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Abstract

Correctness of several tree traversing algorithms is proved in an
informal but quite rigorous way by using induction and a conve-
nient graphical representation for the state of computation. These
proofs are much simpler than their formal counterparts and provide
an intuitive insight for the ideas behind the algorithms.
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1 Introduction

Formal proofs of correctness of algorithms manipulating data struc-
tures can become quite lengthy and unreadable, even though the basic
ideas behind those proofs may be simple and intuitive. For examples
of such proofs see for instance Burstall [1], Gries [3], Kowaltowski [5]
and Topor [10]. In many cases it is possible however to provide simple
and informal but quite rigorous proofs by using a convenient graphical
representation of the state of computation. This is particularly true in
the case of tree manipulating algorithms where mathematical induction
on the structure of the trees is often applied.

We illustrate these ideas through a series of examples of algorithms
for traversing binary trees in preorder, inorder and/or postorder as de-
fined by Knuth [4]. For the sake of uniformity we present all these
algorithms as Pascal procedures, and the type declarations of Figure 1
are assumed to be global throughout the paper. The state of computa-
tion is described by drawings where triangles represent (possibly empty)
binary trees, rectangles represent explicit nodes, and separate triangles
and rectangles denote disjoint parts of the data structures. Dark trian-
gles denote trees which have already been traversed in the specified order
(or orders). Inductive assertions are referred to as comments within the
procedures by their names ¢); or R;, and it should be understood that
whenever we state that an assertion holds, it implies that it holds at
the corresponding point within the procedure. Additional conventions
will be introduced with specific examples. Proofs are carried out by
representing the inductive hypothesis, supplemented with some informal
explanation, and then by showing how to carry out the inductive step.

It is interesting to notice that these proofs, besides showing correct-
ness, seem to be very helpful in understanding the ideas behind the
algorithms and thus make it easier to modify them and to adapt them
to particular situations.



type
ptr = Jnode;
node = record
wnfo: SomeType;
tag: boolean; { for the DSW procedure only }
llink rlink: ptr
end;

Figure 1: Type declarations for all the procedures

procedure Recursive(p: pir);
begin
{@1}
if p#nil then
with p] do begin
PreOrderVisit(p); {R1}

Recursive(llink);
InOrderVisit(p); {Ra}
Recursive(rlink);
PostOrderVisit(p)
end

1Q2}

end;

Figure 2: Recursive traversal procedure

2 Recursive tree traversal

The procedure shown in Figure 2 cartainly does not require any proof,
but it is included here as a convenient introductory example. Figure 3
shows the inductive hypothesis which should be read as: if the assertion
()1 holds then after a finite number of steps the procedure will reach
its end in a state satisfying the assertion ¢J,. It is also implicit in our
hypothesis that the final tree is identical to the original one. This fact
is obvious in this case since the procedure does not modify the tree, but
will have to be shown in some later examples.

The hypothesis is trivially true when p = nil. Figure 4 shows the



Ind. Hyp.

Q: Q2

Figure 3: Inductive hypothesis for the recursive procedure

proof steps when p # nil and is obtained by following the execution of
the procedure and applying the inductive hypothesis to the two subtrees
of p; Ry and R, are auxiliary assertions. Notice that Ry and R, imply
()1 for the trees p; and py respectively. Digits 1, 2 and 3 over the node
p show that the node has been already visited in preorder, inorder and
postorder; an arrow marked with ‘Ind. Hyp.” denotes an application of
the inductive hypothesis. We shall use these conventions throughout this
paper.

We notice finally that the inductive hypothesis implies the correctness
of the procedure when applied to the initial value of p.

3 Traversals with an explicit stack

Figure 5 shows a procedure for preorder traversal, and Figure 6 shows
the corresponding inductive hypothesis which should be read as: if the
assertion ()1 holds, then after a finite number of steps the assertion ()
will hold. It is implicit also that the stack contains exactly the same
values at the points corresponding to )1 and ()2, and that the value of
the variable done remains false.

The proof for p = nil is again trivial and the inductive step for
p # nil is covered in Figure 7 where we assume that p|.rlink # nil; the
other case is even simpler. It should be noticed that Ry implies @y for
p = p1 and Ry implies )1 for p = py. It is easy to see that the initial
state of the procedure with an empty stack satisfies ()1, and that by
applying the inductive hypothesis we get the corresponding )2, showing
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Figure 4: Proof of the recursive procedure



procedure PreOrder(p: ptr);
var done: boolean;
begin
InttializeStack; done := false;
repeat
{Q1}
if p#nil
then
with p] do begin
PreOrderVisit(p);
if rlink#nil then Push(rlink);
p = llink {R1}
end
else
1@}
if EmptyStack
then done := true
else Pop(p)
{Ro}
until done
end;

Figure 5: Preorder traversal with an explicit stack

p p
9n 9n
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done = false done = false
Q1 Q,

Figure 6: Inductive hypothesis for the preorder procedure
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correctness of the procedure.

Figures 8 through 10 show the procedure for postorder traversal and
its proof which is similar. Notice that the procedure discovers whether it
should go up or down to the right subtree by comparing the right link of
the current node with the pointer last to the most recently visited node.
In this way it avoids pushing on the stack an extra tag together with the
pointer to the current node. An almost identical procedure and its proof
for the inorder are left to the reader.

done = false R

Figure 7: Proof of the preorder procedure



procedure PostOrder(p: ptr);
var
up: boolean;
last: ptr;
begin
InwtializeStack;
repeat
while {Q)1} p#nil do begin { go left }
Push(p);
p := pl.llink {Ry}
end;
up = true;
last := nil,
while {Q2} up and (not EmptyStack) do
begin
Pop(p);
if p1.rlink+#last
then begin { go right }
Push(p);
p = pl.rlink;
up = false {Ra}
end
else begin { go up }
PostOrderVisit(p);
last == p
end
end
until EmptyStack
end;

Figure 8: Postorder traversal with an explicit stack
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Figure 10: Proof of the postorder procedure

Figure 9: Inductive hypothesis for the postorder procedure
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4 Deutsch-Schorr-Waite algorithm

The procedure shown in Figure 11 implements the algorithm which ac-
cording to Knuth [4] was discovered independently by Deutsch and by
Schorr and Waite [9]; see also Gries [3] and Topor [10]. It can perform
any of the three traversals and it uses an explicit stack which is kept
in the tree itself by reversing the pointers on the path from the root
to the current node, and restoring them on the way back up the tree.
Each node on this stack has its tag field set conveniently in order for the
procedure to know whether the left or right link was reversed. The algo-
rithm is really more general and was originally formulated for traversing
arbitrary data structures and not only trees.

Figure 12 shows the inductive hypothesis. The upside down triangle
denotes the tree formed by the stack nodes and their subtrees (as the
proof shows it is a tree). The hypothesis also states implicitly that the
trees pointed to by p and ¢ remain identical to the original ones, except
possibly for the tag fields in the tree p. Figure 13 shows again the proof
steps when p # nil. Notice that in this case it is also proved that the
original trees are restored, and that the tag fields in the tree ¢ (denoted
by T for true and by F for false) do not change. It is obvious that
the inductive hypothesis implies the correctness of the procedure since
initially ¢ = nil.
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procedure DSW (p: ptr);
var
t,q: pir; up: boolean;
begin
t := mil;
repeat
while {Q1} p#nil do { go left }
with p] do begin
PreOrderVisit(p); tag := true;
q = llink; lhink := t;
ti=p;p:=q{}
end
up = true;
while {Q2} up and ({#nil) do
with ¢ do
case tag of
true: begin {go right}
InOrderVisit(t); up = false;
tag .= false; q .= p; p :=rlink;
rlink = link; llink := ¢ {R2}

end;

false: begin {go up}
PostOrderVisit(t);
q := rlink; rlink := p;
pi=tt:=9q
end

end

until {=nil
end;

Figure 11: Deutsch-Schorr-Waite procedure

11
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Figure 13: Proof of the DSW procedure
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procedure LD(p: ptr);

var
emply, q, t: pir;
begin
new(empty); t == empty;
repeat
1@}
if p=nil
then begin { swap p and ¢ }
p= 1
t := nil
end
else begin { rotate four pointers }
Visit(p);
g =11:=p;
p = pl.llink;
t].llink .= t].rlink;
t].rlink := ¢
end
1Q2}
until p=empty
end;

Figure 14: Lindstrom-Dwyer procedure

5 Lindstrom-Dwyer algorithm

The procedure of Figure 14 implements the algorithm discovered by
Lindstrom [6] and Dwyer [2] which is similar to that discribed in the
previous section, but does not require the extra tag field in each node.
The price to be paid is that the algorithm is “blind”, i.e. does not produce
one of the canonical traversals but a “merge” of the three: each node
is visited three times and the algorithm cannot distinguish between the
three visits. Instead of reversing alternately the two link fields, a rota-
tion of four values is performed: the two link fields, the current node
pointer and the previous node pointer (the stack pointer).

The procedure must distinguish however between the three visits

13
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Figure 15: Inductive hypothesis for the LD procedure

to the root node in order to terminate properly. Instead of using a
small counter, we represent the empty stack by a pointer value which is
different from any pointer in the tree (we call it empty). The small black
dot denotes the occurrences of this pointer which actually corresponds
to an empty subtree. The proof is similar to that of the previous section.

6 Robson’s algorithm

The procedure of Figure 17 implements the algorithm devised by Rob-
son [8] which is another clever modification of the Deutsch-Schorr-Waite
algorithm of Section 4. Instead of using the extra tag in each node to
know whether the left or right link field was reversed, the algorithm keeps
an additional stack (besides the one formed by the reversed pointers).
This stack does not require any additional space since it is kept tem-
porarily in the leaves of the tree. The leaves are linked through their
rlink fields, and the [link fields are used to keep pointers to the nodes
whose two subtrees are not empty and whose right links have been re-
versed. It is not necessary to store the pointers in other cases. The
variable r points to the topmost value of this stack (i.e. to the last node
whose right link was reversed, if any; otherwise it is nil), and the variable
top points to the rest of the stack. The variable av points to the next
leaf which can be used to extend the stack. The variable empty is used
in the same way as in the Lindstrom-Dwyer procedure.

14



Figure 16: Proof of the LD procedure



procedure Robson(p: pir);
var
r,q,t,top,av, empty: pir;
up: boolean;
begin
r := nil; top := nil; up := false;
new(empty); t == empty;
repeat
repeat {Q)1} { going down }
PreOrderVisit(p);
if (p].llink=nil) and (p1.rlink=nil)
then begin { leaf: go up }
InOrderVisit(p);
up = irue
end
else
if p1.llink=nil then begin { go right }
InOrderVisit(p);
q := pl.rlink;
pl.rlink = t,
ti=p;p=q{R}
end
else begin { go left }
q := pl.llink,
pl.llink = t;
ti=p;p=q{R:}
end
until up;
av = p;

Figure 17: Robson’s procedure (continues)
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repeat {2} { going up )
PostOrderVisit(p);
if i=empty then up := false { finished }
else with ¢] do
if llink=nil then begin { coming from right }
q := rlink; rlink .= p;
pi=1i1:=q
end
else
if 7link=nil then begin { coming from left }
q := llink; llink := p;

pi=iti=g;
InOrderVisit(p);
end

else

if {=r then begin { coming from right }
q := top; r := qT.llink; top := ¢7T.rlink; { pop }
q1.llink := nil;
q1.rlink := nil,
q := rlink; rlink .= p;
pi=1i1:=q
end
else begin { coming from left }
av|.llink := r; avl.rlink := top; top := av; { push }
r:=t; q .= link;
llink := p; p .= rlink;
rlink .= ¢; up = false;
InOrderVisit(t) {Rs}
end
until not up
until {=empty
end;

Figure 17: Robson’s procedure (cont.)

17
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Figure 18: Inductive hypothesis for the Robson procedure

Q;
and
p2r.llink = nil =
an
p2.rlink = nil

up = false up = true

Figure 19: Proof of the Robson procedure — part 1

Figure 18 shows the inductive hypothesis for this procedure and
should be read in the usual way. Some facts implicit in this hypoth-
esis are: (a) the trees in 1 and ()3 are exactly the same; (b) the values
of the variables r and top remain the same; (c) the stack formed by
the leaves represented on top of the upside down triangles remains the
same; (d) the new leaf found by the algorithm and pointed to by av is
contained in the subtree p.

The procedure assumes that the initial tree is not empty and the
proof can be carried out by considering the four possible cases for the
values of pT.llink and pl.rlink. We show in Figures 19 and 20 only the
cases when both subtrees of p are empty (when a new leaf is found) or
when both trees are not empty (when the stack is extended). Other cases

18
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Figure 20: Proof of the Robson procedure — part II (continues)
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Figure 20: Proof of the Robson procedure — part II (cont.)
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are similar.

Notice that the proof also implies that the reversed pointers are re-
stored to their original values, that the link fields of the leaves used to
keep the stack are restored to nil and that a new leaf is always avail-
able when it is necessary to extend the stack. By applying the inductive
hypothesis to the initial state when the variables r and top are nil, ¢ is
empty and up is false, and following the execution from ()2 (when Pos-
tOrderVisit(p) is executed), we conclude that the whole tree is traversed
and the procedure ends.

7 Morris’s algorithm

Figure 21 shows yet another procedure for traversing binary trees in
preorder and/or inorder. The algorithm devised by Morris [7] creates
temporary right threads as in threaded binary trees (see for instance
Knuth [4]). Whenever a non-empty tree is about to be traversed and its
left subtree is empty, then the root is visited and the procedure advances
to the right subtree. If the left subtree is not empty then the procedure
searches for this subtree’s last node in inorder, and sets its right thread,
i.e. replaces a nil by a pointer to the current root. Subsequently the
traversal proceeds to the left subtree. Due to the existence of the thread,
p will end up pointing to the same initial node after the traversal of the
left subtree is completed. At this point, the thread is eliminated and
the nil pointer restored. After visiting the current root, the procedure
moves to the right subtree.

Figure 22 shows the inductive hypothesis which covers two possible
cases: (a) if at ()1 p points to a tree whose last inorder node does not
contain a thread (i.e. its right link field is nil) then the procedure will
end up at ()2 (at the same place in the program) with the tree traversed
in preorder and/or inorder, and p = nil; or (b) if at @1 p points to a tree
whose last inorder node contains a thread then the procedure ends up
at ()2 with the tree traversed in preorder and/or inorder with p at the
node pointed to by the thread. It should be noticed that the inductive
hypothesis also implies that at ()1 there is at most one thread within the

21



procedure Morris(p: ptr);
var q: pir;
begin
while {Q1} {Q2} p#nil do
with p] do
if llink=nil
then
begin { empty left — go right }
PreOrderVisit(p);
InOrderVisit(p);
p = rlink {R1}
end
else
begin
q = llink;
while (¢1.rlink#nil) and (¢1.rlink#p) do
q = q7.rlink;
if ¢1.rlink=nil
then
begin { first time at p — go down }
PreOrderVisit(p);
ql.rlink := p; p := llink {R>}
end
else
begin { second time at p — go right }
q1.rlink := nil;
InOrderVisit(p);
p = rlink {Rs}
end
end
end;

Figure 21: Morris’s procedure

22
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Figure 22: Inductive hypothesis for the Morris’s procedure

tree p (shown explicitly), and that after the traversal all fields within the
data structure are the same as at 1. A bold arrow denotes a (possibly
empty) chain of right links. Figures 23 and 24 show the proof steps for
the cases when the left subtree is empty or not. The case p = nil is
trivial. As before it is easy to see that the inductive hypothesis implies
correctness of the procedure.

The algorithm can be extended to traverse the tree in postorder as
suggested in [7]; the proof is left to the reader.

23
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Figure 23: Proof of the Morris’s procedure — part 1
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Figure 24: Proof of the Morris’s procedure — part 11
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