An algorithm for the three-dimensional packing
problem with asymptotic performance analysis

F. K. Miyazawa and Y. Wakabayashi !

Abstract

The three-dimensional packing problem can be stated as follows. Given a list of
boxes, each with a given length, width and height, the problem is to pack these
boxes into a rectangular box of fixed size bottom and unbounded height, so that the
height of this packing is minimized. The boxes have to be packed orthogonally and
oriented in all three dimensions. We present an approximation algorithm for this
problem and show that its asymptotic performance bound is between 2.5 and 2.67.
This result answers a question raised by Li and Cheng [5] about the existence of an
algorithm for this problem with an asymptotic performance bound less than 2.89.

1 Introduction

In this paper we present an approximation algorithm for the Three-dimensional Pack-
ing Problem. This problem is defined as follows: Given a rectangular box B with a
fixed size bottom and unbounded height and a list L = (b, ..., b,) of rectangular boxes,
find an orthogonal oriented packing of the boxes by, ..., b, into B that minimizes the total
height. The boxes are required to be packed into B orthogonally and oriented in all three
dimensions.

We denote each box b; as a triplet b; = (x;, y;, z;), where x;, y; and z; are its length,
width and height, respectively. We assume here that the box B has dimensions (1, 1, 00),
since if this were not the case and we had B = (I, w,00), [> 0,w > 0, we could divide the
length [; and the width w; of each box b; by [and w, respectively. This problem will be
denoted by TPP. Since one can reduce the uni-dimensional packing problem [2] to this
problem, it follows that it is an NP-hard problem.

If A is an algorithm for TPP and L is a list of boxes, then A4(L) denotes the height of
the packing generated by the algorithm A when applied to the list L; and OPT(L) denotes
the height of an optimal packing of L. We say that « is an asymptotic performance
bound of an algorithm A if there exists a constant § such that for all lists L, in which
all boxes have height at most Z, the following holds: A(L) < « - OPT(L) + 3 - Z.
Furthermore, if for any small ¢ and any large M, both positive, there is an instance L
such that A(L) > (a—¢)OPT(L) and OPT(L) > M, then we say that « is the asymptotic
performance bound of the algorithm A.

nstituto de Mateméatica e Estatistica — Universidade de Sao Paulo — Caixa Postal 66281 — 05389-
970 — Sao Paulo, SP — Brazil (e-mail: keidi@ime.usp.br, yw@ime.usp.br).

In 1990, Li and Cheng [3] presented several algorithms for TPP: for the general case,
an algorithm whose asymptotic performance bound is 3.25; and for the special case in
which all boxes have square bottom, an algorithm whose asymptotic performance bound
is 2.6875. In 1992, these authors [5] also presented an on-line algorithm with asymptotic
performance bound that can be made as close to 2.89 as desired. The algorithm to be
presented here has an asymptotic performance bound less than 2.67. This result answers
a question raised by Li and Cheng [5] about the existence of an algorithm for TPP with
an asymptotic performance bound less than 2.89.

We show that the asymptotic performance bound of our algorithm is between 2.5 and
2.67.

This paper is organized as follows. In Section 2 we establish the notation, mention some
basic results and describe algorithms that are used as subroutines of the main algorithm.
In Section 3 we first explain results on the ideas of the main algorithm, and then give a
formal description of it. In the sequel, we prove results on the asymptotic performance
bound of the algorithm and in Section 4 we discuss its time complexity.

2 Notation and Basic Results

Most of the concepts and notation used here can be found in [3]. Given a list of boxes
L = (by,...,b,), we assume that each box b; is of the form b; = (x;,v;, 2;), with z; < 1
and y; < 1. Given a triplet ¢t = (a,b, ¢), we also refer to each of its elements a, b and ¢
as x(t), y(t) and z(t), respectively. We denote by S(b) and V(b) the bottom area (i.e.
S(b) := z(b)y(b)) and the volume of the box b, respectively. Given a function f : C' — IR,
and a subset C" C C, we denote by f(C') the sum Y .. f(e).

Although a list is given as an ordered n-tuple of boxes, when the order of the boxes is
irrelevant the corresponding list may be viewed as a set (e.g. if L is a list of boxes then
we may refer to S(L) and V(L) as the sum Y ,c; S(b) and Y ,c; V (b), respectively).

Note that, by using a three-dimensional coordinate system, the box B = (1,1, 00) can
be seen as the region [0,1) x [0,1) x [0, 00), and we may define a packing P of a list of
boxes L = (by,...,b,) into B as a mapping P : L — [0,1) x [0,1) X [0,00), such that

Pr(b;) +x; <1 and PY(b;) +y; <1,
where P(b;) = (P(b;), PY(b;), P*(b;)), i =1,...,n.
Furthermore, if R(b;) is defined as
R(b;) = [P*(bi), P*(bi) + x;) x [PY(b;), PY(b;) + yi) x [P?(bi), P*(bi) + 2i),
then
R(bi)NRD;)=0 Vi,j, 1<i#j<n.

2

//y
(0,1,0)—— 1,1,0
| P ////T //‘: (, ’)
: e P
'T | L0 ;o
Zil ST / (A R
¢ d /yi ’/ I/____J//
= = 0,0,0) (1,0,01%
bi = (i, Yi, 2i) (0.0, 8 T

P(bi) = (P(bi), P¥(bi), P*(bi))

Figure 1: Packing of a box b; = (z;, y;, z;) into the box B = (1,1, 00).

The above conditions mean that each box in L must be entirely enclosed in the box
B and must be packed orthogonally and oriented in all three dimensions. Furthermore,
no two boxes can overlap in the packing P (see figure 1).

Given a packing P of L, we denote by H(P) the height of the packing P, i.e.,
H(P) :=max{P?*(b) + z(b) : be L}.

All packings will be denoted by the letter P, with or without a subscript and/or
superscript (for example, P', Poc, Phg)-

If P, Ps, ..., P, are packings of disjoint lists L, Lo, ..., L, , respectively, we define the
concatenation of these packings as a packing P = Py [|Pa|| ... || P, of L = LiULyU. . .UL,,
where P(b) = (PF(b), PY(b), S} H(P;) + P7(b), forallb e L;, 1 <i <.

The other notations to be used here are the following.

e CPp".p; d"d]:=1{bi=(wi,yi,2): " < <P, ¢" <y <},
for0<p' <p'<1,0<¢" <¢ <1.

) Cm::C[O,%; O,%],form>0.

A level N in a packing P is a region [0,1) x [0,1) X [Z;, Z3) in which there is a set
L' of boxes such that for all b € L', P*(b) = Z, and Z, — Z; = max{z(b) : b € L'}.
We denote by S(N) the sum Y .7/ S(b). Sometimes we shall consider the level N as a
packing of the list L'.

A layer (in the z-axis direction) in a level is a region [0,1) x [V1,Y3) x [Z1, Z,) in
which there is a set L' of boxes such that for all b € L', PY(b) =Y; and P?(b) = Z; and
Yo — Y1 =max{y(b): be L'} and Zy — Z; = max{z(b): be L'}.

3

Throughout this paper we consider Z as the height of the highest box in the list L (or
in the list under consideration).

Some of the algorithms that will be used in the main algorithm generate packings
consisting of levels satisfying certain properties. We prove in the sequel a result concerning
these packings and derive special cases of it which will be used in the proof of the main
theorem.

Proposition 2.1 Let L be an instance of TPP and P be a packing of L consisting of
levels Ny,..., N, such that min{z(b) : b € N;} > max{z(b) : b € Nyy1}, and S(N;) > s
for a given constant s >0, i=1,...,v—1. Then H(P) < 1V(L)+ Z.

Proof. Let h; be the height of level N;, t =1,...,v.

V(L) > S(Ny)-hy+S(No)-hg+---S(Ny_1) - hy
> 8'h2+8'h3+"'8'hv

= S(zvghz—hl)
s-(H(P)—2).

The constant s mentioned in the above proposition will be called an area guarantee
of the packing P.

We describe in the sequel two algorithms for which Proposition 2.1 can be applied.
First we describe an algorithm called NFDH (Next Fit Decreasing Height) that was
presented by Li and Cheng in [3]. This algorithm has two variants: NFDH® and NFDHY.
The notation NFDH is used to refer to any of these variants.

The Algorithm NFDH? first sorts the boxes of L in non-increasing order of their height:
b1, b, ..., b,. The first box by is packed in the position (0,0, 0), the next one is packed in
the position (x(b1),0,0) and so on, side by side, until a box is found that does not fit in
this layer. At this moment the next box by is packed in the position (0,y(b*),0), where
y(b*) = max{y(b;),i = 1,...,k — 1}. The process continues in this way until a box b, is
found that does not fit in the first level. Then, the algorithm packs this box in a new level
at the height z(b). The algorithm proceeds in this way until all boxes of L have been
packed.

The Algorithm NFDHY is analogous to the Algorithm NFDH?, except that it generates
the layers in the y-axis direction (for a more detailed description see [3]).

The following result proved by Li and Cheng [3] can be derived as a corollary of
Proposition 2.1. In fact, the proof of Proposition 2.1 is similar to the proof of this lemma.

4

m+1’m m—1

result also holds for the Algorithm NFDH®* when applied to a list L € C [0, % ey

> m+1’m

Lemma 2.2 If L € C ;45,2 ; 0,] then NFDHY(L) < (1) V(L) + Z. The same

Another algorithm that generates a packing as mentioned in Proposition 2.1 is the
algorithm called LL, presented by Li and Cheng in [4]. This algorithm is used to pack a
list of boxes L € C [0, % ; 0, %], m > 3. We indicate by (L, m) the parameters that must
be specified to call this algorithm.

Let us give an idea of the Algorithm LL(L,m), as we shall refer to it in the sequel.
Initially it sorts the boxes in L in non-increasing order of their height. Then it divides L
into sublists Ly, ..., L,, such that L = Ly||Lsy]|...||L,, each sublist preserving the (non-
increasing) order of the boxes, and

S(Li)g(mT_Q)-i-(%)Q for i=1,...,v,
S(L;) + S(first(Lizq1)) > (%‘2) + (%)2 for i=1,...,0—1;

where first(L') is the first box in L. Then, the Algorithm LL uses a two-dimensional
packing algorithm to pack each list L; in only one level, say N;. The final packing is
the concatenation of each of these levels. As each level N; (except perhaps the last) is
such that S(N;) > 2=2, the following result (given in [4]) can be obtained by applying
Proposition 2.1.

Lemma 2.3 If P is the packing generated by the Algorithm LL for an instance L €
clo,L;0,L], then HP) < (;25) V(L) + Z.

Another algorithm that will play an important role in the main algorithm is the Al-
gorithm COLUMN. This algorithm generates a partial packing of two lists, say L; and
L,. The packing consists of several stacks of boxes, referred to as columns. Each column
is built by putting the boxes one on top of the other, and each column consists only of
boxes in either L or L.

The Algorithm COLUMN is called with the parameters (L, [p'], L, [p?]), where p! =
pi,pi, ... ,p,ll1 consists of the positions in the bottom of box B where the columns of boxes
in Ly should start and p* = p},p3,...,p2, consists of the positions in the bottom of box
B where the columns of boxes in Ly should start. Each point pg- = (x;,y;) represents
the z-axis and the y-axis coordinates where the first box (if any) of each column of the
respective list must be packed. Note that the z-axis coordinate need not be specified since
it may always be assumed to be 0 (corresponding to the bottom of box B). Here we are
assuming that the positions p', p? and the lists L;, L, are chosen in such a way that they
do not lead to an infeasible packing.

We call height of a column the sum of the height of all boxes in that column.

5

The positions pé- for j = 1,...,n; and ¢ = 1,2 must be given. Initially all n; + no
columns are empty, starting at the bottom of box B. At each iteration, the algorithm
chooses a column with the smallest height and packs the next box from the respective
list on the top of that column. The process terminates when all the boxes in L; or Ly
are packed. At this point, the algorithm returns the pair (P, L') where L' consists of the
boxes in L1 U Ly that were packed, and P is the packing of L' generated by the algorithm.
We also say that P combines the lists L; and L.

If each box of L; has bottom area at least s;, i« = 1,2, the sum n;s; + nysy is called
the combined area of the packing generated by the Algorithm COLUMN.

The following lemma about this algorithm holds.

Lemma 2.4 Let P be the packing of L' C Ly U Ly generated by the Algorithm COLUMN
when applied to lists Ly and Ly and list of positions pb, ps, . .. ,pﬁw i=1,2. If S(b) > s,
for all bozes b in L;, i = 1,2, then H(P) < ———V(L') + Z.

— S1n1+s2n2

Proof. Note that the difference between the height of any two columns is not greater
than Z. Thus, V(L") > (H(P) — Z)(s1n1 + Sans).

]

Another simple algorithm that we shall use is the Algorithm OC (One Column). Given
a list of boxes, say L = (by,...,by), this algorithm packs each box b;; on top of box b; ,
for i =1,...,n— 1. Thus, the first box is packed in the position (0,0, 0), the second box
is packed in the position (0,0, 2(b1)), and so on. It is easy to verify the following results.

Lemma 2.5 If P is the packing generated by the Algorithm OC when applied to a list L
and s is a constant such that S(b) > s for all bozes b in L, then H(P) < @

Lemma 2.6 If P is the packing generated by the Algorithm OC when applied to a list L
such that z(b) > 5 and y(b) > 5 for all bozes b in L, then H(P) = OPT(L) .

Two other algorithms that we shall need in the main algorithm are based on the
algorithm UD, developed by Baker, Brown and Kattseff [1] for the strip packing problem.
This problem consists in packing a list of rectangles R = (r1,73,...,r,) in a rectangle of
unit length and infinite height, and the objective is to minimize the height of the packing.
The following result concerning the algorithm UD is presented in [1].

Lemma 2.7 Let R = (ry,...,r,) be an instance for the strip packing problem, in which
no rectangle has height greater than Z'. Then the height of the packing B generated by the
algorithm UD when applied to the list R is such that H(B) < 20PT(L) + 27"

6

Based on Algorithm UD, we define the algorithms UD* and UDY for TPP as follows.
Given a list L = (by, by, ..., b,) of rectangular boxes b; = (x;,y;,), for i = 1,...,n, the
Algorithm UD? first uses the Algorithm UD to generate a packing B, applying it to a
list of rectangles R = (ry,79,...,7,), where r; = (x;,%), i = 1,...,n. Then it generates
a packing of L by packing the corresponding boxes in the position 0 in the y-axis and
using the same coordinates of the two-dimensional packing B for the z- and z-axis. The
algorithm UDY is symmetric to the Algorithm UD". Using Lemma 2.7 it is immediate
that the following holds:

Lemma 2.8 Let L be an instance for TPP such that y(b) > 1 (resp. x(b) > %) for all
bozes b in L. Then the packing P generated by the algorithm UD? (resp. UDY) is such

that . -3
H(P) < ZOPT(L) + §Z)

3 The main algorithm

The algorithm to be described here will be called Algorithm Ay. It depends on a parameter
k, an integer greater than 5. Before giving its formal description, let us first explain the
idea behind it.

This algorithm divides the given instance L into sublists and applies an appropriate
algorithm to each (or a combination) of these sublists. The final packing is obtained as a
concatenation of these packings.

Initially, the boxes of L are divided into four parts, P, P», P; and Py, as follows.

P ={beL:xz() <3, yb) <3}, P, ={beL:x(b) <3, yb) > 1},
Py ={beL:x(b) >3, yb) <i}, Py ={beL:x() >3, yb) > i}

Suppose for each of these parts we generate packings consisting of levels. Li and Cheng
[3] have shown that one can get a packing of part P; with area guarantee %, and the same
1

for P, and P5. Note that for part P, the best one can guarantee is ;. They proved the

statements for P;, P, and P3 by considering the subdivision indicated in figure 2.

As we shall see later, considering another subdivision of P;, one can have a packing
of P, with area guarantee %. Thus, with respect to area guarantee, we can classify the
packings of part P, as being good, P, and P; as reqular and P, as bad. We call a packing
of a sublist as being good if it has an area guarantee close to that of part P;. The idea of
our algorithm is to refine the subdivision of these parts in such a way that the obtained
sublists allow a better combined area or a better area guarantee. For that, we have to
detect the boxes that do not yield packings with good area guarantee. These boxes will

be called critical.

1 .
|
|
|
P P,
|
1 I
2 ~
T
Py Py
|
I
|
T
1 1
0 5 2 L

Figure 2: Subdivision of Py, P, and P;.

The Algorithm Ay uses the Algorithm COLUMN to combine the critical boxes in P,
and P (these are the boxes in the sets Ly = (A1U...UAg14) and Lp = (B1U...UBgi14),
illustrated in figure 3) in such a manner that the resulting partial packing is a good one
and the critical boxes of P, and P; that could not be packed remain in only one of these
parts. Furthermore, the other part —now without the critical boxes— allows a good
packing.

Suppose that the critical boxes in Py (boxes in the set Lg) could all be packed (see
figure 4). The way the set Lp is defined guarantees that the remaining part of P3 (sublists
Ly to Lyz, see figure 5) has a good area guarantee. Now we apply the same process for
parts P, U P; and P,. That is, we combine critical boxes of P, U P; with the critical boxes
of Py (these are the boxes in L, U LY, and L, see figure 4). Note that the choices of the
sublists to be combined have to be carefully done so that they allow good combinations,
and once one of the sublists is packed the remaining boxes in the corresponding part also
allow a good packing.

Suppose L¢ is totally packed (see figure 5). Now we define new critical boxes in P,
and P, (these are the boxes in L% U L%, and Lg, see figure 6) and apply the algorithm
COLUMN to the corresponding sublists. The resulting packing Prr has an area guarantee
better than that when only boxes of P, are considered.

In both cases, considering the boxes not packed yet we can obtain packings which can
be compared with an optimum packing of the corresponding sublist. The details of this
process will be clear in the description of the Algorithm Aj.

8

The sublists A; and B; we have mentioned above are constructed using values r; and
si, 1 =1,...,k + 14, defined in the sequel. These sublists are illustrated in figure 3, and
are formally defined in step 2 of the algorithm.

Definition 3.1 Let T%k), Ték), e 77"121215 and sgk), sgk), . SI(QM be real numbers defined as
follows:
° T%k), Ték), e ,r,gk) are such that
k k k k k k k k k
rl)% =7)(1—r§)) =7)(1—7“5)) =...= r,(c)(1—r,(€31) = %(1—7",,(C)) and r < s
k k k
d 7"1(@+)1 = %7 Tl(c-iEZ = ia) 7nlg—|215 = 117;

PS S(k):(l—Tgk)) fOTi:la"'7k;

A | P2]
o Sl(ck)'_l_ (%) fori=1,...,14.

(k) .(k) (k)

The existence of the numbers ™/, 73", ..., .~ can be shown using a continuity ar-
gument. Furthermore, one can show that r%k) > rék) > e > r,(ck) > % and r§k) — % as
k — oo. For simplicity we shall omit the superscripts) of the notation rgk), sgk) when &

is clear from the context.

As we are going to apply Algorithm COLUMN combining sublists A; and B;, we have
to specify the coordinates where the columns of A; and B; are to be built. To this end
we define lists of positions, p;;, ¢i j, P}, ¢;, P and ¢;.

REMARK: The positions p; j, ¢i,j, p, ¢, Pj and ¢j are defined in such a manner that the
combined area of the packings generated by the Algorithm COLUMN (in step 5 of the
Algorithm Ay) is at least 2.

Positions to combine sublists A; and B;.

We define these positions only for ¢ < j. The case in which ¢ > j is symmetric (see
figure 3 to visualize these positions).

e To combine the lists A;, 1 <¢ <k, and B;, 1 < j <k, take

Pij = [(0,0),(%,0)] and g;; = [(0,)] .

Note that in this case we have an area guarantee of at least %

e To combine the list Ay_y = (A U...UA,) with Bj, k+1 < j < k414, we consider
two phases. We divide Ap_ into A" and A” taking A" = {b € Ap_y: z(b) <1-s;}
and A" = A[l—k} \A'.

* To combine A" with B; take
p; =1(s;,0)] and
g =[0,0),(0,55), (0. 5735) - (0. 55)] -

In this case we have an area guarantee of at least 5. This minimum is attained
when j =k + 1.

% To combine A" with B; take
P! =1(0,0),(4,0)] and

i =[(0.3), 0.5+ 55) - (0.3 + 57) o 03+ (15552 - 1))]
Here we obtain an area guarantee of at least %. In fact, the values of s; (which

determine A" and A”), k+ 1 < j < k + 14, were chosen in such a way that for

the boxes in P; not in Lg we also have a good area guarantee. The value %

is attained when j = k + 1 (one box from By, with bottom area é and two

boxes from A”, each with bottom area).

e To combine the lists A;, k +1 < i <k + 14, and Bj, i < j <k + 14, take

pi,j: |:(Sj,0),(Sj‘i‘m,()),(s]"i‘ﬁ,()),...,
(si+ (L1 =s5) - (i =k +2)] = 1) =4,0)] and

w; =[0.0. (0 55) . (0 5755) - (05753)] -

In this case we also obtain an area guarantee of at least g—g.

We are now ready to describe the Algorithm Aj.

10

Algorithm A,
Input: List of boxes L.
Output: Packing P of L into B = (1,1, 00).

1 Let P, ={beL:xz(b)<4i yb)<i} P, ={beL:x(b) <3 yb)>1i},
:{bEL:x(b)>% (b)g%} P, ={bel x(b)>%,y(b)>%}.
2 Let ri,ry, ..., k116 and Sy, So, ..., Skr14 be given as in Definition 3.1. Define the sets

A; and B;, for i =1,...,k + 14, in the following way (see figure 3).
A= {b € L:xz(b) € (rig1,mi],y(b) € (%,Si]},

Bi={be L:x(b) € (3], y(b) € (ri,mil},
LAFAlU"'UAIH»M; LB<—B1U...UBk+14.

3ic 1,51 Pap <+ 0

4 Let pij,qij, 1 < 4,5 < k+ 14, and p},p},q},qj, k +1 < j < k + 14, be as defined
previously.

5 Combine sets L4 and Lg as follows.

5.1 While (i <k and j <k) do
(Pi;, Li;) < COLUMN(A;, pij, Bj, ¢ij) ;
Ai < Ai\ Lij; Bi < Bi\ Lij; Pap < Pal/Pij;
If A; =0 theni<i+1elsej<+ j+1;

5.2 If j=k+1

then
5.2.1 /* all boxes By, ..., By have been packed */
A[l—k} — Al Uu...u Ak,
While (j < k+ 14 and Ap_y # 0) do
T4 1— Spyjs
A« {b S A[lfk} : l‘(b) < t}; A" A[l—k} \A,;
(Pl, L)) + COLUMN(A', !, B;, ¢});
(P}, Ly) + COLUMN(A", pl/, B; \ L}, q});
PAB < PAB||7DI||7DI,
B — B \L’ U L’ A[lfk] — A[lfk} \ E; U I:;’,
ifBj:Q)thenjej—l—l;
i< k+1
else
5.2.2 /* All boxes Ay, ..., Ay have been packed */
Perform steps symmetric to the ones given in the case 5.2.1;

11

5.3 While (i <k+14 and j<k+14) do
(Pi,j, Lz,]) < COLUMN(AZ,le, B], QZ,]) ;
Ai < A\ Lij; Bi < B;i\ Lij; Pap < Panl||Pij ;
If A; =0 theni<i+1elsej<+ j+1;
6 If j > k + 14 then /* all boxes in Lp have been packed */

6.1 Let Lap be the set of boxes packed in Pap; L < L\ Lag;
6.2 Subdivide the list L in Ly, ..., Lys as follows (see figure 4).

Li=LNC[51; 5 4] for i=1,...,16 Ly =LNC[L.1; 0, L],
Lis=LNC[}, 5 53], Ly=LNC [1 L],
Lo =LNC 555 03], Ln=LNC[L4: 5.4,
Lp=LNC[L 15 0,4, Lyy=LNC 0,4 1 1],
Lu=LNC[0,%; L4, Lys = LNCy,
LC:LHC[%J; %,%] L’D:{bELI: y(b)g%},
Ly ={beLis: y(b) < I} Lp = L UL,

6.3 Generate packings Py, ..., Pos as follows.
(Peprs Lepr) + COLUMN(Le, [(0, 0)], Ly, [(0, 32)]);
(Pepr, Lepr) <= COLUMN(Le \ Lep, [(0,0)], LD, [(0,53), (5. 52)]);
Pcp < Pepr||Pepr;
Lep < Lep U Lepr;
Ly < Ly \ Lep;
Lig < Lis \ Lep;
6.4 P, « NFDHY(L,) fori=1,...,22;
P; < NFDH"(L;) for i = 23, 24;
Pas < LL(Las, 4);
6.5 P/« P\ Lcp;
P} < Py \ Lag;
P« P3;\ (LapVU Lcp);
P, <+ P, \ Lcp;
6.6 If Lc C Lep
then (Case 1) p ¢ YIOUB-195 —_ 440 .. /xL¢ is packed = / (see figure 5)

570
else (Case 2) p« YEB=TL = 0.455...; /«Lp is packed / (see figure 6)

12

6.7 Lp<+ {beP;: z(b) <1-p}; L};%{bGPZ':é<x(b)§p};
Ly {beP: k<a®) <i}; Lp LpULY;
6.8 (Prr, Ler) <+ COLUMN(Lg, [(0,0)], L}, [(1 — p,0)]);
(PEF”, LEFH) — COLUMN(LE \ LEF’, [(0, 0)], Lj’p, [(1 — D, 0) (1 —p + 0)
S (L=p+ (9] = 1)5,0)]);
Per < Per||Perr;
Lgr < Lgp U Lppr;
Py « P\ Lgp;
P + P;\ Lgp;

9 (Subcase 1) If Ly C Lgp then /* Ly is totally packed */

Pup + UD*(PyU Py));
Poc «+ OC(P});
Py« {bePy: x(b) <
Py« {be Py x(b) >
Pse < NFDH?(Py.);
Paq <= NFDH" (P);
P' < Poc||Pzel| P2al| Per;

P" « {P € {Pyp,P'} : H(P) is minimum };

Pauz < Pas||Pep||Pil| - - - || Pas;

P < Pouz||P";

9 (Subcase 2) If Lr C Lgp then /* Lp is totally packed */
Poc «+ OC(P});
Py« {bePy: x(b) < L};

Py, +—{bePy: x(b) > p}
Py < NFDH?(PL);
Poa NFDH:E(PQHd),
P' < Poc||Per;
Paus < Pasl|Pcp||Pacl|Padl|Pil| - - - || Pos;
P < Paue|P";
6.10 Return P;

Wl— Wl

7 If i > k + 14 then generate a packing P of L as in step 6 (in a symmetric way);
8 Return P;

end algorithm.

13

Sk

J2/3

HW

1/16
1?17

Bt

D+

Di+s |
Htd |

Py

0

1/%}i6 1/7;/61/5 /4 1/3 - 4/91/2] 23

Tk ToTy 5152 Sk

Figure 3: Sublists A; and B;.

14

1
19/36 Lo
1/2
17/36 r--Lig-— -~ 1= -—-——-—-—------ L
L L jjj
23 21 Lll,) : —_\ L,D
13 EMPTY|
Loy Lyg : Ly
1/4 . I
15 [L
ik I
/7 Los Lo Loy Lo f
B a—
1/17 | i 15
ol 17
0 /4 1/3 1/2 2/3 1

Figure 4: Sublists after the list Lp = (B; U ... U Byy14) is totally packed.

15

19/36
1/2
17/36

1/3

1/4

1/5
1/6
1/7

1/17
1;18

"
LF

Lk

no

___LIB_E___ _____________

L24

EMPTY

Los

L22

1/18 1/9

1/4

1/3

p

1/2 1-p 2/3

Figure 5: Combination of Ly and L', U L7,: L is totally packed.

16

Y
1
A L, s
1/2 Lig Ly
17/36 ..
Los Loy EMPi‘Y ‘\j_\ : EMPTY
13 EMPTY|
Loy Lyg Ly
1/4 N N
: Do Ly
15 ; [Ii
ik L Is
11 Lo Loy Ly SR :
1/17 [L5
1;18 - Ilr:
: Lo : 17
0 1/18 1/9 /4 1/3 p 1/21p 2/3

Figure 6: Combination of Lo and L', U L7,: L', U LY, is totally packed.

17

The next theorem gives an asymptotic performance bound of the Algorithm A; when
k — oco. After the proof of this result we show that for relatively small value of k (k = 13)
the Algorithm A; has already an asymptotic performance bound that is very close to the
value shown for £ — oo. This conclusion will follow from the proof of the next theorem.

Theorem 3.2 For any instance L of TPP we have
597

57944199145 —92.669..

ol . as k — oo.

where oy, —

Proof. Let us recall that when £ — oo the value of rgk) tends to %, ry = r%k) < g (see
Definition 3.1). Each of the packings P;, ¢ € {1,...,25}\ {1, 18}, has an area guarantee
that is at least %, this minimum being attained when i € {16,17}. Thus applying Lemma

2.2 and Lemma 2.3 we can conclude that

H(P;) < %V(Linz, for ie{l,...,25}\ {1,18} . (1)

Now, for each of the packings Q € {Pz-,j, PN{J, PZ’J} that are used to generate the packing
Pap at the end of step 5, H(Q) < 22V(Q)+Z. To see this, apply Lemma 2.4 together with
the fact that for each packing Q that combines sets of L4 and Lg, the combined area is at
least 2. As there is a maximum of (2k —1)+28+14 = 2k + 41 packings generated from
combinations of sets in L4 and Lg, we can see that H(Pag) < %V(LAB) + (2k +41)Z7.
Thus the following inequality holds:

36

H(Pap) < ﬁV(LAB) + (2k+41)Z . (2)

For the packings Pcp and Pepr (in step 6.3), since the combined area is at least
(3 + %), it follows by Lemma 2.4 that

1
H(PCD) S 177_1
(i+%)
Let us now analyse the two possible cases (cf. step 6.6).

Case 1: Lc C Lep and p = Y9L0=195 — (0.440

V(Lep) + 27 . (3)

For the packings P; and Pg the following inequalities hold:
1
H(Pi) < T—V(L1) + 7, (4)
1

H(Pm)

IN

V(L) + 7 (5)

18

3

Since each of the packings Pgp and Pgps has an area guarantee that is at least 55,

we can conclude that

10
H(Pgr) < ?V(LEF) +27 . (6)
Subcase 1.1: Lg C Lgp
By Lemma 2.8,
5 , , 53
H(PUD) < ZOPT(PZ U P4) + EZ . (7)

Applying Lemma 2.5, since S(b) > (1 — p)53 for b € Py, it follows that

H(Poc) <
For the packings P, and Poy, using Lemma 2.2, we can conclude that

1 14 14
H(Poe||Paa) < TV (P U Pyy) +22 . (9)

w

From (6), (8), (9) and the fact that (1 — p)sz = min{3, (1 — p)s2, 3} it follows that

H(P') = H(Pocl|Pa|P2ullPrr)

1
a—pz’ (Py'U Py U Py U Lpr) +4Z
36

1
mv (PyUP)+47 . (10)
36

Since P" = {P € {Pyp,P'} : H(P) is minimum}, we have
H(P") = min{H(Pyp), H(P")} . (11)

<

Now for the packing Puuz = Pagl|Pepl|Pil| ... ||Pa2s, using the inequalities (2),...,(5)

and the fact that r{ = min {;—g, T1, i + 5, %}, we obtain

H(Pous) < -V (Lus) + (2k 4 68)Z . (12)

]
where L, denotes the set of boxes in the packing P,yz.

Let

"y = H(P”)—%Z, (13)

Hy = H(Puus) — (2k +68)7 . (14)

19

From (7) and (11), in particular we have
5 ! !

and therefore,

4
OPT(PyUP]) > -H: .

Thus,
OPT(L) > OPT(P,UP)) > %’Hl . (15)
Note that from (12) and (14) we can conclude that
V(Lauz) > m1H2 . (16)
On the other hand, from (11) and (10) we have

H‘ (rp//)

IN

H(P")

1
36

1 93
—— SV(PJUP)+ =2
(1 _ p)% (2 4) +))

IN

IN

and thus,
Hi=H(P")— —Z < ——V(P,UP)),
i€,
19

V(RUF) > (1 —-p)gH - (17)

Since V(L) = V(L) + V(P3 U Py), using (16) and (17) we get
19
V(L) > 7”1%2 + (1 — p)%'ﬂl .
Thus,
19

OPT(L) > V(L) > riHz+ (1 — p)%/]‘h :

Combining (15) and the inequality above, it follows that
4 19
OPT(L) 2 maXx {5%1, (1 - p) %%1 + 7”1%2} .

20

Since H(P) = H(Puuz) + H(P"); using (13) and (14), we have

53
H(P) = (’Hg b2k 68) 7+ H + §z>
597
Thus, A(L) < aj(r1) - OPT(L) + (2k + 5%?) Z, where o, (r;) = 24221800 T prove

1447
this, we show that Mty < ot (r1), by analysing two cases:
) maX{%Hl,(lfp)%HlJrrlHQ} —= k(1), Yy ysing

Case (a): max {%%17 (1 - p) %H1 + 7"1%2} = %Hl

In this case, H; > 452?97511)%2, and thus

%1 + Hg Hl + HZ
max {%Hla (1—p) %Hl + T1H2} %Hl
5 5H,
4 4,
< 49 + 95p + 1807,
-]_447"1

Case (b): max {%’Hl, (1—p) saH1+ Tng} =(1—p) gt +7r1Hs.

18071
Then 7’[1 S 49+95p%2'

Hi+Ho

Tl s L rictly increasing function of n
(I*P)%HPH‘H{Q s a st Cty creasing fu ction o Hla and

In this case, note that

hence when H, = 41,?;511)%2 it attains its maximum value. Thus,
Hi+ Ho _ Hi+ Ho
max {%’Hl, (1—p) %’Hl + 7“1%2} (1-p) %’Hl +7ri1Hs
49 4+ 95p + 1807y
- 144T1
Subcase 1.2: Ly C Lgr
In this case,
1
H(Poc) < gV(PY) - (18)
72

Since P’ = Poc||Prr||Prr and all these packings combine boxes in P;, it follows that
OPT(L) > OPT(Py U Lgr) > H(Poc) + H(Prr) —2Z = H(P')—2Z . (19)

21

Recalling that P’ = Poc||Per, and using (6) and (18) we have

1
H(P') < mV(LgrpUPy)+2Z . (20)
2
Now using Lemma 2.2 for the packings Py, and Poy; we can conclude that

1
H (Pael||Paa) <];V(ng UPL)+2Z . (21)

From (2),..., (5) and (21) and the fact that p = min{il, 1 + 2, ry, 5, p} we have

H(Poss) < 2V (Low) + (2K +T0)2 (22)
Let

H, = H(P)-27, (23)

Hy = H(Pauz) — 2k +70)Z . (24)

From (19) and (23), it follows that

OPT(L) > H, . (25)

Using (20) and (23), resp. (22) and (24), we have

19
V(Lgp UP)) > 57‘[1 ,

V(Laum) > pH2

Since V(L) = V(Lgr U P{ U Lg,,), adding up the above inequalities, we get

19
V(L) Z 5%1 +p%2)
and thus 19
OPT(L) > 57{1 + pH, .

Combining the inequality above with (25) we can prove that

Ap(L) < ol - OPT(L) + (2k + 72)7Z |

53+72p Hi+Ho
2p max{?—h,%%ﬁrp?-lz}

can be done analogously to the previous case, and therefore will be omitted.

where o) = . This can be shown by proving that < o). The proof

22

The value of p (p = 7%3_”5) that we considered in the algorithm was in fact
obtained by setting aj,(5) = o). We leave to the reader the verification of this fact.

Thus, from the analysis of both subcases we can conclude that
597
Au(L) < ay - OPT(L) + (% + ?) 7z

where oy — o (5) = of = YLD — 2.669. .. as k — oo.

Case 2: Lp C Lgp and p = 7”3‘1128_71 = 0.455...

In this case the proof is similar to the one presented in Case 1, therefore we omit the
details and simply mention the inequalities that can be obtained.

H(P) < i)(;V(Li) + 7 fori € {1,18} .
H(Pgr) < ?TV(LEF)+2Z
Subcase 2.1: Lg C Lgp
H(Pup) < ZOPT(P’UP’) 5832
H(Poc) < ﬁV(P”)
(PoclPaa) < TV(PLUPY) +22 .

3
H(P') = H(PocllPeel|P2allPrr)

1
< —V(PyUP)+4Z .
(1_p)% (2 4)

1
H(Pauz) < 75V (Lauz) + (2k + 68)Z
ity
Let
03
%1 = (P”) — §Z
Hy = H(Paz) — (2k+68)Z .

Then 1
OPT(L) >

On the other hand,

1
V(Lows) > (—+5)H2 and

4 2
1
VIBUP) > (1-p)H

and therefore

OPT(L) > V(L) > (i + %) Hy+(1— p)%%1 .

Thus,

4 1 1
OPT(L) > max {57{1, (1—p) 57—[1 + (Z + 7"_21) Hg} :

Therefore, Ay (L) < G.(r1) - OPT(L) + (Qk + 5%7) Z, where ((ry) = %. The last

inequality follows by showing that —r EFTH (1—7;)1;—71{124_(1_1_2)7{2} < Bi(r).
5 ’ 2 4 2

Subcase 2.2: Ly C Lgp

IN
= =

H(Poc) V(P]) .

mm

OPT(L) >
H(P"

(P —2Z7 .
V(Lgr UPY)+2Z .

IN

H (Pyel|Paa)

IN

V(P U Pl +27 .

=R RN

Since p = min{i + 5, ;—g,p} we have

H(Pauz) < —V (Lous) + (2k +70)Z .

SR

Let
H, = H(P') - 27,
Hy = H(Puw) — (2k +70)Z .
Then

v

%17

1
- Z%I)
p’HQ .

OPT(L)
V(Lgr U P))
V(Laux)

\%

v

24

Thus .
Therefore,
Ar(L) < B - OPT(L) + (2k+72) 7 ,

Hi+Ho < 3+4p
max{?-tl,i";’-l1+p7'l2} — 4p -

where 3} = %. The last inequality is proved by showing that

Here again, the value of p (p = 7”314&1)_71) that we considered in the algorithm was

obtained by setting ﬁ,’c(%) = ;. Thus, for the given value of p, as in the previous case we
can conclude that

AW(L) < By - OPT(L) + <2k + %) 7z,

where 3, — B,(5) = By = Y2UOLET — 264 ... as k — oo.

The theorem follows from the conclusions obtained in the cases 1 and 2.

Corollary 3.3 For any instance L of TPP and k > 13 we have
597
Ay(L) < - OPT(L) + <2k 4 ?> 7z,

99+1080r*) /199145
. < 2.67 .
864r,

where v, =

Proof. The result follows from the proof of the previous theorem. It is sufficient to
observe that for £k > 13 we have rgk) > 0.444430896, and therefore all arguments used in
the proof remain valid. Note that the statement of the corollary holds taking

{49 +95p; + 180r") 53 4+ 72p; 11+ 10py + 10rF) 3+ 4p, }
Ve = max

1447"5’“) Co2p 44 87"{’6) T Ap,
49+ 95p; +180r" 99+ 1080rF + /199145
1447 8647 ’

_ V199145195

where p; corresponds to the value of p in the Case i, + = 1,2. That is, p; =0

_ /2340171
and py = Y=

25

Proposition 3.4 The asymptotic performance bound of the Algorithm Ay, k > 13, is
between 2.5 and 2.67.

Proof. By the Theorem 3.2 it is sufficient to prove that 2.5 is a lower bound for the
asymptotic performance bound of the Algorithm A,.

Let L be an instance for TPP, L = L' U L", where L' = (b, b},...,bhy) and L" =
(0,05, ..., bh-y), and N is a large positive integer.

Each box b} in L', i =1,...,2N, is defined as

1 1
b;:<§+€,§+6,1> .

Each box b in L", i =1,...,27N, is defined as

[(0.0.1— (= 1éw) if imod9=0
P = (i _ 67% —61—(i— 1)§N) otherwise .

The values for €, {5 and § must be positive and very small, and furthermore the following

1 2 o1, (1)? 1 2 01 (1) - -
must hold: 8 (Z — 6) +0° < 5+ (Z) and 9 (Z — 6) +0% > 5+ (Z) . This can be achieved
by fixing a small § and taking e = %.

The Algorithm A applied to the list L generates a packing P = P'||P” where P’
(resp. P") is the packing generated by the Algorithm OC (resp. LL(L",4)) applied to the
list L' (resp. L").

It is clear that H(P') = 2N. As for the packing P”, it is generated as follows : P”
consists of 3N levels, each consisting of 8 boxes of type (i — €, i —e1—(i— 1)§N) and
one box of type (d,0,1 — (i — 1)éx). Therefore, H(P") = 3N — h({y), where h({y) =
9N (Wf_w); and thus

H(P)=2N + 3N — h({y) =5N — h(&n) .
A better packing P* of the list L can be obtained by generating:

e 2N levels, each consisting of one box of type (% + €, % + €, 1) and 12 boxes of type
(i—ﬁ,i—ﬁ,l—(l_l)gjv),

e one level consisting of all boxes of the form (d,0,1 — (i — 1)y). We note that this
is possible by choosing § conveniently.

Thus H(P*) < 2N + 1.

26

Therefore, by choosing &y such that h(£y) tends to 0 when N — oo, we have

lim 7}[(73) > lim N — Mén) Méw) _2
N—oo OPT(L) = N—o 2N +1 2 o

4 Concluding remarks

It is easy to see that all algorithms we have used in the Algorithm A, —except for the
Algorithm UD and LL— have time complexity O(mlogm), where m is the number of
boxes in the input list. It can be seen that the Algorithm LL also has the same complexity
[4]. As for the Algorithm UD, the authors claim (¢f. [1]) that it can be implemented to
run in time O(mlogm). Thus, the Algorithm A has time complexity O(nlogn), where
n is the number of boxes in the input list.

In the special case of TPP in which the input list consists of boxes with square bottom
we have developed an algorithm with an asymptotic performance bound close to 2.36.
This result appears in a forthcoming paper where another variant of TPP is discussed [6].

Acknowledgement. We thank the referee whose suggestions improved the presentation
of this paper

References

[1] B. S. Baker, D. J. Brown, and H. P. Katseff. A 2 algorithm for two-dimensional
packing. J. of Algorithms, 2:348-368, 1981.

[2] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of N'P-Completeness. Freeman, San Francisco, 1979.

[3] K. Liand K-H. Cheng. On three-dimensional packing. SIAM J. Comput., 19:847-867,
1990.

[4] K. Li and K-H. Cheng. Static job scheduling in partitionable mesh connected systems.
J. Parallel and Distributed Computing, 10:152-159, 1990.

[5] K. Li and K-H. Cheng. Heuristic algorithms for on-line packing in three dimensions.
J. of Algorithms, 13:589-605, 1992.

[6] F. K. Miyazawa and Y. Wakabayashi. Polynomial approximation algorithms for the or-
thogonal z-oriented 3-D packing problem. Technical Report RT-MAC-9512, Instituto
de Matematica e Estatistica — Universidade de Sao Paulo — Brasil, 1995.

27

