
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

INSTITUTO DE COMPUTAÇ�OUNIVERSIDADE ESTADUAL DE CAMPINAS

Kr-pa
king of P4-tidy graphsV. Pedrotti C. P. de MelloTe
hni
al Report - IC-09-19 - Relatório Té
ni
oMay - 2009 - MaioThe
ontents of this report are the sole responsibility of the authors.O
onteúdo do presente relatório é de úni
a responsabilidade dos autores.

Kr-packing of P4-tidy graphs

Vagner Pedrotti∗ Célia Picinin de Mello†

Abstract

The Kr-packing problem asks for the maximum number of pairwise vertex-disjoint
cliques of size r in a graph, for a fixed integer r ≥ 2. This problem is NP-hard for general
graphs when r ≥ 3, and even when restricted to chordal graphs. However, Guruswami
et al. proposed a polynomial-time algorithm for cographs (when r is fixed). In this
work we extended this algorithm to P4-tidy graphs, keeping the same time complexity.

1 Introduction

The Kr-packing problem consists of finding the maximum number of pairwise vertex-disjoint
cliques of size r in a graph, for a fixed integer r ≥ 2. Note that, for r = 2 the problem
is exactly the maximum matching problem, which has a well-known polynomial time algo-
rithm. However, the Kr-packing problem becomes NP-hard for general graphs and even for
line, chordal, planar, and total graphs (when r ≥ 3) [3]. Moreover, the problem remains
NP-hard for subclasses of chordal and planar graphs, such that split graphs (when r ≥ 4) [3]
and planar cubic graphs [1]. Recently, Guruswami et al. [3] proposed a polynomial time
algorithm for cographs (when r is fixed), which we extend for P4-tidy graphs.

A related problem is the Kr-factor problem, which asks whether a graph has a partition
of its vertices into cliques of size r. Note that, for r = 2 this problem is the perfect matching
problem, and for r ≥ 3 it is NP-complete for graphs with a maximum clique of r vertices [5],
but polynomial for split graphs [3].

In this work, G denotes a simple, finite, and undirected graph with vertex set V (G) and
edge set E(G). Let H ⊆ V (G), we denote by G[H] the induced subgraph of G whose vertex
set is H.

We denote an induced path of n vertices by Pn, an induced cycle of n vertices by Cn,
and the complement of a graph G by G. A clique is a subset K ⊆ V (G) (not necessarily
maximal) such that for any {u, v} ∈ K, u and v are adjacent in G. A stable set is a subset
S ⊆ V (G) such that for any {u, v} ⊆ S, u and v are non-adjacent in G. We denote by Kn

(Sn) a clique (stable set) with n vertices.

A subset M of V (G) is called a module of G if do not exist {a, b} ⊆M and c ∈ (V (G)\M)
such that {a, c} ∈ E(G) and {b, c} /∈ E(G). A module M of G is strong if does not exist
another module N of G such that N \M 6= ∅, M \N 6= ∅, and N ∩M 6= ∅.

∗Partially supported by FAPESP, grant 2007/58519-0.
†Partially supported by CNPq, grants 300934/2006-8 and 482521/2007-4.

1

2 Pedrotti and de Mello

The modular decomposition tree (MDT) of a graph G has one node for each strong
module of G. The parent of a node, associated with module M , is the node that corresponds
to the strong module with minimum cardinality which properly contains M . Hence, the
MDT represents inclusions of strong modules, from isolated vertices (leaves) to the module
V (G) (the root). If N is a non-leaf node of the MDT and M is the corresponding module in
G, then N is called serial (parallel), if G[M] (G[M]) is not connected. Otherwise, the node
N is called neighborhood. A linear-time algorithm that produces the MDT of any graph is
given in [6].

A cograph is a graph characterized by the absence of neighbourhood nodes in its MDT.
A graph is P4-sparse [4] if the subgraph induced by each module corresponding to a neigh-
borhood node in its MDT is isomorphic to a spider. A graph G is a spider if V (G) can be
partitioned into three sets K, S, and H, such that:

• |K| = |S| ≥ 2, but H can be empty;

• K is a clique and S is a stable set;

• {i, j} ∈ E(G),∀i ∈ K,∀j ∈ H;

• {i, j} /∈ E(G),∀i ∈ S,∀j ∈ H; and

• There is a bijection b : K → S such that, ∀u ∈ S,∀v ∈ K, {u, v} ∈ E(G) if, and only
if, b(v) = u (thin spider) or b(v) 6= u (thick spider).

Note that a spider graph G has at least four vertices and, if it is a P4-sparse graph, then
G[H] is also a P4-sparse graph. We say that a spider G has a partition (K,S,H).

A pseudo-spider is a spider or a spider with one vertex v in S or in K split into two
new vertices, which are adjacent to the neighbors of v and may either be adjacent to each
other or not. A P4-tidy graph [2] is a graph in which the subgraph induced by the module
associated with each neighborhood node in its MDT is isomorphic to a P5, a P5, a C5, or
a pseudo-spider.

2 Kr-packing of some special graphs

In the next subsections, we analyze the solution of the Kr-packing problem for some kinds
of graphs, which are union graphs, join graphs, spiders, pseudo-spiders, and some special
graphs.

2.1 Union and join graphs

In this section we recall, for the reader’s convenience, the results about Kr-packing of
cographs given by Guruswami et al. [3], using the a slightly different notation, given bellow.
They proposed an algorithm to compute in polynomial time a Kr-packing of a cograph,
using a dynamic programming technique.

To describe these results, some definitions are necessary. A partition P of V (G) is a
(n1, n2, . . . , nr)-partition of G, for ni ∈ Z

+, 1 ≤ i ≤ r and r ≥ 2, if each part of P is a clique

Kr-packing of P4-tidy graphs 3

of G and there are exactly ni cliques of size i in P . This obviously implies that all cliques in P
are vertex-disjoint and |V (G)| =

∑r
i=1

ini. The Kr-packing problem asks for the maximum
value of nr such that G has a (x, 0, 0, . . . , nr)-partition of G, for x = |V (G)| − rnr.

Now, consider the function f(G,n3, n4, . . . , nr) = max{n2 : G has a (x, n2, n3, n4, . . . ,
nr)-partition for x = |V (G)| −

∑r
i=2

ini}. This function is undefined when there is no
(x, n2, n3, n4, . . . , nr)-partition of G for all values of x and n2. Note that, if we compute
f(G, 0, 0, . . . , nr) for all values of nr between 0 and |V (G)|/r, we solve the Kr-packing
problem for G.

We also need two graph operations, the first produces a union graph G = G′ ∪ G′′

defined by V (G) = V (G′) ∪ V (G′′) and E(G) = E(G′) ∪ E(G′′). The second operation
produces a join graph G = G′ + G′′ and it is defined by V (G) = V (G′) ∪ V (G′′) and
E(G) = E(G′) ∪ E(G′′) ∪ {{v, u} : v ∈ V (G′), u ∈ V (G′′)}.

If G = G1 ∪ G2 ∪ . . . ∪ Gk, to compute f(G,n3, n4, . . . , nr), Guruswami et al. apply
repeatedly an algorithm that computes f on a graph G′ ∪G′′. This algorithm returns the
maximum of f(G′, n′

3, n
′
4, . . . , n

′
r) + f(G′′, n′′

3 , n
′′
4, . . . , n

′′
r), for all integers n′

i ≥ 0 and n′′
i ≥ 0

which satisfy ni = n′
i + n′′

i , for 3 ≤ i ≤ r.
We define a configuration F as a sequence of non-negative integers, which have a partic-

ular notation: Fi,j, F ′
i , and F ′′

i , for 1 ≤ i ≤ r and 0 ≤ j ≤ i. A (n1, n2, . . . , nr)-partition P
of G′+G′′ has configuration F relative to G′ if Fi,j = |{C : C ∈ P, |C| = i, |C∩V (G′)| = j}|,
F ′

i =
∑r

k=i Fk,i, and F ′′
i =

∑r
k=i Fk,k−i, for all integers 1 ≤ i ≤ r and 0 ≤ j ≤ i.

If G = G1 + G2 + . . . + Gk, Guruswami et al. apply an algorithm that computes
f(H,n3, n4, . . . , nr) on a graph H = G′ + G′′. Let F = {F : ∃ a (n1, n2, . . . , nr)-partition
P of H with configuration F relative to G′}. This algorithm returns the maximum of
F2,0 + F2,1 + F2,2, for all F ∈ F . A configuration F is in F if, and only if, it satisfies:

• ni =
∑i

j=0
Fi,j and Fi,j ≥ 0, for 1 ≤ i ≤ r and 0 ≤ j ≤ i;

• F ′
2 ≤ f(G′, F ′

3, . . . , F
′
r) and F ′′

2 ≤ f(G′′, F ′′
3 , . . . , F ′′

r); and

• |V (G′)| =
∑r

j=1
jF ′

j and |V (G′′)| =
∑r

j=1
jF ′′

j .

Once their aim is to compute f , it is not needed to analyze every possible configuration
in F . Lemma 4.2 from [3] (rewriten below, adapted to our notation) is used to reduce the
number of analyzed configurations by imposing an additional condition:

∑r
i=2

Fi,j = 0 or
∑r

i=2
Fi,0 = 0.

Lemma 2.1 (Lemma 4.2 from [3]). If P is a (n1, n2, . . . , nr)-partition of G = G′ + G′′,
then there exists another (n1, n2, . . . , nr)-partition P ′ of G such that P ′ does not contain C ′

and C ′′ such that C ′ ⊆ V (G′) and C ′′ ⊆ V (G′′).

2.2 Spiders

Let G be a spider with partition (K,S,H) and P be a (n1, n2, . . . , nr)-partition of G. Then,
each C ∈ P either has one vertex in S or is a subset of K ∪ H. We now extend the
definition of configuration given in Section 2.1 adding the integers FS

i , for 1 ≤ i ≤ r. Since
G[K ∪H] = G[K] + G[H], we say that P has configuration F if Fi,j = |{C : C ∈ P,C ⊆

4 Pedrotti and de Mello

K ∪H, |C| = i, |C ∩K| = j}|, FS
i = |{C : C ∈ P, |C| = i, |C ∩ S| = 1}|, F ′

i =
∑r

k=i Fk,i,
and F ′′

i =
∑r

k=i Fk,k−i, for all integers 1 ≤ i ≤ r and 0 ≤ j ≤ i.
We now describe conditions to pack cliques in any spider.

Lemma 2.2. A spider G has a (n1, n2, . . . , nr)-partition with configuration F if, and only
if, the configuration F satisfies:

1. F ′′
2 ≤ f(G[H], F ′′

3 , . . . , F ′′
r);

2. |S| =
∑r

i=1
FS

i , |K| =
∑r

i=2
(i− 1)FS

i +
∑r

i=1
iF ′

i , and |H| =
∑r

i=1
iF ′′

i ;

3. FS
i = 0, for i ≥ 3 (i ≥ |K|+ 1) when G is a thin (thick) spider; and

4. ni = FS
i +

∑i
j=0

Fi,j , for 1 ≤ i ≤ r.

Proof. Let G be a spider and P be a (n1, n2, . . . , nr)-partition of G with configuration F .
The first condition is true because intersections of elements of P with H give a partition
of H into cliques with F ′′

i cliques of size i, for 1 ≤ i ≤ r. The second condition must be
satisfied because every vertex of each part of the spider must be in exactly one clique of P .
The third one follows from the fact that no clique can use a vertex in S and all vertices of
K for a thick spider or a vertex of S and two or more of K for a thin spider. Finally, the
last condition is true because each clique in P must either contain one vertex of S or be
contained in K ∪H.

Given a configuration F that satisfy the Lemma’s requirements, a partition of V (G)
into cliques with that configuration can be produced. To do this, label each vertex of K by
ki for 1 ≤ i ≤ |K| and order the vertices in a sequence OK = (k1, k2, . . . , k|K|). Now, if G
is a thin spider, label as si the vertex in S which is adjacent to ki and make the sequence
OS = (s1, s2, . . . , s|S|). Otherwise, label as si the vertex in S which is non-adjacent to ki

and make the sequence OS = (s|S|, s1, s2, . . . , s|S|−1).
We now partition K ∪ S producing a set of cliques P ′. First, for each 2 ≤ i ≤ r, we

create FS
i cliques of size i with one vertex in S each. We remove the first vertex of OS and

the first i − 1 vertices of OK and use them to produce each clique. If G is a thick spider,
each set uses one vertex of S and at least one vertex of K (but not all), so by the ordering
of OS and OK and Condition 3, the vertices si and ki are never packed in the same set and,
then, each set is a clique. If G is a thin spider, each set contains adjacent vertices si and
ki, by the ordering of OS and OK and Condition 3.

Now, consider the integers F ′
j , for 1 ≤ j ≤ r. We partition the remaining vertices of OK

into F ′
j sets of size j, for each j. Each set is a clique by definition of a spider. Finally, take

the FS
1 vertices remaining in OS and use each one as a unitary clique. Thus, each vertex of

K ∪ S was in some clique, by Condition 2.
A way to see what happens is to take vertices of K and S as two queues and apply

the above procedure. Examples of the procedure for thin and thick spiders are given in
Figure 1.

Finally, we produce the partition P using the previous cliques in P ′ and cliques in
a (n′′

1 , n
′′
2, . . . , n

′′
r)-partition P ′′ of H. The following procedure is executed once for each

Fi,j > 0 with 0 < j < i ≤ r. Get Fi,j pairs formed by one clique of size i in P ′ that is

Kr-packing of P4-tidy graphs 5

contained in K and one clique of size i − j in P ′′. Now, make the union of cliques in each
pair to produce Fi,j cliques of size i in G. By definition of F ′

i and F ′′
i and by Condition 1

there are enough cliques available in P ′ and P ′′. These new cliques, together with non-used
cliques of P ′ and P ′′ give a (n1, n2, . . . , nr)-partition of G by Condition 4.

(a) For a thin spider. (b) For a thick spider.

Figure 1: An example of packing cliques in K ∪ S.

Lemma 2.2 gives necessary and sufficient conditions to partition vertices of a spider into
cliques. This makes possible to rearrange cliques in any partition so that some properties
are satisfied, as in the next statement.

Lemma 2.3. If a spider G has a (n1, n2, . . . , nr)-partition , then there is another (n1, n2, . . . , nr)-
partition P ′ of G in which every K2 either is contained in H or has a vertex in S.

Proof. Let P be a (n1, n2, . . . , nr)-partition of a spider G with partition (K,S,H). Then,
the configuration F of P satisfies conditions of Lemma 2.2.

Since any clique contained in K ∪ S contains at most one vertex in S, then FS
1 ≥

2F2,2 + F2,1. If F2,2 > 0, we change the integers, so that FS
2 ← FS

2 + F2,2, FS
1 ← FS

1 −F2,2,
F1,1 ← F1,1 +F2,2, and F2,2 ← 0. Moreover, if F2,1 > 0, we also apply the following changes:
FS

2 ← FS
2 + F2,1, FS

1 ← FS
1 −F2,1, F1,0 ← F1,0 + F2,1, and F2,1 ← 0. These transformations

change only the integers FS
1 , FS

2 , F1,0, F1,1, F2,1, and F2,2, while they keep F ′′
i unchanged,

for 1 ≤ i ≤ r. So, the new configuration satisfy the first condition of Lemma 2.2, as well as
the others, which can be verified by inspection.

Therefore, there exists a (n1, n2, . . . , nr)-partition P ′ of G, such that no K2 in P ′ is
contained in K or has a vertex in K and another in H.

2.3 Pseudo-spiders

We consider pseudo-spiders which are not spiders. From a spider, we can produce eight
distinct kinds of pseudo-spiders (counting thick and thin ones separately). The two new
vertices produced splitting a vertex v of the spider are considered to be contained in the
same partition (S or K) as the original vertex v.

We provide conditions for partitioning the vertices of all kinds of pseudo-spiders into
cliques in lemmas 2.4, 2.5, and 2.7. Two properties given in lemmas 2.6 and 2.8 may be
used to constraint the search for a particular partition, improving the time complexity of
an algorithm on the last three cases.

6 Pedrotti and de Mello

In these lemmas, the configuration of a (n1, n2, . . . , nr)-partition of spiders from Sec-
tion 2.2 is extended to pseudo-spiders. Also, we denote by (K,S,H) the partition of a
pseudo-spider G.

Lemma 2.4. Let G′ be a spider with partition (K,S′,H) and G be a pseudo-spider pro-
duced by splitting a vertex v ∈ S′ of G′ into two non-adjacent vertices v′ and v′′. Then,
f(G,n3, n4, . . . , nr) = f(G′, n3, n4, . . . , nr) or both are undefined.

Proof. If G′ is a thin spider, then at least one of v′ and v′′ is in a unitary set in any
partition of V (G) into cliques, since v′ and v′′ have exactly the same neighbor. Thus, any
(n1, n2, . . . , nr)-partition P of G may be turned into a (n1, n2, . . . , nr)-partition of G′ by
removing the unitary set {v′} or {v′′}, as well as we can turn a (n1, n2, . . . , nr)-partitionP ′

of G′ into a (n1, n2, . . . , nr)-partition of G by relabeling v to v′ in P ′ and adding the clique
{v′′}. These transformations preserve the value of ni, for 2 ≤ i ≤ r, and so, preserve the
value of f .

If G′ is a thick spider and P is a (n1, n2, . . . , nr)-partition of G, we can always make
another (n1, n2, . . . , nr)-partition P ′ of G, in which v′ or v′′ is in a unitary set to use the
previous argument. If neither {v′} ∈ P nor {v′′} ∈ P , then let {C ′, C ′′} ⊆ P such that
v′ ∈ C ′ and v′′ ∈ C ′′. Since |S| > |K|, there exists a vertex u ∈ S such that {u} ∈ P . By
definition of a thick spider, at least one of C ′ \ {v′} or C ′′ \ {v′′} are all neighbors of u.
Without loss of generality, consider C ′ such that C ′ \ {v′} are neighbors of u (otherwise,
swap C ′ with C ′′ and v′ with v′′) and let P ′ = (P \{C ′, {u}})∪{{v′}, {u}∪ (C ′ \{v′})}.

Now, we consider a pseudo-spider G′ produced by splitting a vertex v from the partition
S of a spider G into two adjacent vertices v′ and v′′. In this case, both vertices v′ and v′′ can
be used together with vertices from K to form a clique. If P is a (n1, n2, . . . , nr)-partition
of G, we extend the definition of configuration by adding the non-negative integers F e

i , for
2 ≤ i ≤ r. We also say P has configuration F if the integers Fi,j , FS

i , and derivatives are
computed as they are for spiders and F e

i is 1 if P contains a clique of size i which includes
both v′ and v′′, and is 0, otherwise.

Lemma 2.5. Let G′ be a spider with partition (K,S′,H) and G be a pseudo-spider produced
by splitting a vertex v ∈ S′ of G′ into two adjacent vertices v′ and v′′. So, G has a
(n1, n2, . . . , nr)-partition with configuration F if, and only if, the configuration F satisfies:

1. F ′′
2 ≤ f(G[H], F ′′

3 , . . . , F ′′
r);

2. |S| =
∑r

i=1
FS

i + 2
∑r

i=2
F e

i , |K| =
∑r

i=2
((i − 1)FS

i + (i − 2)F e
i) +

∑r
i=1

iF ′
i , and

|H| =
∑r

i=1
iF ′′

i ;

3. FS
i = 0 if i ≥ 3 (i ≥ |K|+ 1) and G is a thin (thick) spider;

4. ni = FS
i + F e

i +
∑i

j=0
Fi,j , for 1 ≤ i ≤ r;

5.
∑r

i=2
F e

i ≤ 1; and

6. F e
i = 0 if i ≥ 4 (i ≥ |K|+ 2) and G is a thin (thick) spider.

Kr-packing of P4-tidy graphs 7

Proof. Let G′ be a spider and G obtained from G′ by splitting a vertex of S′ into two adjacent
vertices v′ and v′′. The Lemma’s conditions are those found on Lemma 2.2, adapted to
consider the integers F e

i . It is possible to verify that the configuration of any (n1, n2, . . . , nr)-
partition of G must satisfy these conditions with similar arguments of Lemma 2.2. Note
that conditions 5 and 6 enforce the proper use of vertices v′ and v′′ to produce cliques and
conditions 2 and 4 take into account a clique with both v′ and v′′ when F e

i = 1 for some i.

To produce a (n1, n2, . . . , nr)-partition P for G with a configuration F satisfying the
requirements of this lemma, we create a new configuration F = F . Then, we proceed to
one of the following cases, that will change F .

If F e
j+1

= 1 for some 2 ≤ j ≤ r, we set F
S

j = FS
j + 1, so that the new configuration

satisfies the requirements of Lemma 2.2 for G′ (by inspection, ignoring the integers F
e

i) and,
then, we have a (n1, n2, . . . , nj + 1, nj+1− 1, . . . , nr)-partition P ′ of G′ (note that nj+1 ≥ 1,
since F e

j+1
= 1). Then we select any C ∈ P , |C| = j, such that C ∩ S = {u} (C must

exist, since F
S

j ≥ 1) and relabel vertices of G′ such that u = v. This can be done by
swapping v with u and their counterparts b−1(v) and b−1(u) in K (see definition of spider
on Section 2.2). Finally, we make P = (P ′ \ {C}) ∪ {(C \ {v}) ∪ {v′, v′′}}.

If F e
i = 0 for all 2 ≤ i ≤ r, we set F

S

1 = FS
1 − 1 (FS

1 ≥ 1 since |S| > |K| and no two
vertices of S would be in the same clique). The new configuration satisfies the conditions of
Lemma 2.2 for G′, so it has a (n1 − 1, n2, . . . , nr)-partition P ′. Let C ∈ P ′ such that v ∈ C
and make P = (P ′ \ {C}) ∪ {(C \ {v}) ∪ {v′}, {v′′}}.

Lemma 2.6. Let G′ be a spider with partition (K,S′,H) and G be a pseudo-spider produced
by splitting a vertex v ∈ S′ into two adjacent vertices v′ and v′′. If G has a (n1, n2, . . . , nr)-
partition P with n2 maximum (there is no (n1−2, n2 +1, . . . , nr)-partition of G), then there
exists another (n1, n2, . . . , nr)-partition P ′ of G such that vertices v′ and v′′ are both in the
same clique.

Proof. Suppose {C ′, C ′′} ⊆ P such that v′ ∈ C ′ and v′′ ∈ C ′′. If |C ′| = |C ′′| = 1, then n2 is
not maximum, since (P \ {C ′, C ′′}) ∪ {{v′, v′′}} is a (n1 − 2, n2 + 1, . . . , nr)-partition of G.
Thus, without loss of generality, let |C ′| > 1 and u ∈ (C ′ \ {v′}). Since u ∈ K, we produce
P ′ as (P \ {C ′, C ′′}) ∪ {(C ′ ∪ {v′′}) \ {u}, (C ′′ ∪ {u}) \ {v′′}}.

Lemma 2.6 can be used on packing algorithms for this kind of pseudo-spider, adding
the constraint

∑r
i=2

F e
i = 1 and, therefore, reducing the computed possibilities.

Lemma 2.7. Let G′ be a spider with partition (K ′, S,H) and G be a pseudo-spider produced
by splitting a vertex v ∈ K ′ of G′ into two vertices v′ and v′′. So, G has a (n1, n2, . . . , nr)-
partition P with configuration F if, and only if, the configuration F satisfies conditions of
Lemma 2.2, and the following additional conditions if v′ is not adjacent to v′′:

1. F ′
j = 0, for j ≥ |K|; and

2. FS
i = 0, for i ≥ |K|.

8 Pedrotti and de Mello

Proof. Let G be a pseudo-spider where {v′, v′′} ⊂ K and suppose P is a (n1, n2, . . . , nr)-
partition of G with configuration F . If vertices v′ and v′′ are not adjacent, they can not
be used in the same clique and the maximum clique contained in S ∪K has size at most
|K|−1. So, conditions 1 and 2 are satisfied. The arguments used in the proof of Lemma 2.2
show that P obeys the conditions of that lemma.

To produce a (n1, n2, . . . , nr)-partition P for G, with a configuration F that satisfies the
requirements of this lemma, we create a new configuration F = F and go through one of
the following cases, in which we adjust some integers of F .

First (case a), if Fk,l ≥ 1 for some 1 ≤ l ≤ k ≤ r, we choose k and l and make
F k,l = Fk,l − 1 and, if k ≥ 2, F k−1,l−1 = Fk−1,l−1 + 1. Otherwise (case b), there is some

k ≥ 2 such that FS
k ≥ 1. We choose one and make F

S

k = FS
k − 1 and F

S

k−1 = FS
k−1

+ 1.

It is easy to see that after these transformations, the new configuration F satisfies the
requirements of Lemma 2.2 for G′ and it has either a (n1, n2, . . . , nk−1 + 1, nk − 1, . . . , nr)-
partition P ′ (if k ≥ 2) or a (n1 − 1, n2, . . . , nr)-partition P ′ (otherwise). Note that if G′ is
a thin spider, it always fits case (a).

If we applied case (a) with k = 1, then let C ′ ∈ P ′ such that v ∈ C ′ and make
P = (P ′ \ {C ′}) ∪ {{v′}, (C ′ \ {v}) ∪ {v′′}}.

For the other possibilities, we first consider when v′ is non-adjacent to v′′. If we applied
case (a) with k ≥ 2, there is a C ′ ∈ P ′ such that C ′ ⊂ (K ′ ∪ H) and |C ′| = k − 1. Also,
there is a u ∈ (K ′ \ C ′) by Condition 1. We rename vertices of G′ so that u = v and let
C ′′ ∈ P ′, v ∈ C ′′. Finally, make P = (P ′ \ {C ′, C ′′}) ∪ {C ′ ∪ {v′}, (C ′′ \ {v}) ∪ {v′′}}, which
is a valid (n1, n2, . . . , nr)-partition since v′ and v′′ are in different cliques.

Otherwise, we applied case (b), G′ is a thick spider and there is a C ′ ∈ P ′ such that
|C ′| = k− 1 and C ′ ∩S = {u}. We note that |K ′ \C ′| ≥ 2 since the transformation (b) was
applied with k ≤ |K|−1 (by Condition 2), leading to |C ′| ≤ |K ′|−1 and |C ′∩K ′| ≤ |K ′|−2.
Thus, there is a t ∈ K ′ such that t /∈ C ′ and t is adjacent to u. Let C ′′ ∈ P ′ such that t ∈ C ′′,
relabel vertices so that t = v, and make P = (P ′ \{C ′, C ′′})∪{C ′ ∪{v′}, (C ′′ \{v})∪{v′′}}.

Finally, we analyze the cases when v′ is adjacent to v′′. Since it was applied case (a)
with k ≥ 2 or case (b), there is a C ′ ∈ P ′ satisfying |C ′| = k − 1 and C ′ ∩ K ′ 6= ∅ or
C ′ ∩ S 6= ∅. If C ′ ∩K ′ 6= ∅, let u ∈ C ′ ∩K ′, relabel vertices such that u = v, and make
P = (P ′ \ {C ′}) ∪ {(C ′ \ {v}) ∪ {v′, v′′}}. Otherwise, C ′ = {u} and u ∈ S. Take any t ∈ K
adjacent to u and let C ′′ ∈ P ′ such that t ∈ C ′′. Now, relabel vertices of G′ to have t = v
and make P = (P ′ \ {C ′, C ′′}) ∪ {C ′ ∪ {v′}, (C ′′ \ {v}) ∪ {v′′}}.

Lemma 2.8. If G′ is a spider with partition (K ′, S′,H), G is a pseudo-spider derived
from G′ by splitting a vertex of S′ into a K2 or a vertex of K ′ into a S2 or a K2, and P
is a (n1, n2, . . . , nr)-partition of G, then there is a (n1, n2, . . . , nr)-partition P ′ of G with
configuration F that satisfies F2,2 = 0 and F2,1 ≤ 1.

Proof. Given a (n1, n2, . . . , nr)-partition P of G with configuration F we can rearrange
cliques so that no K2 is contained in K and at most one K2 intercepts both K and H. This
may occur when G derives from G′ by splitting a vertex of K into two or a vertex of S into
a K2.

Kr-packing of P4-tidy graphs 9

In all these cases, the configuration of P satisfies FS
1 ≥ 2F2,2 + F2,1 − 1. This allows us

to apply the following transformations (which are equal to the first set of transformations
of Lemma 2.3) and make F2,2 = 0: FS

2 ← FS
2 + F2,2, FS

1 ← FS
1 − F2,2, F1,1 ← F1,1 + F2,2,

and F2,2 ← 0.

Now we make F2,1 ≤ 1 by these transformations: x ← min{FS
1 , F2,1}, FS

2 ← FS
2 + x,

FS
1 ← FS

1 − x, F1,0 ← F1,0 + x, and F2,1 ← F2,1 − x.

The new configuration satisfies the requirements of lemmas 2.5 or 2.7, depending on
the type of the pseudo-spider (since P must satisfy the same conditions). So, there is a
(n1, n2, . . . , nr)-partition of G with the desired properties.

2.4 Some other graphs

The other graphs that may show up as induced graphs by a strong module related to a
neighborhood module of the MDT of a P4-tidy graph are finite, and thus, easily recognized.
The function f is precomputed for these graphs:

• G ≃ C5 or G ≃ P5:

f(G,n3, n4, . . . , nr) =

{

2 if ni = 0 for all 3 ≤ i ≤ r;
∄ otherwise.

• G ≃ P5:

f(G,n3, n4, . . . , nr) =







2 if ni = 0 for all 3 ≤ i ≤ r;
1 if n3 = 1 and ni = 0 for all 4 ≤ i ≤ r;
∄ otherwise.

3 An algorithm for P4-tidy graphs

If G is a P4-tidy graph, we compute the function f in each node of the MDT of G, processing
serial and parallel nodes as in Section 2.1. For neighborhood nodes, if the subgraph induced
by the corresponding module is a P5, P5, or C5, then f is computed as defined in Section 2.4.
Otherwise, the induced subgraph is a spider or a pseudo-spider and f is computed as the
maximum of F2,0 + FS

2 + F2,1 + F e
2 for every configuration F satisfying the conditions given

in lemmas 2.2, 2.4, 2.5, or 2.7 (according to the type of spider or pseudo-spider), plus the
condition

∑r
i=2

Fi,i = 0 or
∑r

i=2
Fi,0 = 0.

Optimizations given in lemmas 2.3, 2.6, and 2.8 are used to reduce the number of
considered configurations when they are applicable. Moreover, a dynamic programming
table is associated with each node of the MDT to store previously computed values of f
and speed up the computation.

Theorem 3.1. There is a polynomial-time algorithm that solves the Kr-packing problem
for P4-tidy graphs, for any fixed r.

10 Pedrotti and de Mello

Proof. The algorithm described above solves the Kr-packing problem for any P4-tidy graph
G. Since the class is hereditary, any induced subgraph of G is also a P4-tidy graph. The
processing of serial and parallel nodes corresponds to processing join and union graphs,
respectively, and it happens as in the work of Guruswami et al. for cographs. More-
over, the three simple cases of neighborhood nodes (C5, P5, and P5) are analyzed case by
case. The only remaining possible neighborhood nodes of a P4-tidy graph are spiders and
pseudo-spiders, which are processed in a set of cases given by lemmas 2.2, 2.4, 2.5, and
2.7. The maximized expression is a combination of expressions in each of these lemmas (F e

2

is considered 0 when not applicable). The additional condition comes from the fact that
G[K ∪H] = G[K] + G[H] (see Section 2.1).

The MDT of any graph is obtained in linear time [6]. We can identify if a graph induced
by a module associated with a neighborhood node of the MDT of a graph is a C5, P5, P5,
spider, or pseudo-spider in polynomial time [2], as well as identify the partition of a (pseudo-
)spider in the three sets K, S, and H. Since the number of possibilities evaluated for spiders
and pseudo-spiders is a subset of the possibilities evaluated for join graphs, the proposed
algorithm has polynomial time complexity likewise the algorithm for cographs [3].

Note that this result solves the Kr-factor problem for P4-tidy graphs, since it suffices to
check if we can pack exactly V (G)/r cliques in a graph G.

4 Conclusion

We extended the algorithm proposed by Guruswami et al. [3] to solve the Kr-packing prob-
lem for P4-tidy graphs, a superclass of cographs. The new algorithm also has polynomial
time complexity for any fixed r.

The P4-tidy graph class contains many other graph classes, so we proposed an algorithm
that has a broader application scope. As a natural continuation for this work, we could
investigate other classes and try to extend the algorithm even further. Unfortunately, we
know few graph classes which contain the P4-tidy class and have manageable neighborhood
nodes on their modular decomposition trees. For instance, the subgraph induced by the
module associated with a neighborhood node of the MDT of a P4-laden graph may be any
split graph, for which the problem is intractable.

References

[1] M.R. Cerioli, L. Faria, T.O. Ferreira, C.A.J. Martinhon, F. Protti, and B. Reed.
Partition into cliques for cubic graphs: Planar case, complexity and approximation.
Discrete Applied Mathematics, 156:2270–2278, 2008.

[2] V. Giakoumakis, F. Roussel, and H. Thuillier. On P4-tidy graphs. Discrete Mathematics
& Theoretical Computer Science, 1(1):17–41, 1997.

[3] V. Guruswami, C. Pandu Rangan, M. S. Chang, G. J. Chang, and C. K. Wong. The
Kr-Packing Problem. Computing, 66:79–89, 2001.

Kr-packing of P4-tidy graphs 11

[4] C.T. Hoàng. A class of perfect graphs. Master’s thesis, School of Computer Science,
Montreal, 1983.

[5] D. G. Kirkpatrick and P. Hell. On the complexity of general graph factor problems.
SIAM J. Computing, 12:601–609, 1983.

[6] R.M. McConnell and J.P. Spinrad. Modular decomposition and transitive orientation.
Discrete Mathematics, 201(1-3):189–241, 1999.

	Introduction
	Kr-packing of some special graphs
	Union and join graphs
	Spiders
	Pseudo-spiders
	Some other graphs

	An algorithm for P4-tidy graphs
	Conclusion

