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1 IntroductionFormal proofs of correctness of algorithms manipulating data struc-tures can become quite lengthy and unreadable, even though the basicideas behind those proofs may be simple and intuitive. For examplesof such proofs see for instance Burstall [1], Gries [3], Kowaltowski [5]and Topor [10]. In many cases it is possible however to provide simpleand informal but quite rigorous proofs by using a convenient graphicalrepresentation of the state of computation. This is particularly true inthe case of tree manipulating algorithms where mathematical inductionon the structure of the trees is often applied.We illustrate these ideas through a series of examples of algorithmsfor traversing binary trees in preorder, inorder and/or postorder as de-�ned by Knuth [4]. For the sake of uniformity we present all thesealgorithms as Pascal procedures, and the type declarations of Figure 1are assumed to be global throughout the paper. The state of computa-tion is described by drawings where triangles represent (possibly empty)binary trees, rectangles represent explicit nodes, and separate trianglesand rectangles denote disjoint parts of the data structures. Dark trian-gles denote trees which have already been traversed in the speci�ed order(or orders). Inductive assertions are referred to as comments within theprocedures by their names Qi or Ri, and it should be understood thatwhenever we state that an assertion holds, it implies that it holds atthe corresponding point within the procedure. Additional conventionswill be introduced with speci�c examples. Proofs are carried out byrepresenting the inductive hypothesis, supplemented with some informalexplanation, and then by showing how to carry out the inductive step.It is interesting to notice that these proofs, besides showing correct-ness, seem to be very helpful in understanding the ideas behind thealgorithms and thus make it easier to modify them and to adapt themto particular situations. 2



typeptr = "node;node = recordinfo: SomeType;tag : boolean; f for the DSW procedure only gllink ,rlink : ptrend;Figure 1: Type declarations for all the proceduresprocedure Recursive(p: ptr);beginfQ1gif p 6=nil thenwith p" do beginPreOrderVisit(p); fR1gRecursive(llink);InOrderVisit(p); fR2gRecursive(rlink);PostOrderVisit(p)endfQ2gend;Figure 2: Recursive traversal procedure2 Recursive tree traversalThe procedure shown in Figure 2 cartainly does not require any proof,but it is included here as a convenient introductory example. Figure 3shows the inductive hypothesis which should be read as: if the assertionQ1 holds then after a �nite number of steps the procedure will reachits end in a state satisfying the assertion Q2. It is also implicit in ourhypothesis that the �nal tree is identical to the original one. This factis obvious in this case since the procedure does not modify the tree, butwill have to be shown in some later examples.The hypothesis is trivially true when p = nil. Figure 4 shows the3
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p pFigure 3: Inductive hypothesis for the recursive procedureproof steps when p 6= nil and is obtained by following the execution ofthe procedure and applying the inductive hypothesis to the two subtreesof p; R1 and R2 are auxiliary assertions. Notice that R1 and R2 implyQ1 for the trees p1 and p2 respectively. Digits 1, 2 and 3 over the nodep show that the node has been already visited in preorder, inorder andpostorder; an arrow marked with `Ind. Hyp.' denotes an application ofthe inductive hypothesis. We shall use these conventions throughout thispaper.We notice �nally that the inductive hypothesis implies the correctnessof the procedure when applied to the initial value of p.3 Traversals with an explicit stackFigure 5 shows a procedure for preorder traversal, and Figure 6 showsthe corresponding inductive hypothesis which should be read as: if theassertion Q1 holds, then after a �nite number of steps the assertion Q2will hold. It is implicit also that the stack contains exactly the samevalues at the points corresponding to Q1 and Q2, and that the value ofthe variable done remains false.The proof for p = nil is again trivial and the inductive step forp 6= nil is covered in Figure 7 where we assume that p".rlink 6= nil; theother case is even simpler. It should be noticed that R1 implies Q1 forp = p1 and R2 implies Q1 for p = p2. It is easy to see that the initialstate of the procedure with an empty stack satis�es Q1, and that byapplying the inductive hypothesis we get the corresponding Q2, showing4



Ind. Hyp.

Q1
and

p nil
p 1 p 2 p 1 p 2

Ind. Hyp.

p 1 p 2 p 1 p 2

p p

R2

1 1,2

Q2
p 1 p 2 p 2p 1

p p

1,2 1,2,3

1

p

R1

p

Figure 4: Proof of the recursive procedure5



procedure PreOrder(p: ptr);var done: boolean;beginInitializeStack ; done := false;repeatfQ1gif p 6=nilthenwith p" do beginPreOrderVisit(p);if rlink 6=nil then Push(rlink);p := llink fR1gendelsefQ2g if EmptyStackthen done := trueelse Pop(p)fR2guntil doneend;Figure 5: Preorder traversal with an explicit stack
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Figure 7: Proof of the preorder procedurecorrectness of the procedure.Figures 8 through 10 show the procedure for postorder traversal andits proof which is similar. Notice that the procedure discovers whether itshould go up or down to the right subtree by comparing the right link ofthe current node with the pointer last to the most recently visited node.In this way it avoids pushing on the stack an extra tag together with thepointer to the current node. An almost identical procedure and its prooffor the inorder are left to the reader.7



procedure PostOrder(p: ptr);varup: boolean;last : ptr ;beginInitializeStack ;repeatwhile fQ1g p 6=nil do begin f go left gPush(p);p := p".llink fR1gend;up := true;last := nil;while fQ2g up and (not EmptyStack) dobeginPop(p);if p".rlink 6=lastthen begin f go right gPush(p);p := p".rlink ;up := false fR2gendelse begin f go up gPostOrderVisit(p);last := pendenduntil EmptyStackend;Figure 8: Postorder traversal with an explicit stack8
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4 Deutsch-Schorr-Waite algorithmThe procedure shown in Figure 11 implements the algorithm which ac-cording to Knuth [4] was discovered independently by Deutsch and bySchorr and Waite [9]; see also Gries [3] and Topor [10]. It can performany of the three traversals and it uses an explicit stack which is keptin the tree itself by reversing the pointers on the path from the rootto the current node, and restoring them on the way back up the tree.Each node on this stack has its tag �eld set conveniently in order for theprocedure to know whether the left or right link was reversed. The algo-rithm is really more general and was originally formulated for traversingarbitrary data structures and not only trees.Figure 12 shows the inductive hypothesis. The upside down triangledenotes the tree formed by the stack nodes and their subtrees (as theproof shows it is a tree). The hypothesis also states implicitly that thetrees pointed to by p and t remain identical to the original ones, exceptpossibly for the tag �elds in the tree p. Figure 13 shows again the proofsteps when p 6= nil. Notice that in this case it is also proved that theoriginal trees are restored, and that the tag �elds in the tree t (denotedby T for true and by F for false) do not change. It is obvious thatthe inductive hypothesis implies the correctness of the procedure sinceinitially t = nil.
10



procedure DSW (p: ptr);vart ,q : ptr ; up: boolean;begint := nil;repeatwhile fQ1g p 6=nil do f go left gwith p" do beginPreOrderVisit(p); tag := true;q := llink ; llink := t ;t := p; p := q fR1gendup := true;while fQ2g up and (t 6=nil) dowith t" docase tag oftrue: begin fgo rightgInOrderVisit(t); up := false;tag := false; q := p; p :=rlink ;rlink := llink ; llink := q fR2gend;false: begin fgo upgPostOrderVisit(t);q := rlink ; rlink := p;p := t ; t := qendenduntil t=nilend;Figure 11: Deutsch-Schorr-Waite procedure11
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procedure LD(p: ptr);varempty , q , t : ptr ;beginnew(empty); t := empty ;repeatfQ1gif p=nilthen begin f swap p and t gp := t ;t := nilendelse begin f rotate four pointers gVisit(p);q := t ; t := p;p := p".llink ;t".llink := t".rlink ;t".rlink := qendfQ2guntil p=emptyend;Figure 14: Lindstrom-Dwyer procedure5 Lindstrom-Dwyer algorithmThe procedure of Figure 14 implements the algorithm discovered byLindstrom [6] and Dwyer [2] which is similar to that discribed in theprevious section, but does not require the extra tag �eld in each node.The price to be paid is that the algorithm is \blind", i.e. does not produceone of the canonical traversals but a \merge" of the three: each nodeis visited three times and the algorithm cannot distinguish between thethree visits. Instead of reversing alternately the two link �elds, a rota-tion of four values is performed: the two link �elds, the current nodepointer and the previous node pointer (the stack pointer).The procedure must distinguish however between the three visits13
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pFigure 15: Inductive hypothesis for the LD procedureto the root node in order to terminate properly. Instead of using asmall counter, we represent the empty stack by a pointer value which isdi�erent from any pointer in the tree (we call it empty). The small blackdot denotes the occurrences of this pointer which actually correspondsto an empty subtree. The proof is similar to that of the previous section.6 Robson's algorithmThe procedure of Figure 17 implements the algorithm devised by Rob-son [8] which is another clever modi�cation of the Deutsch-Schorr-Waitealgorithm of Section 4. Instead of using the extra tag in each node toknow whether the left or right link �eld was reversed, the algorithm keepsan additional stack (besides the one formed by the reversed pointers).This stack does not require any additional space since it is kept tem-porarily in the leaves of the tree. The leaves are linked through theirrlink �elds, and the llink �elds are used to keep pointers to the nodeswhose two subtrees are not empty and whose right links have been re-versed. It is not necessary to store the pointers in other cases. Thevariable r points to the topmost value of this stack (i.e. to the last nodewhose right link was reversed, if any; otherwise it is nil), and the variabletop points to the rest of the stack. The variable av points to the nextleaf which can be used to extend the stack. The variable empty is usedin the same way as in the Lindstrom-Dwyer procedure.14
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procedure Robson(p: ptr);varr ,q ,t ,top,av , empty : ptr ;up: boolean;beginr := nil; top := nil; up := false;new(empty); t := empty ;repeatrepeat fQ1g f going down gPreOrderVisit(p);if (p".llink=nil) and (p".rlink=nil)then begin f leaf: go up gInOrderVisit(p);up := trueendelseif p".llink=nil then begin f go right gInOrderVisit(p);q := p".rlink ;p".rlink := t ;t := p; p := q fR1gendelse begin f go left gq := p".llink ;p".llink := t ;t := p; p := q fR2genduntil up;av := p;Figure 17: Robson's procedure (continues)16



repeat fQ2g f going up gPostOrderVisit(p);if t=empty then up := false f �nished gelse with t" doif llink=nil then begin f coming from right gq := rlink ; rlink := p;p := t ; t := qendelseif rlink=nil then begin f coming from left gq := llink ; llink := p;p := t ; t := q ;InOrderVisit(p);endelseif t=r then begin f coming from right gq := top; r := q".llink ; top := q".rlink ; f pop gq".llink := nil;q".rlink := nil;q := rlink ; rlink := p;p := t ; t := qendelse begin f coming from left gav".llink := r ; av".rlink := top; top := av ; f push gr := t ; q := llink ;llink := p; p := rlink ;rlink := q ; up := false;InOrderVisit(t) fR3genduntil not upuntil t=emptyend;Figure 17: Robson's procedure (cont.)17
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are similar.Notice that the proof also implies that the reversed pointers are re-stored to their original values, that the link �elds of the leaves used tokeep the stack are restored to nil and that a new leaf is always avail-able when it is necessary to extend the stack. By applying the inductivehypothesis to the initial state when the variables r and top are nil, t isempty and up is false, and following the execution from Q2 (when Pos-tOrderVisit(p) is executed), we conclude that the whole tree is traversedand the procedure ends.7 Morris's algorithmFigure 21 shows yet another procedure for traversing binary trees inpreorder and/or inorder. The algorithm devised by Morris [7] createstemporary right threads as in threaded binary trees (see for instanceKnuth [4]). Whenever a non-empty tree is about to be traversed and itsleft subtree is empty, then the root is visited and the procedure advancesto the right subtree. If the left subtree is not empty then the proceduresearches for this subtree's last node in inorder, and sets its right thread,i.e. replaces a nil by a pointer to the current root. Subsequently thetraversal proceeds to the left subtree. Due to the existence of the thread,p will end up pointing to the same initial node after the traversal of theleft subtree is completed. At this point, the thread is eliminated andthe nil pointer restored. After visiting the current root, the proceduremoves to the right subtree.Figure 22 shows the inductive hypothesis which covers two possiblecases: (a) if at Q1 p points to a tree whose last inorder node does notcontain a thread (i.e. its right link �eld is nil) then the procedure willend up at Q2 (at the same place in the program) with the tree traversedin preorder and/or inorder, and p = nil; or (b) if at Q1 p points to a treewhose last inorder node contains a thread then the procedure ends upat Q2 with the tree traversed in preorder and/or inorder with p at thenode pointed to by the thread. It should be noticed that the inductivehypothesis also implies that at Q1 there is at most one thread within the21



procedure Morris(p: ptr);var q : ptr ;beginwhile fQ1g fQ2g p 6=nil dowith p" doif llink=nilthenbegin f empty left { go right gPreOrderVisit(p);InOrderVisit(p);p := rlink fR1gendelsebeginq := llink ;while (q".rlink 6=nil) and (q".rlink 6=p) doq := q".rlink ;if q".rlink=nilthenbegin f �rst time at p { go down gPreOrderVisit(p);q".rlink := p; p := llink fR2gendelsebegin f second time at p { go right gq".rlink := nil;InOrderVisit(p);p := rlink fR3gendendend;Figure 21: Morris's procedure22
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