of three aspect-
oriented applications were refactored using explicit join points (EJPs) in order to compare
to OO and AO versions. They conclude that the greatest approach is a combination of the
oblivious and explicit approaches.

Kvale et al[16] present a case study that investigates whether AO programming can help
to build more easy-to-change COTS-based systems than OO. They compare how much effort
is needed to: (i) integrate a COTS-based system; and (ii) replace COTS after integration.
They conclude that fewer classes need to be changed when adding and replacing COTS
using AO. They have evaluated the benefits of using AO to implement the glue-code between
COTS and the system, while we have evaluated the using of AO in a SPL context.

7 Conclusions and future work

Evolutionary changes may increase maintenance costs of SPLs. A PLA is a key artefact to
achieve a controlled evolution and, hence, it is important for organisations to understand
how PLAs evolve and which approaches better support PLA stability. The main contri-
bution of this paper is a novel analysis of the advantages and drawbacks of integrating
components and aspects on design stable PLA. This approach was compared against the
isolated use of AO, OO, and component-based approaches in the presence of heterogeneous
changes. The overall results show that the COSMOS*-AO PLA is more resilient than the
other PLAs. In particular, an interesting observation is that the synergistic combination of
aspects and components seems to address the previously-observed configurability problems
of aspect-oriented PLAs [9]. This finding is supported by the fact that the use of aspects and
components (as supported by the COSMOS*-AO model) succeed in reducing the change
propagation while adding multiple optional and alternative features in MobileMedia.

10 Tizzei, Dias, Rubira, Garcia e Lee

Threats to Validity and Future Work. One limitation of this study is that we
focused on the evolution history assessment of one SPL. The same metric suites should
be applied in the future to several and heterogeneous SPL applications in order to collect
more reliable data. Nevertheless, there is a lack of empirical studies assessing state-of-
the-art techniques for PLA stability on the literature. This study represents a significant
step stone in this direction. Another limitation to be further addressed is the use of other
aspect-aware design strategies for component-based PLAs. In fact, we are working on a new
component model that extends COSMOS* implementation model to represent architectural
elements with explicit interfaces representing architectural joinpoints. This new component
model aims at providing the mapping between a component-based PLA with aspects and
source code.

8 Acknowledgements

Leonardo P. Tizzei is supported by Capes/Brazil under grant 05866/2007. Marcelo Dias is
supported by Fapesp/Brazil under grant 2008/02501-9. Cecilia M. F. Rubira is partially
supported by CNPQ/Brazil Productivity grant number 301446,/2006-7.

References

[1] Aopmetrics. tigris.org. http://aopmetrics.tigris.org/.

[2] Corba component model specification. Technical Report formal/06-04-01 - Version 4,
OMG, 2006.

[3] V. Alves, P. M. Jr., L. Cole, P. Borba, and G. Ramalho. Extracting and evolving
mobile games product lines. In LNCS, volume 3714,/2005, 2005.

[4] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Laqua, D. Muthig,
B. Paech, J. Wiist, and J. Zettel. Component-based product line engineering with UML.
Addison-Wesley, Boston, MA, USA, 2002.

[5] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-
Wesley, 2003.

[6] S. Chidamber and C. Kemerer. A metrics suite for oo design. IEEE TSE, 20(6):476—
493, 1994.

[7] P. Clements and L. Northrop. Software product lines: Practices and patterns. Addison-
Wesley, 2002.

[8] S. Ferber, J. Haag, and J. Savolainen. Feature interaction and dependencies: Modeling
features for reengineering a legacy product line. In In Proc. of the Second Int. (SPLC),
LNCS, 2002.

Components meet Aspects 11

[9]

E. Figueiredo, N. Camacho, C. S. M. Monteiro, U. Kulesza, A. Garcia, S. Soares,
F. Ferrari, S. Khan, F. Filho, and F. Dantas. Evolving software product lines with
aspects: an empirical study on design stability. In ICSE, 2008.

F. C. Filho, N. Cacho, E. Figueiredo, R. Maranhao, A. Garcia, and C. M. F. Rubira.
Exceptions and aspects: the devil is in the details. In SIGSOFT ’06/FSE-14: Proc.
of the 14th ACM SIGSOFT Int. symposium on FSE, pages 152-162, NY, USA, 2006.
ACM.

R. E. Filman, T. Elrad, S. Clarke, and M. Aksit. Aspect-Oriented Software Develop-
ment. Addison-Wesley Professional, October 2004.

A. Garcia, C. Sant’anna, E. Figueiredo, U. Kulesza, C. Lucena, and A. von Staa.
Modularizing design patterns with aspects: a quantitative study. In Proc. of the jth
Int. Conf. on AOSD, pages 3—14, NY, USA, 2005. ACM Press.

L. A. Gayard, C. M. Rubira, and P. A. Guerra. COSMOS*: a COmponent System
MOdel for Software Architectures. Technical Report 1C-08-04, Institute of Computing,
University of Campinas, February 2008. In English, 58 pages.

K. Hoffman and P. Eugster. Towards reusable components with aspects: an empirical
study on modularity and obliviousness. In ICSE, pages 91-100, New York, NY, USA,
2008. ACM.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. marc Loingtier, and
J. Irwin. Aspect-oriented programming. In Proc. of ECOOP, pages 220-242. Springer-
Verlag, 1997.

A. A. Kvale, J. Li, and R. Conradi. A case study on building cots-based system using
aspect-oriented programming. In Proceedings of the 2005 ACM symposium on Applied
computing, pages 1491-1498, NY, USA, 2005. ACM.

M. M. Lehman, J. F. Ramil, and D. E. Perry. On evidence supporting the feast
hypothesis and the laws of software evolution. In METRICS, page 84, Washington,
DC, USA, 1998. IEEE Computer Society.

B. Meyer. Object-oriented software construction (2nd ed.). Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1997.

P. Mohagheghi, R. Conradi, O. M. Killi, and H. Schwarz. An empirical study of
software reuse vs. defect-density and stability. In ICSE, pages 282-292, Washington,
DC, USA, 2004. IEEE Computer Society.

C. Nunes, U. Kulesza, C. Sant’Anna, I. Nunes, A. Garcia, and C. Lucena. Comparing
stability of implementation techniques for multi-agent system product lines. In Proc.
138rd European CSMR, Kaiserslautern, Germany, March 2009.

J. Oldevik. Can aspects model product lines? In EA ’08: Proc. of the 2008 AOSD
workshop on Early aspects, pages 1-8, New York, NY, USA, 2008. ACM.

12 Tizzei, Dias, Rubira, Garcia e Lee

[22] C. Sant’anna, A. Garcia, C. Chavez, C. Lucena, and A. v. von Staa. On the reuse and
maintenance of aspect-oriented software: An assessment framework. In Proc. XVII
Brazilian Symposium on Software Engineering, 2003.

[23] C. Szyperski. Component Software. Addison-Wesley, 2002.

[24] S. Yau and J. Collofello. Design stability measures for software maintenance. IEEE
TSE, 11(9):849-856, 1985.

