
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

INSTITUTO DE COMPUTAÇÃO
UNIVERSIDADE ESTADUAL DE CAMPINAS

A First Study on Characterizing the Energy

Consumption of Software Transactional

Memory

Alexandro Baldassin Felipe Klein

Paulo Centoducatte Guido Araujo

Rodolfo Azevedo

Technical Report - IC-09-13 - Relatório Técnico

April - 2009 - Abril

The contents of this report are the sole responsibility of the authors.

O conteúdo do presente relatório é de única responsabilidade dos autores.



A First Study on Characterizing the Energy Consumption of

Software Transactional Memory

Alexandro Baldassin Felipe Klein Paulo Centoducatte Guido Araujo

Rodolfo Azevedo

Abstract

The well-known drawbacks imposed by lock-based synchronization have forced re-
searchers to devise new alternatives for concurrent execution, of which transactional
memory is a promising one. Extensive research has been carried out on Software Trans-
action Memory (STM), most of all concentrated on program performance, leaving unat-
tended other metrics of great importance like energy consumption. This paper presents
a systematic methodology to characterize a class of STMs that implement a common
set of API calls. We thoroughly evaluate the impact on energy consumption due to
STM by quantifying the energy costs of the primitives involved in an optimistic time-
based STM implementation. This work is a first study towards a better understanding
of the energy consumption behavior of STM systems, and could prompt STM design-
ers to research new optimizations in this area, paving the way for an energy-aware
transactional memory.

1 Introduction

The shift towards multicore processors and their subsequent mainstream adoption have
drastically increased the need for better and effortless methods for building concurrent
software. In the prevalent parallel programming model, multiple threads are executed
concurrently and communicate by means of a global shared memory. Since different threads
may access the same region of memory at the same time, a synchronization mechanism is
necessary in order to enforce consistency. The standard synchronization primitives consist
of locks and condition variables (e.g., mutexes, semaphores, and monitors).

The well-known drawbacks imposed by lock-based synchronization [1] have forced re-
searchers to devise new alternatives of which transactional memory is a promising one [2].
From a programmer’s point of view, a transaction can be seen as a group of operations that
are executed atomically and in isolation from the rest of the system. In case conflicts among
transactions arise, the transactional system automatically detects and resolves them (usu-
ally by aborting and rolling back one of the transactions). The implementation substrate
for transactional memory can be realized entirely via software (STM), through hardware
components (HTM) or as a combination of both hardware and software (hybrid approach).
In this letter, we shall focus our attention specifically on STM.

Extensive research has been carried out on the design space of STM. At the algorithmic
level, an STM can be regarded as non-blocking or blocking. Other key distinctions include:

1



2 Baldassin, Klein, Centoducatte, Araujo and Azevedo

nesting (flat, open, close), when and how to resolve conflicts, versioning scheme, and iso-
lation guarantee (weak, strong). To evaluate a proposed implementation, researchers have
invariably concentrated on performance, usually by measuring the system throughput in the
form of transactions per second. We argue that, if STM is to become mainstream, other
factors should be equally taken into account when devising a new design. In particular,
energy-efficiency is of great importance and must be traded off with performance. This is
specially true for embedded systems, where the energy consumption is closely related to
battery lifetime. It is also of increasing interest in the non-mobile arena [3], such as data
centers, where power contributes significantly to the operating costs, and even in desktop
environments [4]. Hence, reducing the energy consumption is of utmost importance in most
computing environments.

In this letter we introduce, for the first time, a systematic approach to characterize the
energy consumption of an STM system. Our methodology allows the characterization of
STMs which implement a set of common API calls. By using it, we perform a thorough
evaluation of the resulting impact on energy consumption due to the adoption of STM.
This initial study employs the TL2 algorithm [5] (optimistic time-based) as the STM sub-
strate. More precisely, our contributions are: (i) the characterization methodology, which
is API-oriented and, thus, applicable to several STM implementations; (ii) the fine-grained
assessment of the energy costs of the STM primitives; and (iii) the quantification of the
impact on the overall energy consumption due to the STM approach.

2 Methodology

The energy characterization methodology herein described attempts to profile the energy
consumption of an STM system in terms of its basic components. A number of transactional
memory approaches have been proposed in the literature [2] and, though distinct, all of them
are built upon the same primitives, namely, TxStart, TxCommit, TxLoad and TxStore.
These primitives are briefly described below:

• TxStart : creates a checkpoint and starts a transaction;

• TxCommit : ends the transaction and attempts to make the changes permanent;

• TxLoad : read barrier; and

• TxStore : write barrier.

We chose TL2 (lazy versioning) as the base for the experimental analysis presented in
Section 3. Nevertheless, our methodology is general enough and could be applied to other
STM implementations without loss of generality.

This work is a first step towards a better understanding of the energy behavior of the
STM substrate, during the execution of concurrent applications. It also tries to quantify the
overhead imposed, on the overall energy consumption, due to adopting the STM approach.



A First Study on Characterizing the Energy Consumption of STM 3

2.1 Simulation Platform

We adopted a cycle-accurate MPSoC simulation platform [6] which provides accurate energy
and performance results. The processing units are ARMv7 processors with an 8K, direct-
mapped instruction cache and a 4K, 4-way set-associative data cache. In addition to caches,
the platform has also as many private memories as the number of processing units, each
one with 12MB, and a single shared memory with 4MB. An important remark on this
architecture’s memories is that they are all SRAM-based, which are much more energy-
efficient as compared to DRAM-based memories [7]. The aforementioned components are
interconnected through an AMBA AHB bus.

2.2 Characterization Procedure

In order to proceed with the characterization process, we need to distinguish the energy
consumed by the STM infrastructure from the energy consumed by the application itself.

This distinction is done in the profiling phase, schematically shown in Figure 1. At the
top lies the application code which does not depend on the chosen programming model; the
STM code, represented by its primitives, is shown circumscribed by the rectangle at the
bottom. The continuous edges denote calls to the STM API, from within the application,
while the dashed edges denote the return from the STM code to the application.

Figure 1: Energy profiling flow: continuous edges represent calls to the STM API while
dashed edges represent the return to the application code

The energy profiling is performed in two steps:

1. API profiling: the application starts and no measurement is performed within the
application code. Only after entering the STM code, through a call to its API (con-
tinuous edges), the energy measurement is activated. During this period, the energy
consumed by all components of the platform (processor, caches, main memory and
bus) are monitored and recorded for each primitive (TxStart, TxCommit, TxLoad and
TxStore). Prior to returning to the application code (dashed edges), the measure-
ment is deactivated. This process is repeated throughout the simulation and the
resulting energy consumption is combined with the standard STM statistics (number
of transactions started/committed and loads/stores performed) gathered to compute
the energy consumption per primitive (i.e., their costs).



4 Baldassin, Klein, Centoducatte, Araujo and Azevedo

2. Application profiling: the application starts and measurement is initially activated.
Prior to any call to the STM API (continuous edges) the measurement is deactivated
and then reactivated when returning to the application code (dashed edges). Similar
as above, all platform’s components are taken into account and the resulting aggregate
energy is recorded.

The procedure above allow us to assess individually the inherent energy costs of the ap-
plication and also the overhead for each of the STM API’s primitives. This facilitates the
identification of possible bottlenecks of STM systems and could prompt STM designers to
devise optimizations and improve their implementations, so as to reduce the energy footprint
imposed by the STM approach.

There is a plethora of different applications that could benefit from the transactional
memory programming model and, thus, we need to be careful when conducting the char-
acterization process in order to cover such distinct applications and to avoid biasing the
results.

Among the contrasting features that must be taken into account are: different read/write
set sizes (as well as their ratio), abort rate, transaction length and others. Due to the large
number of possibilities, the characterization procedure was designed to be done automati-
cally, and to cover a large range of possible application types, within a feasible time-frame.

For that purpose, a so-called parameterizable characterization application has been de-
signed, whose pseudo-code is sketched in Figure 2. This application is suitable for any

1: for iter ← 1 to IPC do
2: TxStart() {the transaction starts at this point}
3: wdw ← GetWindowRange(iter)
4: for i ← 1 to NRD do
5: elem ← wdw[i]
6: x ← Consume(TxLoad(shrvar[elem]), x)
7: end for
8: for j ← 1 to NWR do
9: offset ← Random(wdw.start, wdw.end)

10: elem ← wdw[offset]
11: y ← Produce(x + offset)
12: TxStore(shrvar[elem], y)
13: end for
14: TxCommit() {the transaction ends at this point}
15: InsertVariableDelay(ITD)
16: x ← 0 {clear for next transaction}
17: end for

Figure 2: Pseudo-code for the parameterizable characterization application’s core

number of cores, which perform a series of transactional reads and writes on a shared ar-
ray (shrvar). The main parameters considered and the assumed configurations (between
brackets) are summarized below:



A First Study on Characterizing the Energy Consumption of STM 5

• VS: vector size, defines the number of scalar elements of the shared array (shrvar)
[32, 128, 512].

• IPC: iterations per core. Sets the number of transactions to be executed by each
running core [2K, 8K].

• NRD: number of reads made in a single transaction [1, 2, 4, 8, 32, 64, 128].

• NWR: number of writes made in a single transaction [1, 2, 4, 8, 32] .

• ITD: inter-transaction delay. Sets the number of operations inserted between two con-
secutive transactions in order to emulate a variable number of computations performed
outside the atomic regions [0, 32, 1K].

The characterization application works as follows: each core is set to execute IPC transac-
tions (lines 2–14) and, within each transaction, to perform NRD transactional reads followed
by NWR transactional writes on shrvar. Each core is responsible for reading a sliding win-
dow (wdw) on the array, which changes at each transaction. The function GetWindowRange

(line 3) returns the slice of the shared array considered during the current iteration. The
elements read from the window are then consumed, resulting in a distinct value (x).

After the value is computed, the write sequence starts by computing an offset with
respect to the start of the sliding window. The offset is determined randomly (line 9) and
is bounded to the sliding window. Next, a new value (y) is produced based on the current
value and offset (line 11). Then, the resulting value is stored back into the sliding window.

When the sequence of reads/writes is completed, the transaction calls the commit op-
eration (line 14). Subsequently, a variable delay (determined by ITD) may be requested
outside the transaction boundaries, prior to the start of the next transaction.

3 Energy Characterization & Analysis

In this section we present a quantitative analysis of the results obtained through the char-
acterization procedure described in the previous section.

We start off by showing the mean energy consumed per load and store for a system
with 1, 2, 4 and 8 cores in Figure 3. In the load case (left), the horizontal axis represents
the read set size in a logarithmic scale. The final energy value for a given read set size is
calculated by taking the arithmetic mean of the energy consumed when the write set size
is varied from 1 to 32. The figure for the store (right) is similar, except that the write set
size is represented in the horizontal axis and the mean is taken over the read sets (varying
from 1 to 128). It can be seen from Figure 3 that the energy consumed by both a load and
store decreases as the size of the sets (read for load and write for store) increases. We found
out that the larger overhead for the smaller cases is due to misses in the instruction cache
(13% for load and 30% for store). Once the cache miss effect is eliminated the energy per
operation seems to reach a stable value. On the other hand, further increase in the set size
results in data cache misses and on a slight increment in energy consumption. Lastly, notice
that a configuration with more cores consumes more energy due to a higher contention on
the bus and an increasing number of wait cycles.



6 Baldassin, Klein, Centoducatte, Araujo and Azevedo

Read Set Size

1286432168421

M
e

a
n

 E
n

e
rg

y
 (

n
J

)/
L

o
a

d

40

30

20

10

8
4
2
1

Cores

Write Set Size

32168421

M
e

a
n

 E
n

e
rg

y
 (

n
J

)/
S

to
re

50

40

30

20

8
4
2
1

Cores

Figure 3: TM API’s energy profile for TxLoad and TxStore

The results for the commit and abort operations are displayed in Figure 4. The figure
shows the energy consumption per operation as both the read and write set size increase for
different core configurations. Two main observations can be drawn from the commit results
(top). Firstly, for a given read set size, notice that the energy cost is higher for larger write
sets. This is due to the fact that the TL2 algorithm must iterate over the write set three
times during the commit operation (one for acquiring the locks, another for writing back
the values into main memory and a last one to release the locks). Secondly, the cost also
increases with larger read set sizes, since the commit phase must validate the transaction
read set for consistency. Regarding the results for the abort operation (bottom) we notice
that the energy cost does not change considerably with the size of the read set. However,
increasing the write set size causes a higher energy cost per abort. To explain this behavior,
recall that in TL2 an abort is usually generated by either a failed load or an invalid read
set. In the latter case, which is the most common form, the locks acquired partially in the
commit phase must be released by the abort operation and thus result in a higher energy
cost. Also, notice that the results for the commit and abort operations are as expected for
a lazy STM such as TL2, i.e. the commit operation is expensive (actually, it is the most
expensive among the four analyzed operations) whereas the abort operation is relatively
cheap.

3.1 STM Overhead

Figure 5 presents an estimation of the STM energy overhead resulted from the characteriza-
tion procedure. The horizontal axis uses the geometric mean to represent typical size values
for the read and write sets. It can be noticed that, for small values (i.e., small read and
write set sizes), the transactional overhead is high (ranging from ∼40% in the single-core
case to ∼80% in the 8-core configuration). Once the set size increases, the overhead per
operation is amortized and the overall overhead decreases. However, for larger read and
write sets the overhead tends to increase again. These results suggest that there is a value



A First Study on Characterizing the Energy Consumption of STM 7

E
n

e
rg

y
 (

n
J
)/

C
o

m
m

it

20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

Write Set Size

32
16

8
4

2
1

32
16

8
4

2
1

32
16

8
4

2
1

32
16

8
4

2
1

32
16

8
4

2
1

32
16

8
4

2
1

32
16

8
4

2
1

32
16

8
4

2
1

8
4
2
1

Cores

R=1 R=2
R=4 R=8 R=16

R=32

R
=6

4

R
=
1
2
8

E
n

e
rg

y
 (

n
J
)/

A
b

o
rt

160

140

120

100

80

60

40

Write Set Size

32
16

8
4

2
1

32
16

8
4

2
1

32
16

8
4

2
1

32
16

8
4

2
1

32
16

8
4

2
1

32
16

8
4

2
1

32
16

8
4

2
1

8
4
2

Cores

R=2

R=4
R=8

R=16

R=32 R=64

R
=
1
2
8

Figure 4: TM API’s energy profile for TxCommit and TxAbort

for the read and write set in which the overhead tends to a minimum. This value depends
on the particular core configuration (e.g., 2.83 for the single core and 22.63 for the 4-core).

3.2 STAMP Results

For the final set of experiments, we employed two of the STAMP [8] applications (genome

and intruder) and analyzed the impact in energy consumption of the four major transac-
tional calls, resulting in the energy breakdown shown in Figure 6. The input set for each
application is the one suggested in the STAMP paper [8] for simulation environment. It
can be seen that the major cause of energy consumption in the genome application is due
to the load operation. As the number of cores is increased, the percentage of energy of
each operation tends not to change much. As for intruder, the commit operation initially is
responsible for roughly 55% of the total energy consumption. However, adding more cores
causes the load operation to dominate. A small increase due to stores is also observed.
Notice that the energy consumed due to aborts is insignificant with regard to the other op-
erations. This is mostly because in lazy STMs the cost of an abort is cheap and, specially



8 Baldassin, Klein, Centoducatte, Araujo and Azevedo

Geometric Mean (Reads and Writes)

6
4

.0
0

4
5

.2
5

3
2

.0
0

2
2

.6
3

1
6

.0
0

1
1

.3
1

8
.0

0

5
.6

6

4
.0

0

2
.8

3

2
.0

0

1
.4

1

1
.0

0

M
e

a
n

 S
T

M
 E

n
e

rg
y

 O
v

e
rh

e
a

d
 (

%
)

80

70

60

50

40

8
4
2
1

Cores

Figure 5: STM Energy Overhead

in
tru

d
e

r

g
e

n
o

m
e

T
o

ta
l 
E

n
e
rg

y

100%

80%

60%

40%

20%

0% in
tru

d
e

r

g
e

n
o

m
e

in
tru

d
e

r

g
e

n
o

m
e

in
tru

d
e

r

g
e

n
o

m
e

Cores

8421

STLDCOMMITABORT

Figure 6: Energy breakdown for STAMP applications

for genome, the abort rate is low.
Notice that the conducted experiments do not consider the energy spent due to the

contention management scheme, which tends to be different for each STM implementation.
In this paper we focused on the STM API, which is general. If we include such schemes
in our analysis, it is very likely that the contribution of the abort operation to the total
energy will be higher.

4 Related Work

As previously mentioned, current evaluation of STM designs primarily addresses perfor-
mance improvements over traditional locks. The usual performance metric is given by the
number of transactions executed per unit of time (i.e., throughput). We are not aware of



A First Study on Characterizing the Energy Consumption of STM 9

any methodology for estimating the energy consumption of STM systems.

The works on power dissipation in HTM systems are the closest to ours. Moreshet et.
al [9] initially investigated the energy consumed by transactions in a typical multiprocessor
environment. While their results suggested that HTM has an advantage in terms of energy
consumption over locks, one should notice that only micro-benchmarks were employed in the
experiments. More recently, Ferri et. al [10] evaluated the impact of energy consumption in
an embedded setting. They also proposed the use of a scratchpad memory for transaction
checkpointing and a technique that shuts down the transactional cache in case of under-
utilization.

5 Conclusions and Ongoing Work

This letter presented, for the first time, a systematic methodology which allows the charac-
terization of STMs that implement a set of common API calls. By means of this methodol-
ogy, we thoroughly evaluated the impact on energy consumption due to the STM approach
usage and quantified the energy costs of the primitives used in an optimistic time-based
STM implementation. This work is a first study towards a better understanding of the
energy consumption behavior of STM systems and could prompt STM designers to provide
optimizations, creating a so-called energy-aware TM.

As part of our current and future work we intend to evaluate and compare other STM im-
plementations, not only in terms of energy, but also under power and EDP (energy-delay
product) metrics. In addition, we plan to devise an energy macromodel for STM in order to
allow energy analysis with the help of more abstract simulation models (functional), thus
avoiding the long running times demanded by cycle-accurate simulation.

References

[1] Herb Sutter and James R. Larus. Software and the concurrency revolution. Queue,
3(7):54–62, 2005.

[2] James R. Larus and Ravi Rajwar. Transactional Memory. Morgan & Claypool Pub-
lishers, 2007.

[3] Stefanos Kaxiras and Margaret Martonosi. Computer Architecture Techniques for

Power-Efficiency. Morgan & Claypool Publishers, 2008.

[4] L. A. Barroso and U. Hölzle. The case for energy-proportional computing. IEEE

Computer, 40(12):33–37, 2007.

[5] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In Proc. of the 20th

DISC, 2006.

[6] Mirko Loghi, Massimo Poncino, and Luca Benini. Cycle-accurate power analysis for
multiprocessor systems-on-a-chip. In Proc. of the 14th GLSVLSI, pages 410–406, 2004.



10 Baldassin, Klein, Centoducatte, Araujo and Azevedo

[7] Alberto Macii, Luca Benini, and Massimo Poncino. Memory Design Techniques for

Low Energy Embedded Systems. 2002.

[8] Chi Cao Minh, Jae Woong Chung, C. Kozyrakis, and k. Olukotun. STAMP: Stanford
transactional applications for multi-processing. In Proc. of the IEEE IISWC, pages
35–46, 2008.

[9] Tali Moreshet, R. Iris Bahar, and Maurice Herlihy. Energy reduction in multiprocessor
systems using transactional memory. In Proc. of ISLPED, pages 331–334, 2005.

[10] Cesare Ferri, Amber Viescas, Tali Moreshet, R. Iris Bahar, and Maurice Herlihy. Energy
efficient synchronization techniques for embedded architectures. In Proc. of the 18th

GLSVLSI, pages 435–440, 2008.


