
Self-adjustment of resource allocation for grid applications

Daniel M. Batista a, Nelson L.S. da Fonseca a,*, Flavio K. Miyazawa a, Fabrizio Granelli b
a Institute of Computing, State University of Campinas, CxP 6176, Av. Albert Einstein 1251, Campinas, SP 13084-971, Brazil
bDIT, University of Trento, Via Sommarive 14, I-38050 Trento, Italy

a r t i c l e i n f o

Article history:
Received 9 May 2007
Received in revised form 17 December 2007
Accepted 6 March 2008
Available online 13 March 2008

Responsible Editor: N. Akar

Keywords:
Grid networks
Task scheduling
Reactive scheduling
Task migration

a b s t r a c t

Grids involve coordinated resource sharing and problem solving in heterogeneous dynamic
environments to meet the needs of a generation of researchers requiring large amounts of
bandwidth and more powerful computational resources. The lack of resource ownership by
grid schedulers and fluctuations in resource availability require mechanisms which will
enable grids to adjust themselves to cope with fluctuations. The lack of a central controller
implies a need for self-adaptation. Grids must thus be enabled with the ability to discover,
monitor and manage the use of resources so they can operate autonomously. Two different
approaches have been conceived to match the resource demands of grid applications to
resource availability: Dynamic scheduling and adaptive scheduling. However, these two
approaches fail to address at least one of three important issues: (i) the production of fea-
sible schedules in a reasonable amount of time in relation to that required for the execution
of an application; (ii) the impact of network link availability on the execution time of an
application; and (iii) the necessity of migrating codes to decrease the execution time of
an application. To overcome these challenges, this paper proposes a procedure for enabling
grid applications, composed of various dependent tasks, to deal with the availability of hosts
and links bandwidth. This procedure involves task scheduling, resourcemonitoring and task
migration, with the goal of decreasing the execution time of grid applications. The proce-
dure differs from other approaches in the literature because it constantly considers changes
in resource availability, especially network bandwidth availability, to trigger taskmigration.
The proposed procedure is illustrated via simulation using various scenarios involving fluc-
tuation of resource availability. An additional contribution of this paper is the introduction
of a set of schedulers offering solutions which differ in terms of both schedule length and
computational complexity. The distinguishing aspect of this set of schedulers is the consid-
eration of time requirements in the production of feasible schedules. Performance is then
evaluated considering various network topologies and task dependencies.

! 2008 Published by Elsevier B.V.

1. Introduction

Grid networks (Grids) have been designed to provide a
distributed computational infrastructure for advanced
science and engineering [1,2]. They involve coordinated

resource sharing and problem solving in heterogeneous
dynamic environments to meet the needs of a generation
of researchers requiring large amounts of bandwidth and
more powerful computational resources. Although in its
infancy, cooperative problem solving via grids has become
a reality, and various areas from aircraft engineering to
bioinformatics have benefited from this novel technology.
Grids are expected to evolve from pure research informa-
tion processing to e-commerce, as has happened with the
World Wide Web.

1389-1286/$ - see front matter ! 2008 Published by Elsevier B.V.
doi:10.1016/j.comnet.2008.03.002

* Corresponding author. Tel.: +55 19 3521 5878; fax: +55 19 3521
5847.

E-mail addresses: batista@ic.unicamp.br (D.M. Batista), nfonseca@ic.
unicamp.br (N.L.S. da Fonseca), fkm@ic.unicamp.br (F.K. Miyazawa),
granelli@dit.unitn.it (F. Granelli).

Computer Networks 52 (2008) 1762–1781

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/locate /comnet

http://www.elsevier.com/locate/comnet
mailto:batista@ic.unicamp.br
mailto:nfonseca@ic.unicamp.br
mailto:nfonseca@ic.unicamp.br
mailto:fkm@ic.unicamp.br
mailto:granelli@dit.unitn.it
http://www.sciencedirect.com/science/journal/13891286

Central to grid processing is the scheduling of applica-
tion tasks to resources. The lack of resource ownership
by grid schedulers and fluctuations in resource availability
require mechanisms which will enable grids to adjust
themselves to cope with fluctuations. A sudden increase
in link load can, for example, increase the time for the
transfer of data between the computers where two tasks
reside, thus leading to the necessity of relocating the tasks
to a third computer. Furthermore, the lack of a central con-
troller implies a need for self-adaptation. The ability to dis-
cover, monitor and manage the use of resources is
fundamental for the autonomous operation of a grid.

Dynamic scheduling and adaptive scheduling are two
different approaches designed to match the resource
demands of grid applications to resource availability.
Dynamic scheduling [3] is employed when not all the
resource requirements of an application are known at
the time of the scheduling of the first tasks composing
the applications. In a direct acyclic graph (DAG) represen-
tation of an application, such a situation is represented by
unknown edge and node weights, which prevents the
definition of a schedule involving all tasks at the initial
scheduling time. These unknown demands are discovered
only after the completion of certain tasks, and the taking
of decisions about resource allocation to tasks with un-
known demands is postponed until the moment in which
dependencies are resolved. Thus, the scheduling of tasks
is pursued in several steps, providing a certain adaptability
to the availability of resource.

Adaptive scheduling [4] is employed to cope with re-
source availability fluctuations. Resources are monitored
by continuous measurement which provides a precise view
of their availability at the scheduling time of each task.
Adaptive scheduling can be applied to any application
whereas dynamic scheduling only to those with unknowns
demands.

Although both dynamic scheduling and adaptive sched-
uling take into consideration the dynamics of resource
availability, such availability is verified only at specific in-
stants. Dynamic scheduling verifies this availability only
when previously unknown demands are resolved, whereas
adaptive scheduling checks the state of the grid only when
scheduling a task. These schemes are quite restrictive and
fail to exploit various opportunities involving resource
availability, in this way, preventing a dynamic search for
the minimum execution time of an application. Changes
during the execution of a task are neglected, although this
can increase the execution time. Furthermore, both ap-
proaches fail to address at least one of three important is-
sues: (i) the production of feasible schedules in a
reasonable amount of time in relation to that required
for the execution of an application; (ii) the impact of net-
work link availability on the execution time of an applica-
tion; and (iii) the necessity of migrating codes to decrease
the execution time of an application.

It is, however, imperative to consider changes in re-
source availability at all times during the execution of
the tasks composing an application. This need has been
recognized in previous papers [5–9,4,10,11]. However, all
the solutions adopted in an attempt to overcome the prob-
lem have failed to address at least one of the following is-

sues: (i) consideration of network performance
degradation as a source for triggering task migration; (ii)
accountability of overhead for transferring data between
tasks; (iii) evaluation of the benefits of task migration con-
sidering both overhead involved and the remaining work-
load to be processed; (iv) availability of recently released
resources; (v) consideration of the existing dependencies
between tasks; (vi) consideration of deadlines in the pro-
duction of schedules.

The present paper, however, proposes a novel proce-
dure for enabling grid applications composed of various
dependent tasks to meet all these requirements. It is re-
lated to the availability of hosts and link bandwidth. This
procedure involves task scheduling, resource monitoring
and task migration, with the goal of decreasing the execu-
tion time of grid applications. The procedure for self-
adjustment differs from other approaches in the literature
by considering changes in resource availability, especially
network bandwidth, the whole time, using this informa-
tion to evaluate the benefits of changes and trigger task
migration. To our knowledge no other proposal address
these issues in the way in which they are addressed here.
It is especially appropriate for applications composed of
dependent tasks with huge demands for data transfer, as
are typical of e-Science applications.

Moreover, in our approach the benefits of taskmigration
are always verified against the overhead paid by such
migrations, so that a minimum execution time can be
achieved. The procedure introduced in this paper is exe-
cuted by individual applications, which are empowered
with autonomy and control designed to minimize execu-
tion time. The overall maximization of the utilization of a
grid resource is, however, beyond the scope of the proposal.

The scheduling problem is an NP-hard problem, and
feasible solutions in real time require either heuristics or
approximations. Moreover, computational complexity is
increased because the need to account for heterogeneous
resources and irregular topologies, which contrasts to what
happens in multiprocessor systems. An additional contri-
bution of this paper is the introduction of a set of schedul-
ers offering solutions which differ in terms of both
schedule length and computational complexity. The distin-
guishing aspect of this set of schedulers is the consider-
ation of time requirements in the production of feasible
schedules. Performance is then evaluated considering var-
ious network topologies and task dependencies.

This paper is organized as following. Section 2 intro-
duces the proposed procedure for self-adjustment. Section
3 introduces eight novel schedulers. Section 4 provides
numerical examples. Section 5 discusses related work
and Section 6 furnishes some conclusions.

2. Procedure for self-adjustment of resource allocation

Key to the performance of grid applications is the choice
of resources composing the virtual organization (comput-
ing system) to be used to execute the application. This
choice is made by schedulers. Fig. 1 illustrates the various
phases in the execution of a grid application, with the bot-
tom left showing the steps needed for scheduling.

D.M. Batista et al. / Computer Networks 52 (2008) 1762–1781 1763

Resource discovery and determination of application
requirements constitutes the first phase of the process.
The main issue in scheduling is how to map the tasks of
an application onto available resources so that objectives
can be achieved. The procedure introduced in this paper
aims at minimizing the execution time of the application
(schedule length) and considers applications composed of
tasks which can be described as direct acyclic graphs
(DAGs); in these applications, vertices represent the tasks
to be performed and the arcs the dependence between
two tasks. The weights of the arcs represent the amount
of data to be exchanged by the tasks and the weights of
the vertices the amount of processing required for a task.
Several e-science applications, such as those in astronomy
and the simulation of molecular dynamics, can be repre-
sented with DAGs. Fig. 2 illustrates the DAG of a visualiza-
tion application (remote rendering) [13] that will be used
to illustrate the procedure for self-adjustment.

In this paper, grids are represented by a set of hosts con-
nected by network links. CPU and bandwidth demands are
considered, although other demands are not taken into ac-
count. This limitation does not mean that the approach is
limited to the consideration of these demands, but is rather
a question involving ease of illustration.

Once tasks are allocated to hosts (grid nodes) according
to a schedule, they are executed until all have been com-
pleted. However, due to the lack of ownership of resources,
availability can change dynamically due to other loads on
the grid. Thus, the original schedule may become sub-opti-
mal. If, for instance, the load of a processor decreases, this
processor may become an interesting choice for decreasing
the execution time of the application. Therefore, if changes
in resource availability lead to changes in the predicted
schedule length, the schedule must be redefined so that a
shorter schedule than that originally predicted will be
achieved. Indeed, the procedure for self-adjustment en-
ables grid applications to adapt themselves to current re-
source availability [14].

Although Step 9 in Fig. 1 can detect performance degra-
dation, the availability of new resources is not considered.
In order to provide adaptation to any type of event affect-
ing the availability of resources, it is necessary to monitor
networked resources periodically and perform task migra-
tion accordingly. Task migration is designed to reduce the
time of execution of a single application, rather than the
overall optimization of the utilization of grid resources.
The benefit of potential migrations is always balanced by
the overhead necessary to realize them since the transfer

Fig. 1. Phases of a grid application execution [12].

0 [7.68]

1 [38.4]

[2]

2 [38.4]

[2]

3 [38.4]

[2]

4 [38.4]

[2]

5 [38.4]

[2]

6 [38.4]

[2]

7 [38.4]

[2]

8 [7.68]

[10] [10] [10] [10] [10] [10] [10]

Fig. 2. A grid application DAG.

1764 D.M. Batista et al. / Computer Networks 52 (2008) 1762–1781

of code, data and processing context contributes to over-
head. The cost of migrationmust be accounted for in all po-
tential rescheduling of tasks. The accountability of task
migration and bandwidth availability for data transfer rep-
resent a unique aspect of the proposed procedure. Note
that information about resource availability can be shared
by all applications of the grid.

The present proposal involves the following steps:

! Step 1 Map the DAG describing the tasks that represent
an application to the graph describing the grid
resources. Produce a schedule for the beginning of task
execution and data transfer;

! Step 2 Transfer the task codes and data to the hosts
where the tasks will run. The execution of the tasks
begins as soon as transfer is completed;

! Step 3 Monitor the resources of the grid to detect any
variation in availability of resources, either decrease or
increase;

! Step 4 Gather the data collected in Step 3 and compare it
to the scenario used for previous task scheduling. If no
change is detected, continue periodic monitoring of
the grid (Step 3);

! Step 5 Derive a new DAG representing current computa-
tional and data transfer demands and produce a sche-
dule for these tasks;

! Step 6 Check whether the schedule derived is the same
as the current one;

! Step 7 Compare the cost of the solution derived in Step 5
with the cost of the current solution. The cost of the
solution derived in Step 5 should include the cost of
migration of tasks. If the predicted schedule length pro-
duced by the new schedule is greater than that obtained
by the current schedule, continue monitoring the grid
resources (Step 3). The cost of migration of a task
involves the time needed to complete the execution, as
well as the time to transfer data. A task is only worth
moving if a reduction in execution time compensates
for the cost;

! Step 8 Migrate tasks to the designated hosts on the basis
of the most recent schedule.

Fig. 3 shows a diagram portraying the procedure for
self-adjustment of resource allocation.

The mapping of tasks to grid nodes and their scheduling
(Step 1) demand efficient schedulers. Section 3 will intro-
duce eight novel schedulers for dealing with heteroge-
neous resources in a grid [15]. These schedulers differ in
relation to computational complexity and precision of
solution but, depending the time interval involved, either
one can be used to obtain the best possible solution.

Note that our proposal is not restricted to monopro-
cessed hosts. Multiprocessor and multicore hosts can be
modeled as a set of grid nodes, each representing a single
CPU, connected by edges with null cost, so that all the CPUs
in a multiprocessor can be considered for scheduling. Fig. 4
illustrates a network with three hosts, one with two, one
with three and one with four CPUs.

In Steps 2 and 8, code and data transfer can be executed
using existing protocols, such as FTP and GridFTP [16]. In
Step 8, it is assumed that it is possible to resume the exe-

cution of an interrupted task by using checkpoints. These
checkpoints need to be set by the programmer. The entire
execution context of a task can be recorded in a file to be
sent together with the task code and data when migrating
a task, as is done in the approaches defined in [4,10]. Tech-
niques for monitoring the available bandwidth [17] [18], as
well for predicting the network capacity with low compu-
tational overhead, are also available [19] [20,21] to Step 3.

The same schedulers used for the initial scheduling of
an Application (Step 1) can be used for the rescheduling
and migration of tasks whenever changes in availability
of resources are detected (Steps 5, 6 and 7). Rescheduling
decisions consider resource availability and current execu-
tion status, as well as the initial schedule. Algorithm 1

Fig. 3. A flow diagram of the procedure for grid self-adjustment.

D.M. Batista et al. / Computer Networks 52 (2008) 1762–1781 1765

implements Steps 5–7 and uses the same scheduler used in
Step 1.

Algorithm 1 Task rescheduling and migration

Input: Previous schedule; DAG with set of tasks J;
Description of current resource availability status;
Current time; Scheduler.

1: for each task i 2 J in execution do
2: Assign the number of instructions already executed

to the weight of task i.
3: Create a task i0 with weight equal to the backlog of

instructions yet to be executed for i.
4: Move all the outgoing arcs of i to i0.
5: Create an arc ii0 with weight equivalent to the

number of bytes that need to be transferred if task
i migrates.

6: Assign to the variable h the id of the host to which
the task i was mapped prior to the rescheduling
decision.

7: Create a new constraint for Scheduler to force task
i to be scheduled on h.

8: end for
9: for each task k 2 J which has either already been

executed or is presently receiving data from others
tasks do

10: Add a constraint to keep the kth task at the host to
which it was initially scheduled.

11: end for
12: Execute the Scheduler with the new constraints and

the new DAG.
13: for each task i 2 J in execution do
14: if host to which i0 be mapped 6¼ host to which iwas

mapped prior to rescheduling decision
15: Migrate task i to the new host.
16: end if
17: end for

Algorithm 1 works on a modified DAG, portraying the
evolution of an execution up to a certain time. For each
task i in execution, a new task i0 representing the current
execution status is created. Tasks that have already been
executed are kept at the node where they finished. Tasks
receiving data from other tasks on which they depend
are also kept at the same node. Task i will migrate only if

task i0 is mapped to a different resource than that to which
task i is mapped. The use of this kind of DAG to reschedule
the tasks of an application is a notable aspect of our pro-
posal. Such a DAG describes the exact state of processing,
thus allowing a more accurate and efficient schedule
which will minimize execution time.

However, the proposed procedure do not deal with
uncertainties in task demands. Moreover, the programmer
must indicate checkpoints for tasks for their rescheduling
and migration, as in other approaches [4,10]. This allows
the execution of Step 3 in Algorithm1. If checkpoints cannot
be established, the task must be reexecuted whenmigrated
to a different host. In this case, the number of instructions in
Step 2 of Algorithm 1 should be zero and the backlog in Step
3 should be the original number of instructions.

The self-adjusting capacity allows great flexibility and
can be introduced in middlewares for grids such as [5]
[8,6]. Fig. 5 illustrates the introduction of the procedure
of self-adjustment into the scheme proposed in [12] repre-
sented on both sides of the figure. Note that according to
the procedure in [12], once a task is scheduled to a host,
the only monitoring involved is related to the execution
of the task, which can result in the task migration in the
case of performance degradation. The central portion of
the figure is the procedure introduced here, and it replaces
the dashed part of the scheme in [12].

Other proposals [22] use a single DAG in a attempt to
enhance the fairness of resource sharing when several dif-
ferent applications are submitted to a grid. Note that noth-
ing precludes the use of the proposed procedure with a
single DAG representing multiple applications.

3. Grid schedulers

The scheduling of tasks to heterogeneous resources is a
well-known NP-hard problem, and various sub-optimal
solutions which can be reached in a reasonable amount
of time have been proposed. This section introduces eight
different schedulers for the grid scheduling problem. They
differ in the length of the schedule produced, as well as in
the time required to derive them. Such diversity allows the
selection of the best possible schedule for a given set of
time requirements. Fast schedulers can be employed in
Step 1, whereas those which give schedules closer to the
optimum one can be used in Steps 5–7, since these steps
usually involve fewer tasks.

The aim of all the schedulers presented is the minimiza-
tion of execution time for grid applications under the fol-
lowing restrictions:

! The execution of a task should begin only after the com-
pletion of all the other tasks which the task depends on,
as well as only after the reception of all data sent by
these tasks;

! Each task can be mapped to only one host;
! Two dependent tasks can only be mapped to hosts

which have a connecting link (each host is assumed to
have a virtual link to itself with zero cost associated
with that link);

! Each host can execute only a single task at any time.

Fig. 4. Graph of a network with multicore hosts.

1766 D.M. Batista et al. / Computer Networks 52 (2008) 1762–1781

The schedules produced by six of the eight schedulers
proposed are derived from the solution of mixed integer
or integer programming problems. Three of these schedul-
ers consider time to be a continuous variable ð2 RþÞ
whereas the other three consider it as a discrete variable
ð2 ZþÞ. The choice involves a certain trade-off between
execution time and the schedule length. Although the dis-
cretization of time introduces approximation and a conse-
quent loss of precision, under certain circumstances, this
loss may not be significant, and the saving of time can be
quite attractive. The exact solution for a integer/mixed
integer programming problem for both continuous and
discrete time are derived. The other four schedulers are
formulated by employing two different relaxation tech-
niques to the exact problems.

The schedulers which consider time as a continuous
variable are formulated as a mixed integer programming
problem (MIP) whereas those that consider time as a dis-
crete variable are formulated as integer programming
problem (IP). In these problems, variables Xi;k define the
mapping of tasks to hosts; Xi;k is 1 if the ith task is mapped
to kth host; otherwise, it is 0.

Although solving exact integer and mixed integer pro-
gramming problems with integrality constraints leads to
optimal or quasi-optimal solutions, it may take a very long
time. An alternative is the obtainment of partial fractional
solutions by considering relaxation of integrality con-
straints, with the option of conversion of these solutions
to integer ones. In this case, the variables ðXi;kÞ are defined
in the interval [0,1]. Techniques for the relaxation of inte-
grality constraints adopt randomized rounding techniques,
inwhich the value of the variableXi;k is the probability of the
ith task being mapped to the kth host. Two different ran-
domized rounding techniques were adopted to define two
different algorithms. Algorithm 2 solves a linear program-
ming (LP) problemonce,with the value of the variables used
as probabilities for a series of drawings, each defining a dif-
ferent schedule; the one yielding the shortest schedule is se-

lected as the solution. In Algorithm 3, an iterative
randomized rounding procedure is adopted. In each step
of this algorithm, an LP is solved, and the taskwith the high-
est probability values is definitely mapped to a host. Each
one of the iterations of Algorithm 3 ends when no more
tasks are left to be mapped to a host. The linear program-
ming solution given as input to both algorithms is the one
obtained by relaxation of the integrality constraints.

Algorithm 2. Randomized rounding

Input: Relaxation of mixed integer or integer program IP
to schedule the set of tasks J in the set of hosts H;
P = Number of drawings.

Output: Schedule of J in H.
1: Let X be the solution of the relaxation of IP, where

X ¼ ðXi;kÞ.
2: for P times do
3: for each task i 2 J do
4: Let the probability of mapping the task i to the

host k be Xi;k.
5: Select a host where the task i should be executed

based on the previous mapping probability.
6: end for
7: Obtain the starting time for each task, considering

the finishing time of the tasks which it depends on.
8: Keep this schedule if it is the shortest one.
9: end for
10: Return the shortest schedule.

Theorems 1 and 2 establish the time complexity of
Algorithms 1 and 2, respectively. Some notations are nec-
essary to understand them. Sets J and H are the sets of
tasks and hosts, respectively, and D the set of arcs of the
DAG. The time complexity to solve linear programming P

is defined as aP. In this case is considered that it is at least
the time complexity to read the problem instance and to
set variables Xi;kðaP ¼ XðjJj &jHjþjDjþjHjÞÞ.

Fig. 5. Inclusion of procedure for self-adjustment in the process shown in Fig. 1.

D.M. Batista et al. / Computer Networks 52 (2008) 1762–1781 1767

Theorem 1. The time complexity of Algorithm 2 is
OðaP þ P & ðjJj & log jHjþjDjþ jHjÞÞ.

Proof. See Appendix I. h

Theorem 2. The time complexity of Algorithm 3 is
OðQ & jJj & aPÞ.

Proof. See Appendix II. h

Algorithm 3. Iterative randomized rounding

Input: Relaxation of mixed integer or integer program IP
to schedule the set of tasks J in the set of hosts H;
Q = Number of iterations.

Output: Schedule of J in H.
1: for Q times do
2: Let IP be the original mixed integer or integer

program given in the input.
3: Let X be the solution of the relaxation of IP, where

X ¼ ðXi;kÞ.
4: for each task i 2 J do
5: Let the probability of mapping the task i to the

host k be Xi;k.
6: Select a host where the task i should be executed

based on the previous mapping probability.
7: Add to the IP the constraint that the task imust be

mapped to the host k.
8: Let X be a fractional optimum solution of this new

IP.
9: end for
10: Obtain the starting time for each task, considering

the finishing time of the tasks which it depends on.
11: Keep this schedule if it is the shortest one.
12: end for
13: Return the shortest schedule.

Note that, Algorithm 3 solves a linear programming
problem several times. When a linear program is solved
after the modification of the boundary of some of the
variables, the new linear program is solved much faster
(in practice) than was the first version, since the new
execution can take advantage of the basis and the informa-
tion already stored from previous executions of the
problem.

The other two schedulers are based on random drawing.
The schedule is one of those produced during a series of
drawings that minimizes the schedule length. The first step
of each iteration of these algorithms is the assignment of
an initial value to the variables Xi;k. The actual starting
values constitute the only difference between the two
algorithms. In one, it is based on a probability that is uni-
formly distributed among the hosts, whereas in the other,
the probabilities values are set to minimize the execution
time of tasks while maximizing resource utilization, and
will be denominated ‘‘grid aware”. In both algorithms,
the dependency constraints shown in the DAG, the net-
work topology and the resource capacity are observed.
Moreover, these algorithms produce different schedule
lengths itself as well as for their own execution time. The

one using ‘‘grid aware” initial values tends to run for longer
periods, but produces shorter schedule length.

Hosts are labelled from 1 tom, while tasks are identified
by labels from 1 to n. Tasks are processed according to a
topological order of the input DAG, each with a single input
task and a single output one. DAGs failing to satisfy this
condition because they have more than one input or out-
put task can be easily modified by considering two null
tasks with zero processing time and communication
weight [23]. Some characteristics of the DAGs are:

! n: number of tasks ðn 2 NÞ;
! Ii: processing demand of the ith task, expressed as num-

ber of instructions to be processed by the task iðIi 2 RþÞ;
! Bi;j: number of bytes transmitted between the ith task

and the jth task ðBi;j 2 RþÞ;
! D: set of arcs {ij : i < j and there exists an arc from ver-

tex i to vertex j in the DAG};
! s0: starting time of the input task. For all examples in

this paper, s0 ¼ 0.

Moreover, grid resources composed of hosts and links
have the following characteristics:

! m: number of existing hosts ðm 2 NÞ;
! TIk: time the kth host takes to execute 1 instruction

ðTIk 2 RþÞ;
! TBk;l: time for transmitting 1 bit on the link connecting

the kth host and the lth host ðTBk;l 2 RþÞ;
! N: set {kl: host k is linked to host l}. In particular,

kk 2 N for any host k and if kl 2 N then we also have
lk 2 N;

! dðkÞ: set of hosts linked to the kth host in the network,
including the host k itself.

Moreover, Tmax, is the time that the application would
take to execute serially all the tasks in the fastest host,
i.e., Tmax ¼ min TIk

Pn
i¼1Ii, where min TIk is the lowest value

of TIk for any host k. J ¼ f1; . . . ; ng is the set of existing
tasks of an application and H ¼ f1; . . . ;mg is the set of
hosts.

The remainder of this section is organized as follows.
Section 3.1, introduces a formulation using continuous
time variables whereas Section 3.2 presents the formula-
tion with discrete time variables. Section 3.3 introduces a
scheduler based on random drawing that assigns uniform
probability values to the initial values. Section 3.4 pre-
sents the algorithm which assigns values to the initial
probabilities that takes the grid constraints into consider-
ation. Section 3.5 provides an evaluation of the
schedulers.

3.1. MIP Formulation with time as a continuous variable

This approach adopts a mixed integer programming for-
mulation for the grid scheduling problem. The final sched-
uling is established by the value of the following variables:

! Xi;k, which has the value 1 if the ith task is mapped to the
kth host; otherwise it is 0 ðXi;k 2 f0;1gÞ;

! si, which sets the starting time of the ith task ðsi 2 RþÞ.

1768 D.M. Batista et al. / Computer Networks 52 (2008) 1762–1781

The problem formulation is given by

Minimize In
Xm

k¼1

TIkXn;k

 !

þ sn

such that

si P s0 for i 2 J; ðC1Þ

sj P si þ
X

k2H

ðIiTIkXi;kÞ þ
X

l2dðkÞ

ðBi;jTBk;lVAi;k;j;lÞ

2

4

3

5

for i; j 2 J; ij 2 D; ðC2Þ

sj P si þ
X

k2H

ðIiTIkVAi;k;j;kÞ ' yð1' Pi;jÞ

for i; j 2 J; i 6¼ j; ij 62 D; ji 62 D; ðC3Þ

si P sj þ
X

k2H

ðIjTIkVAj;k;i;kÞ ' yPi;j

for i; j 2 J; i 6¼ j; ij 62 D; ji 62 D; ðC4Þ
X

k2H

Xi;k ¼ 1 for i 2 J; ðC5Þ

X

l2dðkÞ

VAi;k;j;l ¼ Xi;k

for i; j 2 J; ij 2 D; k 2 H; ðC6Þ

2VAi;k;j;l 6 Xi;k þ Xj;l

for i; j 2 J; ij 2 D; k; l 2 H; kl 2 N; ðC7Þ

VAi;k;j;l ' Xi;k ' Xj;l P '1

for i; j 2 J; ij 2 D; k; l 2 H; kl 2 N; ðC8Þ

2VAi;k;j;k 6 Xi;k þ Xj;k

for i; j 2 J; i 6¼ j; ij 62 D; ji 62 D; k 2 H; ðC9Þ

VAi;k;j;k ' Xi;k ' Xj;k P '1

for i; j 2 J; i 6¼ j; ij 62 D; ji 62 D; k 2 H; ðC10Þ

VAi;k;j;l;Xi;k; Pi;j 2 f0;1g for i; j 2 J; k; l 2 H: ðC11Þ

The relaxation of the above problem consists of replacing
{0,1} in the constraints (C11) by the interval [0,1].

The constraints in (C1) state that all tasks must start
after time s0. The constraints in (C2) specify that a task will
start only after all tasks dependent on it have been com-
pleted and the relevant data transferred. Constraints (C3)
and (C4) state that if two independent tasks are scheduled
to the same host, one of them will be fully executed before
the start of the other. The binary variable Pi;j has value 1 if
the ith task is executed first and 0 if the jth task is executed
first. The constant y is a large positive number (e.g., Tmax).
Constraint (C5) states that the tasks must be scheduled to
some host ðkÞ. Constraint (C6) specifies that there should
be a single tuple ði; k; j; lÞ such that the ith and jth tasks
are scheduled to the kth and to the lth hosts, respectively.

Constraints (C7)–(C9) and (C10) determine that VAi;k;j;l is
1 if and only if Xi;k þ Xj;l is 2. The value of these two vari-
ables indicates that tasks with a dependency relationship
should be mapped to interconnected hosts.

This formulation involves Oðm2n2Þ constraints, and
Oðm2n2Þ variables. The scheduler based on the exact solu-
tion of this problem involving mixed integer programming
with a continuous time variable is denominated MIPCT.

There are two schedulers based on the relaxation of MIPCT,
one involving Algorithm 2 based on randomized rounding
(CT-RR) and the other using Algorithm 3 based on iterative
randomized rounding (CT-IRR).

Since MIPCT does not make any approximation, its exe-
cution time is quite larger than the execution time of the
others schedulers. Although this make MIPCT inappropri-
ate to real applications, the schedule it produces is quite
useful for comparing with the schedule produced by the
other schedulers.

Mixed integer programming problems and integer
programming problems are solved by using linear pro-
gramming formulations. There are many fast algorithms
and methods for solving LP problems; one of the most
used is the simplex method [24]. Although this method
does not lead to polynomial time complexity algorithms
(it is exponential in the worst case), it is very fast in
practice. Worst- and average-case analyse of algorithms
to solve LP problems lead to time complexity bounds that
are still high compared to the real behaviour of these
algorithms. The number of pivots required by the simplex
methods is generally linear, or at most polynomial.
Experimental work has shown that, in general, the num-
ber of pivot steps is bounded by 3v [25–27], with v being
the number of variables in the LP. Karmarkar [28] pre-
sented a polynomial time algorithm using interior point
methods. This method has obtained faster solutions than
the simplex method when resolving various LP problems
[29,30]. Indeed, benchmarks for LP solvers can be ob-
tained at http://plato.asu.edu/bench.html, where it can
be verified that even large LP problems with thousands
of variables and constraints can be solved in seconds/
minutes.

3.2. IP formulation with time as a discrete variable

This formulation considers discrete intervals of time
and treats the scheduling problem as an integer program-
ming problem. For convenience, the following notation is
used: T ¼ f1; . . . ; Tmaxg. The schedule is established by
the value of the following variables:

! xi;t;k: Binary variable that assumes a value of 1 if the ith
task finished at time t in the host k; otherwise this var-
iable assumes a value of 0;

The integer programming problem is formulated as
follows:

Minimize
X

t2T

X

k2H

txn;t;k

such that
X

t2T

X

k2H

xj;t;k ¼ 1 for j 2 J; ðD1Þ

xj;t;k ¼ 0 for j 2 J; k 2 H;

t 2 f1; . . . ; dIjTIkeg; ðD2Þ

X

k2dðlÞ

Xdt'IjTIl'Bi;jTBk;le

s¼1

xi;s;k P
Xt

s¼1

xj;s;l

for i; j 2 J; ij 2 D; for l 2 H; t 2 T;

ðD3Þ

D.M. Batista et al. / Computer Networks 52 (2008) 1762–1781 1769

http://plato.asu.edu/bench.html

X

j2J

XdtþIjTI k'1e

s¼t

xj;s;k 6 1

for k 2 H; t 2 T; t 6 dTmax ' IjTI ke; ðD4Þ
xj;t;l 2 f0;1g for j 2 J; l 2 H; t 2 T: ðD5Þ

The relaxation of the discrete time formulation consists of
changing the set {0,1} of the constraints in (D5) to the
interval [0,1].

The constraints in (D1) specify that a task must be exe-
cuted at one time in a single host. The constraints in (D2)
determine that a task (j) cannot terminate until it has been
executed in the host k. The constraints in (D3) establish
that if the ith task executes in the lth host before the jth
task does, and that the jth task is finished at time t, then
the time when the ith task finished its execution is at most
t minus the execution time of the jth task minus the time
needed to transfer data between these two tasks. The con-
straints in (D4) establish that there is at most one task in
execution at any one host at a specific time.

The accuracy of the results obtained by using this for-
mulation depends on the interval width used in the dis-
cretization of the timeline. The wider the interval is, the
faster the execution; but, the lower the accuracy.

This formulation involves Oðn2mTmaxÞ constraints and
nmTmax variables. The scheduler based on an exact solution
of the integer programming with a discrete time variable is
denominated as IPDT. Again, two versions of schedulers
with relaxation are presented, one involving Algorithm 2
with randomized rounding (DT-RR) and the other using
Algorithm 3 with iterative randomized rounding
(DT-IRR).

3.3. Random drawing with uniform probabilities

The seventh scheduler is based on an algorithm involv-
ing random probabilities of task assignment to hosts. It
uses an uniform probability distribution to assign tasks
to hosts. The distribution is subject to dependency rela-
tionships established in the tasks DAG, the network topol-
ogy and resources capacity. The scheduler is denoted as
RDU and the algorithm is shown in Algorithm 4.

Theorem 3 gives the time complexity of Algorithm 4.

Theorem 3. The time complexity of Algorithm 4 is
OðP & jHj & ðjJjþjDjÞÞ.

Proof. See Appendix III. h

3.4. Drawing using distribution involving grid-aware
probability values

This scheduler differs from the one in the previous sub-
section by the probability values used for the assignment
of tasks to hosts. The following rules are considered to de-
rive the probability values:

1. The probability that a task will be executed in a given
host is proportional to the processing rate of all avail-
able hosts;

2. The probability of execution of a task by a given host is
proportional to the number of links connecting it to
other hosts, as well as to their available bandwidth;

3. The larger the number of edges in a task, the higher is
the probability that the task will be assigned to a host
with large number of links connecting it to other hosts;

4. The greater the amount of data a task needs to transfer,
the higher is the probability that the task will be
assigned to a host with high capacity links;

5. The larger the number of instructions involved in a task,
the higher is the probability that the task will be
assigned to a host with a large available processing rate;

6. The lower the level of a task in a DAG, the higher is the
probability that the task will be assigned to a host with
a high available processing rate, a large number of links
and high capacity links (Moreover, the earlier the termi-
nation of tasks at the lower levels of the DAG, the earlier
the other tasks can finish and, consequently, the shorter
the makespan of the application).

The set of rules given above is denominated ‘‘set of rules
1” in Algorithm 5. The first two rules define the initial prob-
ability of mapping the ith task to the kth host, given by:

Xi;k ¼
1
TIkPm
j¼0

1
TIj

(1
3

 !
þ jdðkÞj' 1Pm

j¼1jdðjÞj'm
(1
3

 !

þ

P
l2dðkÞ'fkg

1
TBk;lPm

j¼1
P

l2dðjÞ'fjg
1

TBj;l

(1
3

 !
: ð1Þ

Algorithm 4. Random drawing with uniform probability
distribution

Input: DAG with set of tasks J; Description of current
resource availability status H; P = Number of
drawings.

Output: Schedule of J in H

1: for P times do
2: Set the probability value for scheduling each task to

a host as 1=m.
3: for each task i 2 J do
4: Assign randomly a host k 2 H to the task i, using

the previously defined probability value.

5: Normalize the probability values of the tasks
dependent on the ith task, considering that this
probability for a tasks dependent on the ith task is
null if it is assigned to a host with no link to the
host to which the ith task is mapped.

6: Compute the starting time of the ith task
considering the finishing time of all tasks
dependent on it, as well as the time required to
transfer data from the dependent task to the ith
task.

7: end for
8: Keep this schedule in case it is the shortest one

produced so far.
9: end for
10: Return the shortest schedule.

1770 D.M. Batista et al. / Computer Networks 52 (2008) 1762–1781

Underlying these two rules is the idea that the execution
time will be shorter if tasks are allocated to the hosts with
the highest available processing capacity and bandwidth.
However, if the criteria used were to be limited to grid re-
sources, hosts with greater availability of processing rates
and bandwidths would be utilized all the time, whereas
those with less capacity would remain idle. To avoid such
an unbalance, which would lead to unsatisfactory results,
the characteristics of tasks also need to be considered, as
in list scheduling approaches [23,31]. Consequently, the
probability value in Eq. (1) is redefined for each task con-
sidering the last four rules defined above.

The DG scheduler is presented in Algorithm 5.
Theorem 4 gives the time complexity of Algorithm 5.

Theorem 4. The time complexity of Algorithm 5 is
OðjJj &jHj log jHjþjNjþ P & jHj & ðjJjþjDjÞÞ.

Proof. See Appendix IV. h

Algorithm 5. Drawing using distribution involving ‘‘grid-
aware” probability values

Input: DAG with set of tasks J; Description of current
resource availability status H; P = Number of
drawings.

Output: Schedule of J in H

1: for P times do
2: Set the probability for scheduling a task to a host on

the basis of the ‘‘set of rules 1”.
3: for each task i 2 J do
4: Select randomly the host k 2 H for the execution

of the ith task.
5: Normalize the probability values of the tasks

dependent on the ith task.
6: Compute the starting time of the ith task

considering the finishing time of all tasks
dependent on it, as well as the time required to
transfer data from these tasks to the ith task.

7: end for
8: Consider this schedule if it produces the shortest

execution time so far.
9: end for
10: Select the shortest schedule.

3.5. Comparison of scheduler efficiency

Various network topologies and task DAGs were used to
compare the schedulers proposed here. Results of the
experiments involving the DAG shown in Fig. 6 and the
DAG shown in Fig. 7 are representative of those obtained
for other experiments and will be presented in this section.
The first DAG represents the Griz application, a remote
rendering application [13] and the second represents the
Montage application, an application for the processing of
astronomy images [32]. These two DAGs will be referred
as Griz and Montage DAGs, respectively.

The criteria used for comparison are the speedup (the
ratio between the time to a serial execution of the tasks
in the processor with the greatest available processing rate

and the time for task execution using a specific schedule)
and the execution time required to produce that schedule.
A workstation equipped with a Pentium 4, 3.2 GHz CPU
with 2 GB RAM was used in the experiments. The software
Xpresswas employed to solve the integer and mixed inte-
ger programming problems. Computer programs were
developed using the C language.

Various topologies were generated using the Doar–Les-
lie method [33] by changing the number of hosts, the net-
work connectivity (vertex degree) and the ratio between
the number of network links (edges) with low bandwidth
availability and with high bandwidth availability. This
method generates graphs which are similar to real network
topologies. It requires as input the number of nodes ð2 N)Þ,
the ratio between the number of longest and shortest
edges ð2 ð0;1*Þ and the connectivity of the graph nodes
ð2 ð0;1*Þ. The length of the edges is related to the weights
of the edges. In this paper, the weight of the edges refers to
bandwidth availability. Values of connectivity close to 1
gives complete graphs.

If not stated otherwise, in the experiments using the
Griz DAG, the network used has 50 hosts, network degree
0.5 and ratio between longest and shortest edge 0.9. The
processing rate of the hosts follows a uniform probability
distribution function in the interval (0.4,2]. The capacity
of the network links varied in the interval (0,5], according
to the Doar–Leslie method. In the experiments using the
Montage DAG, if not stated otherwise, the number of hosts
is 25. The node degree of the network, the ratio between
longest and shortest edge, the processing rate of hosts
and the capacity of the network links are the same as in
the experiments using the Griz DAG. The weights of the
DAG arcs in Figs. 6 and 7 were in the interval [4,5],
whereas the weight of the vertices varied in the interval
[45,54]. Furthermore, except for Algorithm 3, the number
of random selections (P) is 10,000. For this algorithm, the
number of random selections (Q) is 1, since long execution
times were experienced with other values.

For schedulers which consider time as a discrete vari-
able, it is advisable to use a discretizing value correspond-
ing to a fraction of the serial execution time of the DAG.
Preliminary experiments suggest that 6.25%, correspond-
ing to a time interval of 8 min for the experiments using
the Griz DAG and of 16 min for the experiments using
the Montage DAG, would be an appropriate value.

3.5.1. Results of experiments involving the Griz DAG
Tables 1 and 2 show the results of varying number of

nodes (hosts). Table 1 presents the performance of the pro-

T00 [53]

T10 [50]

[5]

T11 [49]

[4]

T12 [47]

[5]

T13 [48]

[4]

T20 [45]

[4] [5] [4] [5]

Fig. 6. DAG of tasks of the Griz application.

D.M. Batista et al. / Computer Networks 52 (2008) 1762–1781 1771

posed schedulers as a function of the number of hosts. The
performance of MIPCT is not shown since, it requires much
longer execution time when compared to the other sched-
ulers, as expected. For a 40 host network, for example,
MIPCT took over one hour to generate a schedule, whereas

IPDT took 3.04 s. The schedule producing the largest
speedup for each number of hosts is written in bold. The
ratio between other speedup values and the largest one
ð100%)ðspeedup=largest speedupÞÞ is shown as percentage
in the table. IPDT produced the largest speedup for most of

T0 [45]

T1 [54]

[4]

T2 [47]

[4]

T3 [51]

[5]

T4 [48]

[5]

T5 [50]

[5]

T8 [48]

[4]

T21 [52]

[4]

T6 [51]

[5]

T9 [54]

[5]

T22 [51]

[4]

T7 [53]

[5]

T10 [52]

[4]

T23 [52]

[4]

[4]

T11 [52]

[5]

T24 [49]

[4]

T12 [49]

[5]

T15 [50]

[5]

T25 [54]

[4]

T13 [47]

[5]

T16 [45]

[5]

[4]

T14 [54]

[4]

T17 [45]

[5]

[4]

T18 [54]

[5]

[5]

T19 [45]

[5] [5] [5][5][5] [4][5]

T20 [53]

[4]

[5] [5] [4] [5]

Fig. 7. DAG of tasks of the Montage application.

Table 1
Speedup as a function of number of hosts

2) Hosts Speedup

CT-RR CT-IRR DT-RR DT-IRR IPDT RDU DG

10 92.62% 77.71% 99.07% 79.17% 97.26% 78.18% 1.289432
40 87.20% 80.04% 1.251140 84.59% 97.53% 83.12% 93.29%
70 89.65% 69.34% 92.32% 69.84% 1.443852 86.04% 99.28%

100 78.66% 65.34% 94.72% 72.87% 1.530383 72.80% 89.62%
130 83.31% 69.40% 96.12% 70.55% 1.440966 75.39% 87.31%
160 62.23% 62.11% 91.33% 68.32% 1.610028 74.43% 73.89%
190 62.52% 62.30% 81.87% 66.20% 1.605029 70.09% 78.31%

Table 2
Execution time as a function of number of hosts

2) Hosts Execution time (s)

CT-RR CT-IRR DT-RR DT-IRR IPDT RDU DG

10 0.12 0.09 0.30 0.09 0.12 0.09 0.08
40 0.74 0.81 1.13 1.02 3.04 0.62 0.60
70 3.21 3.79 2.70 1.83 1.83 1.82 1.78

100 9.91 10.98 4.38 3.04 2.88 3.47 3.33
130 18.43 20.16 7.71 5.46 4.64 5.92 5.81
160 40.31 43.18 11.37 12.37 7.54 8.69 8.48
190 72.29 76.60 13.24 14.25 8.04 11.97 11.62

1772 D.M. Batista et al. / Computer Networks 52 (2008) 1762–1781

the experiments, followed by DT-RR. Schedulers based on
the relaxation in Algorithm 3 (CT-IRR and DT-IRR) pro-
duced the smallest speedup among the schedulers based
on both integer and mixed integer programming. This poor
performance can be explained by the single random selec-
tion of the mapping probabilities in Algorithm 3 ðQ ¼ 1Þ.
For schedulers based on random drawing, DG provides bet-
ter schedules than does RDU in six out of the seven studied
cases, since the initial probability values of the former con-
sider both grid and task constraints. In most of the cases,
the CT-RR produced worse results than those produced
by the DG scheduler, although they were better than those
given by the RDU scheduler.

The execution time of the schedulers, portrayed in Table
2, increases as the number of hosts increases. The execu-
tion time of schedulers using a mixed integer formulation
increases much more rapidly than does that of integer pro-
gramming. For example, for a grid with 10 hosts, the exe-
cution times of CT-IRR and DT-IRR are about 0.9 s. For a
190-host network, the execution time of CT-IRR is 76.60 s
while the execution time of DT-IRR is only 13.24 s. This
illustrates the impact that the discretization of time has
on decreasing the execution time of LPs. In contrast to
what was expected, the execution time of the IPDT sched-
uler is not always longer than that of the schedulers based
on relaxation or drawings. It is a mere consequence of the
simplicity of the Griz DAG.

Table 3 shows the speedup and Table 4 shows the exe-
cution time of the proposed schedulers as a function of
network connectivity. This connectivity is expressed as a
number in the interval [0,1], a fully connected network
having connectivity of 1.0. As in the experiments reported
in Tables 1 and 2, IPDT, DG and DT-RR produce the best
schedules. DG did generated four of the largest speedups,
IPDT did generated two of the largest speedups and DT-
RR generated one of the largest speedups. Again, the sched-
ulers based on Algorithm 3 (CT-IRR and DT-IRR) provided
the smallest speedup. When the connectivity increases,
the execution time typically decreases more than it does
when the number of hosts increases.

Tables 5 and 6 shows the performance of the schedulers
as a function of the ratio between the number of the lon-
gest and the number of the shortest edges. The best sched-
ules were produced by the IPDT, DT-RR and DG schedulers.
The use of IPDT led to the largest speedups. Except for the
schedules produced by IPDT, the longer the schedule, the
longer was the execution time, although there is no clear
pattern involving an increase in execution time as a func-

tion of the ratio between the number of longest and short-
est edges.

From the results found in those experiments, the sched-
uler which generated the largest speedup was the IPDT,
but the execution time was not as high as expected, given
the simplicity of the Griz DAG. Schedulers which consider
time as a real variable and apply the relaxation algorithms
(CT-RR and CT-IRR) did not produce good results. The DT-
RR scheduler, which uses Algorithm 2, produced results
similar to those of the IPDT scheduler. For various cases,
the DG scheduler produced schedules similar to those of
the IPDT, but execution times were slightly longer.

3.5.2. Results of experiments involving the Montage DAG
Tables 7 and 8 show the scheduler performance as a

function of the number of hosts of the grid. Results of the
schedulers CT-RR, CT-IRR, IPDT and MIPCT are not shown,
given the long time of execution with the Montage DAG.

As observed in the experiments involving the Griz
DAG, the DT-RR and the DG schedulers produced the best
speedup values and the DT-IRR scheduler the worst one,
as can be seen in Table 7. Moreover, the RDU scheduler
produces schedules inferior to those provided by the DG
scheduler.

The execution time of the schedulers grows with an in-
crease in the number of hosts, as expected. In contrast to
the results obtained in the experiments involving the Griz
DAG, the execution time of schedulers based on linear pro-
gramming was considerably longer than of those based on
drawings. The best schedules were produced by the DT-RR
in six out of the seven cases. However, this scheduler took
the second longest time to produce the desired schedule.
Overall, the DG scheduler represents a good trade-off be-
tween the quality of the schedule and the execution time
for large DAGs such as the one displayed in Fig. 7.

Table 3
Speedup as a function of network connectivity

2) Conect. Speedup

CT-RR CT-IRR DT-RR DT-IRR IPDT RDU DG

0.10 72.07% 72.07% 85.94% 84.90% 99.84% 95.85% 1.388938
0.22 72.97% 72.97% 96.23% 76.37% 94.61% 87.15% 1.378274
0.34 70.69% 70.69% 98.79% 73.51% 93.37% 91.51% 1.423590
0.46 68.69% 68.69% 89.14% 99.78% 99.50% 89.11% 1.459943
0.58 69.85% 69.85% 98.96% 69.99% 1.440589 87.73% 96.79%
0.70 64.51% 64.51% 97.60% 65.51% 1.550246 83.41% 87.41%
0.82 90.24% 75.41% 1.335969 85.80% 74.85% 80.97% 90.85%

Table 4
Execution time as a function of network connectivity

2) Conect. Execution time (s)

CT-RR CT-IRR DT-RR DT-IRR IPDT RDU DG

0.10 0.74 0.63 1.47 0.63 6.30 1.58 1.58
0.22 0.85 0.77 1.39 0.83 6.95 1.48 1.45
0.34 0.93 0.96 1.65 0.95 1.10 1.32 1.30
0.46 1.17 1.25 2.10 1.54 1.46 1.11 1.04
0.58 1.15 1.28 1.92 2.20 1.35 1.00 0.93
0.70 1.43 1.78 2.15 2.75 1.71 0.42 0.40
0.82 1.56 2.03 1.74 1.50 2.29 0.12 0.11

D.M. Batista et al. / Computer Networks 52 (2008) 1762–1781 1773

Tables 9 and 10 show, respectively, the speedup and
execution time as a function of network connectivity. An
outstanding performance of the DT-RR and DG schedulers
was also observed in these experiments, although no clear
pattern can be identified for the execution time of schedul-
ers based on linear programming. The execution time of
schedulers based on drawing, however, decreases as the
network connectivity increases.

The same pattern of performance is observed when the
ratio between the number of longest edges and that of

shortest edges is varied, as can be seen in Tables 11 and
12. DT-RR provides the best performance, followed by that
of DG and DT-IRR, whereas RDU furnishes the worst. Ex-
cept for DT-IRR, the time of execution did not vary much.

Overall, DG presented the best performance for large
DAGs, although the DT-RR scheduler would be a good
choice when no strict deadline is imposed for the produc-
tion of a schedule.

Table 5
Speedup as a function of the ratio between the number of longest and shortest edges

2) Ratio Speedup

CT-RR CT-IRR DT-RR DT-IRR IPDT RDU DG

0.20 69.10% 69.10% 1.458326 73.50% 95.25% 80.33% 83.36%
0.30 80.02% 80.02% 1.256459 83.85% 79.59% 91.36% 93.10%
0.40 63.02% 63.02% 85.87% 65.92% 1.592708 81.53% 87.70%
0.50 74.29% 74.29% 91.52% 75.57% 1.356276 79.16% 85.01%
0.60 70.22% 70.22% 81.55% 87.15% 1.431088 70.22% 82.27%
0.70 65.12% 65.12% 87.12% 87.12% 1.540268 74.99% 81.60%
0.80 68.75% 68.75% 92.11% 82.70% 1.455920 80.78% 84.55%

Table 6
Execution time as a function of the ratio between the number of longest
and shortest edges

2) Ratio Execution time (s)

CT-RR CT-IRR DT-RR DT-IRR IPDT RDU DG

0.20 1.09 1.20 1.51 0.83 0.72 1.09 0.97
0.30 1.07 1.12 1.43 0.90 0.80 1.12 1.06
0.40 1.13 1.23 1.80 1.67 1.17 1.04 0.97
0.50 1.08 1.16 1.51 0.66 0.69 1.13 1.11
0.60 1.18 1.30 1.43 1.33 0.66 0.96 0.93
0.70 1.15 1.29 1.53 0.93 0.71 1.04 1.01
0.80 1.14 1.27 1.55 1.17 0.83 1.02 0.98

Table 7
Speedup as a function of number of hosts

2) Hosts Speedup

DT-RR DT-IRR RDU DG

10 96.95% 69.87% 88.59% 1.470900
15 2.110896 73.53% 91.92% 93.96%
20 1.556400 66.08% 74.68% 84.09%
25 1.631350 81.40% 82.89% 94.05%
30 1.617550 62.04% 84.34% 95.73%
35 1.375990 94.15% 82.26% 81.31%
40 1.577601 66.77% 77.33% 80.17%

Table 8
Execution time as a function of number of hosts

2) Hosts Execution time (s)

DT-RR DT-IRR RDU DG

10 7.94 99.16 0.31 0.33
15 31.36 909.42 0.61 0.60
20 19.72 445.98 0.88 0.78
25 39.75 287.63 1.35 1.29
30 49.00 13004.42 1.82 1.87
35 42.61 2746.88 2.36 2.29
40 69.82 12929.98 2.93 2.88

Table 9
Speedup as a function of network connectivity

2) Connect. Speedup

DT-RR DT-IRR RDU DG

0.10 1.443350 69.52% 79.96% 81.09%
0.22 1.354714 75.79% 94.36% 95.42%
0.34 1.397436 72.61% 81.84% 91.25%
0.46 1.524434 72.79% 85.50% 85.68%
0.58 1.626312 61.90% 76.43% 91.02%
0.70 1.517555 72.72% 76.82% 93.64%
0.82 1.779391 57.13% 65.51% 83.96%

Table 10
Execution time as a function of network connectivity

2) Connect. Execution time (s)

DT-RR DT-IRR RDU DG

0.10 19.87 80.19 1.82 1.75
0.22 24.30 252.68 1.51 1.49
0.34 31.00 486.79 1.34 1.36
0.46 35.42 1984.50 1.32 1.32
0.58 30.54 988.54 1.33 1.31
0.70 27.18 407.15 0.67 0.60
0.82 36.22 468.96 0.82 0.66

Table 11
Speedup as a function of the ratio between the number of longest and the
number of shortest edge

2) Ratio Speedup

DT-RR DT-IRR RDU DG

0.20 2.030034 69.67% 92.87% 96.63%
0.30 1.509987 78.44% 81.41% 91.69%
0.40 1.600044 68.88% 89.70% 95.34%
0.50 1.621040 80.57% 82.21% 87.09%
0.60 99.53% 69.83% 95.06% 1.480001
0.70 1.532955 68.01% 80.42% 80.60%
0.80 1.645130 61.65% 77.98% 83.16%

1774 D.M. Batista et al. / Computer Networks 52 (2008) 1762–1781

4. Examples of the use of self-adjustment procedure

This section illustrates the use of the procedure which
reduces the execution time for grid applications (schedule
length) when changes occur in the availability of resources
after the execution of the application has begun. A simula-
tor, the GridSim-NS, developed at the University of Tren-
to, was used in the experiments. The GridSim-NS is
actually a module incorporated into the widely used NS-
2 simulator. GridSim-NS receives an Application DAG as
input and allows users to define a schedule to be employed
by this DAG. In the following experiments the schedules
were produced by the schedulers introduced in this paper.

The application is the one described in Fig. 2, whereas
the grid is illustrated in Fig. 8. The left hand side of Fig. 8
shows the network topology while the right shows the grid
nodes. The arc weights in the DAG represent the amount of

data to be transferred, in GigaBytes, and the vertex weights
represent the quantity of instructions on a 1012 scale. The
network has 34 hosts arranged around a central host
ðSRC0Þ and the grid has 11 nodes ðSRCf0...10gÞ. The available
processing rate of the host SRC0 is 1600 MIPS, whereas that
of all the others is 8000 MIPS. The links connecting SRC0 to
the other hosts have a capacity of 100 Mbps, whereas all
the others are limited to 33.33 Mbps. The topology used
resembles CERN’s LHC Computing Grid. Note that the
topology is not centralized around SRC0 but the hosts can
communicate with each other without going through a
central node. Moreover, the processing capacity of node
SRC0 is lower than that of the other hosts, which implies
a parallel execution of the tasks in the other hosts.

The batch means method was used to obtain a confi-
dence intervals of 95% confidence level. The width of the
intervals was less than 5% of the mean value. Confidence
intervals are omitted for the sake of visual interpretation.

The first experiment was designed to determine the
time required for the application execution under ideal
conditions so that it could be used as a standard for com-
parison. In the second experiment, bandwidth was reduced
and all the steps of the procedure for self-adjustment were
executed. The third experiment included the increase in re-
source availability, and the final one evaluated the impact
of the frequency of monitoring on the performance.

In the first experiment, the application (Fig. 2) was
mapped using the MIPCT scheduler, with a resultant map-
ping of 0 ! SRC0, 1 ! SRC2, 2 ! SRC5, 3 ! SRC8, 4 ! SRC4,
5 ! SRC1, 6 ! SRC9, 7 ! SRC10, 8 ! SRC0. Similar mapping

Table 12
Execution time as a function of the ratio between the number of longest
and the number of shortest edge

2) Ratio Execution time (s)

DT-RR DT-IRR RDU DG

0.20 48.27 1783.99 1.38 1.31
0.30 35.48 831.14 1.34 1.28
0.40 29.83 501.03 1.30 1.14
0.50 39.13 2032.30 1.36 1.35
0.60 33.26 752.62 1.39 1.43
0.70 27.30 273.98 1.41 1.36
0.80 30.65 832.58 1.36 1.38

Fig. 8. Grid used in the examples.

D.M. Batista et al. / Computer Networks 52 (2008) 1762–1781 1775

could have involved other hosts, since the topology is sym-
metrical. In the actual schedule derived, Tasks 1–7 start
running at the time of 82.66 min, whereas task number 8
starts running at 175.96 min and finishes at 255.96 min.

In the second experiment, the same scenario and initial
mapping were used. However, at 90 min, UDP streams
with a rate of 90 Mbps were added as interfering traffic be-
tween hosts IR2 and IS2 and between IR5 and IS5. These traf-
fics impact the resource availability between hosts SRC2

and SRC0 and between hosts SRC5 and SRC0. Monitoring
the resources of the grid was carried out every 40 min.
(The use of long monitoring intervals reinforce the effec-
tiveness of monitoring the availability of resources). Thus,
at the time 120 min, the need to reevaluate the current
schedule had become evident. At that time, the DAG for
the remaining tasks was modified, by Algorithm 1, to the
one shown in Fig. 9. At time 120 min, Algorithm 1 decom-
poses each task into two other tasks; one of these remains
on the host on which it was originally scheduled, with its
weight in the new DAG representing the number of
instructions already processed. The other is rescheduled,
with its weight representing all the instructions remaining
to be executed. Moreover, the weight of the edge between
these two tasks indicates the quantity of data to be trans-
ferred to the host on which the second task will be
scheduled.

For this new DAG, the schedule was obtained by the
IPDT scheduler. Since the cost involved in task migration
includes that of time needed to complete the execution,
as well as that required to transfer data, a task is worth
moving only if a reduction in time of execution will com-
pensate for this cost. The new schedule determined that
Tasks 1 and 2 should be migrated from hosts SRC2 and
SRC5 to hosts SRC3 and SRC6, respectively. These migrations
were designed to avoid the interfering traffic for the trans-
fer of 10 GB of data to Task 8. When migrations occur the
new execution time was 281 min, which is only 9.34%
higher than the one obtained under ideal conditions. If
the tasks had not migrated, the execution time would have
been 358 min, i.e., an increase of about 27.4%. Figs. 10 and
11 show, respectively, the time of execution of Task 1 and
the round trip time (RTT) between SRC2 and SRC3 (The
usage of CPU and network by Task 2 are similars). These
figures illustrate task migration; it can be seen that be-

tween the times 120 min and 150 min, no processing activ-
ity took place in either of the hosts SRC2 and SRC3, since in
this interval, migration take place.

Where a dynamic scheduling approach to be employed,
two options would remain after the completion of tasks 1
and 2: (i) transfer of 10 GB from each task directly to the
host SRC0, leading to an execution time of 358 min, or (ii)
transfer of 20 GB to two intermediate nodes (10 GB from

0 [7.68]

1 [17.856]

[2]

2 [17.856]

[2]

3 [17.856]

[2]

4 [17.856]

[2]

5 [17.856]

[2]

6 [17.856]

[2]

7 [17.856]

[2]

1’ [20.544]

[5.6]

2’ [20.544]

[5.6]

3’ [20.544]

[5.6]

4’ [20.544]

[5.6]

5’ [20.544]

[5.6]

6’ [20.544]

[5.6]

7’ [20.544]

[5.6]

8 [7.68]

[10] [10] [10] [10] [10] [10] [10]

Fig. 9. DAG for migration at 120 min.

0

 100

0 50 100 150 200 250 300

C
PU

 U
se

 (%
)

minutes

Fig. 10. Use of CPU for Task 1.

0

1

2

3

4

5

6

0 50 100 150 200 250 300

R
T

T
 (m

s)

minutes

Fig. 11. RTT between SRC2 and SRC3.

1776 D.M. Batista et al. / Computer Networks 52 (2008) 1762–1781

SRC2 to SRC3 and 10 GB from SRC5 to SRC6) before sending
to the final destination, SRC0, thus avoiding congestion of
links. This second option would lead to an execution time
of +300 min. In both cases, the execution time would be
longer than that obtained with the present approach.

Moreover, where an adaptive scheduling to be adopted,
no migration would be pursued, and consequently the
application execution time would be 358 min, which is
longer than the time obtained with the present procedure
(281 min).

These two examples illustrate the benefit of continuous
monitoring of the grid and allowing the triggering of
migration at any time to minimize execution time. This is
the main difference between the present approach and
adaptive and dynamic scheduling.

In the third experiment, resources were added to the
grid. Such additions are not necessarily due to the acquisi-
tion of new resources, as they may be due to the release of
resources by other applications. Fig. 12 illustrates the addi-
tionof thehost SRC16; the link capacity joining it tohost SRC6

is 1 Gbps, with an available processing rate of 8000 MIPS.
Similar hosts were also added to hosts SRC1 to SRC10. With
this extra resource, the execution time decreases to
247 min, which corresponds to a reduction of 3.89% of exe-
cution timeunder ideal conditions. This example shows that
taskmigration should not only be investigated under condi-
tions of a shortageof resources, but alsowhenever increased
resources become available. If, for example, the processing
rate available were 4000 MIPS, migration would not be
advisable since, execution time would have increased to
291 min ifmigrationwere carried out,which is 13.23%high-
er than that obtained under ideal conditions.

One of the key issues involved in the self-adjustment
procedure is the frequency of reevaluation of the adequacy
of the schedule under modified resource constraint. To get
an idea of the importance of the frequency of this proce-
dure, various simulations were carried out in the fourth
experiment. A source of interfering traffic (60 Mbps) was
introduced to the same links as in the previous example.
Both MIPCT and IPDT schedulers were used for the exper-
iments. First, a simulation with no task migration was run;
execution time was 279 min. Then, the recommendations
of the scheduler were followed. Table 13 shows the execu-
tion time required when task migration is undertaken.

It is clear that the frequency of evaluation plays a major
role in the execution time. If a long period between
changes in resources availability and the decision to mi-
grate a tasks occurs, computation may have progressed
to a point in which migration would no longer be an inter-
esting option. Moreover, it can be seen that the IPDT may
produce schedules which yield longer execution times
than those where no migration is pursued, as can be in
the results when intervals of 120 min and 130 min were
used. Such imprecision is critical when approaching the
‘‘ideal” time for reevaluation due to the approximations
introduced by time discretization. In fact, the ideal fre-
quency for reevaluation is system dependent, since it is
influenced by the frequency of changes in the resource
pool.

5. Related work

Various techniques for monitoring and performance
prediction have been employed for systems such as that
of the network weather service (NWS) [21], which uses ac-
tive monitoring techniques, as well as temporal series, to
predict performance. One distinct characteristic of the
NWS system is its hierarchical monitoring approach. Appli-
cations such as those supported by NWS require perfor-
mance feedback in short periods of time, typically in the
order of minutes. Another system for applications which
run for long periods is the grid harvest service (GHS) [20]
which is more scalable than NWS. In GHS, performance
prediction is carried out by neural networks and these pre-
dictions are employed to determine task migration. A dif-
ferent monitoring system used in the Wren systems was
introduced in [18]; this adopts either active or passive
monitoring techniques, depending on the network load.
All these proposals for monitoring the status of resources
can be incorporated in Steps 3 and 4 of the resources engi-
neering procedure introduced in Section 2. However, the
prediction of performance in self-adjustment procedure in-
volves schedulers based on optimization for determining
the potential reconfiguration of a grid.

Several self-adjusting systems based on monitoring and
task migration have been proposed [5,6,8,7,9,4,11,10] in
the literature. Although under different names, all these
schemes were designed to minimize the execution time
of applications. In all of these, mechanisms have been in-
serted into existing middlewares and agents for the man-
agement of grid applications. The procedure for self-
adjustment introduced in this paper differs from all of
them, since it uses neither adaptive scheduling nor dy-
namic scheduling.Fig. 12. Inclusion of new resource linked to SRC6.

Table 13
Execution times as a function of monitoring interval duration (minutes)

Interval MIPCT IPDT

100 269 (migration) 269 (migration)
110 275 (migration) 275 (migration)
120 276 (no migration) 281 (migration)
130 276 (no migration) 287 (migration)
140 276 (no migration) 276 (no migration)
150 276 (no migration) 276 (no migration)

D.M. Batista et al. / Computer Networks 52 (2008) 1762–1781 1777

Although the proposal in [5] took into consideration the
decrease in the performance of an application, no evidence
of the effectiveness of the policy for migration was pre-
sented. In this approach, an intermediate storage node
was used during migration to the final destination. In spite
of the flexibility provided by this intermediate node, it can
also become a bottleneck. Our proposal does not consider
migration to intermediate nodes and consequently does
not create such bottleneck.

The GridWay project [6] promotes migration under sev-
eral circumstances, but neglects the degradation of net-
work performance as a factor for the triggering of task
migration; the failure of a link is the only trigger consid-
ered. This scheme can generate a large number of task
migrations, since it uses a greedy algorithm for fast initial
scheduling and then adjusts the schedule in succeeding
evaluation steps.

In [8], migration occurs only if the gain in execution
time is greater than 30%, although the authors admit that
this threshold value may not be the optimal one. The major
outstanding difference between the self-adjustment proce-
dure proposed here and that proposed in [8] is that this
procedure for self-adjustment computes the migration
overhead based on the current grid status, whereas the
one proposed in [8] fixes overhead estimation to a constant
value.

The AppLeS project [7] uses an adaptive approach for
scheduling applications. Besides considering the state of
the grid, it also reschedules tasks to improve performance.
The present proposal differs from AppLeS because it con-
siders the execution time of the schedulers in the schedul-
ing life time, thus enabling it to work with different
deadlines. In [20] it was pointed out that performance deg-
radation can occur when the minimization of the execution
time of application is the major goal when using the Ap-
pLeS system.

An extension [9] of the GridWay project, which uses
Globus middleware, was introduced to make the execution
of applications easier and more efficient. Task migration
considers the resource availability of hosts as well as the
cost of migration in relation to the gain in execution time.
However, the approach fails to consider the degradation of
network performance as a determining factor for task
migration. Moreover, the setting of a threshold value for
the gain obtained by task migration limits the potential
minimization of the execution time, as reported by the
authors.

Other modifications have been proposed for the Grid-
Way system to diminish the time of data transfer by using
files shared by tasks residing in the same host [4]. A major
disadvantage of this proposal is the fact that it only consid-
ers these tasks for scheduling and migration. Such a limita-
tion prevents it from being used for applications with
dependent tasks, such as those considered in the present
paper. A policy for rescheduling based on the under-
achievement of the predicted makespan of an application
has been proposed in [11]. This policy is robust in relation
to imprecisions in the estimate of execution time. As the
scheme defined in [12], the policy monitors the progress
of the application execution, but it fails to account for
changes in resource availability. Thus, the introduction of

new resources does not trigger task migration and the con-
sequent improvement in performance. However, the pres-
ent proposal does take the fluctuation of resource
availability into consideration, thus, allowing a dynamic
search for the minimum execution time.

In [10], a procedure using rescheduling and task migra-
tion to release allocated resources and admit new applica-
tions was proposed. It was shown that this proposal
presents advantages when compared to those which im-
pose the end of execution tasks as a condition for the
admission of new ones. However, the proposal considers
the link state only at the time of scheduling of new appli-
cations. The authors point out the need for rescheduling as
a function of the fluctuation of resource availability, as is
carried out by the present proposal.

In summary, the uniqueness of our proposal when com-
pared to existing ones is the consideration of resource
availability during all the execution period of an applica-
tion. Moreover, our proposal is the only one to consider
the overhead of task rescheduling in the decision making
process.

Various scheduling schemes have been proposed for
grids [23,34–37]. The level-branch priority (LBP) [23] algo-
rithm organizes a list of ordered priorities, with the place-
ment of a task depending on its level in the DAG to which it
belongs, as well as the number of output edges. This ap-
proach is similar to those adopted by the DG scheduler in
this paper, but LBP does not consider heterogeneous re-
sources and assumes that all network links to have the
same transfer capacity.

The schedule presented in [34] assigns tasks to links
rather than to hosts. Moreover, all hosts are assumed to
have the same available processing rate which again is
not realistic in a grid environment. Various schedulers
based on heuristics are presented in [35]. These schedulers
produce schedules within a certain time threshold. Results
are presented for a single network topology, however, and
the effectiveness of the schedulers is compared to a greedy
algorithm which does not consider data dependencies in
tasks DAGs. The scheduler introduced in [36] was designed
to take into account quality of service requirements and
consider bandwidth as the only task requirement, ignoring
the possibility of data dependency among tasks. Finally,
the scheduler proposed in [37] assumes that the time re-
quired to transfer data is insignificant in relation to that
the spent on processing, making it inappropriate for appli-
cations with a large distributed data set shared among
tasks.

None of the schedulers proposed in the literature are
able to account for heterogeneous grid resources as are
the schedulers introduced in this paper. Moreover, none
of them works under time constraints. Furthermore, the
effectiveness of the schedulers proposed here has been
extensively validated in relation to various network topol-
ogies and tasks DAGs.

6. Conclusions

Grid networks can accommodate a new generation of
users with high computational and data transfer demands.

1778 D.M. Batista et al. / Computer Networks 52 (2008) 1762–1781

Although several grid systems already exist, this technol-
ogy is still in its infancy. One of the major challenges of
grids networks is the fluctuation in availability of resources
which has a definite impact on the performance of an
application. Enabling grid systems for self-adjustment in
response to changing scenarios is crucial for autonomy
and will facilitate their use.

This paper has introduced a resource allocation ap-
proach oriented to applications with dependent tasks so
that these applications can adapt their allocation of re-
sources to produce the minimum possible execution time.
The proposal differs from others in the literature by con-
sidering the network link status in all the phases of the
execution of an application (initial scheduling, reschedul-
ing and task migration). The effectiveness of this new pro-
cedure has been illustrated by several simulation
experiments involving various changes in the simulated
grid.

Furthermore, this paper also presented a set of grid
schedulers able to deal with heterogeneous grid resources
which can be used to produce schedules with different
quality given deadline constraints. These schedulers can
be executed in parallel to obtain the best possible schedule
under specific deadlines. The performance of these sched-
ulers were assessed.

In the future, the dynamic determination of the dura-
tion of intervals for reevaluation of schedule needs to be
pursued. An interesting topic for future research is the
evaluation of the stability of a Grid when several applica-
tions employing the self-adjustment procedure are com-
peting for the same resources. Moreover, the resource
allocation scheme proposed here shall be introduced into
existing systems.

Acknowledgements

The authors would like to sincerely thank the referees
for their constructive comments. This work was supported
in part by ProNEx–FAPESP/CNPq, CNPq and FAPESP
Kyatera.

Appendix I

Theorem 1. The time complexity of Algorithm 2 is
OðaP þ P & ðjJj & log jHjþjDjþ jHjÞÞ.

Proof. Algorithm 2 solves the input linear programming P

(relaxation of an MIP or an IP formulation) once in Step 1 in
time OðaPÞ. We consider that we can obtain a (pseudo) ran-
dom number in [0,1] in constant time. Note that the min-
imum time complexity of Step 1 is at least the time to set
each variable of the linear program, Xi;k, which is at least
OðjJj &jHjÞ.

After obtaining the values of Xi;k for each tasks i and
host k, we compute a table Ti;k where Ti;k ¼ 0 if k ¼ 0 and
Ti;k ¼ Ti;k'1 þ Xi;k if k P 1. The total time of this step can be
executed in time OðjJj &jHjÞ to facilitate the finding of a
host (probabilistically) to each task.

Steps 4 and 5 consider a task i and select a host k for this
task based on the probabilities given by the linear

programming. These steps can be executed in Oðlog jHjÞ
with a binary search in Ti;). Therefore, the time completion
of these steps is OðP & jJj & log jHjÞ, considering the loops
starting in Steps 2 and 3.

One iteration of Steps 7 and 8 can be performed
following the topological order of tasks (by DAG prece-
dence) which can be obtained in time OðjJjþjDjÞ. To set
the starting time of a task i, scheduled on machine k, the
algorithmmust verify the completion time of the tasks that
precede i (at this point they are already scheduled) and the
time when machine k becomes available (before the
execution of these steps, each machine is set with starting
time 0). When we consider all tasks, we have considered all
precedences (edges in the DAG) and so, the P executions of
Steps 7 and 8 are done in time OðP & ðjJjþjDjþ jHjÞÞ.
Therefore, the total time complexity of Algorithm 2 is given
by OðaP þ P & ðjJj & log jHjþjDjþjHjÞÞ. h

Appendix II

Theorem 2. The time complexity of Algorithm 3 is
OðQ & jJj & aPÞ.

Proof. The time complexity involved in all executions of
Steps 2 and 3 is clearly OðQ & aPÞ.

One iteration of Steps 5–7 can be performed in time
OðjHjÞ and one iteration of Step 8 can be executed in time
OðaPÞ. Therefore, considering all iterations and the fact that
jHj is bounded by OðaPÞ Steps 5–8 can be executed in time
OðQ & jJj & aPÞÞ.

The analysis of Step 10 is similar to the one carried out
to Algorithm 2 and it can be performed in time
OðQ & ðjJjþjDjþjHjÞÞ.

Since jDj and jHj are also bounded by OðaPÞ, the total
time complexity of Algorithm 3 is OðQ & jJj & aPÞ. h

Appendix III

Theorem 3. The time complexity of Algorithm 4 is
OðP & jHj & ðjJjþjDjÞÞ.

Proof. Algorithm 4 iterates P times, and in each iteration it
tries to obtain a feasible schedule. One iteration of Step 2
can be performed in OðjJj &jHjÞ time, considering that
the probabilities are stored in an appropriate table. So,
the total time complexity of this step is OðP & jJj &jHjÞ.

One iteration of Step 4 can be executed in OðjHjÞ time
for each task i. So, this step is performed in OðP & jJj & jHjÞ
time, considering all iterations. Step 5 updates the prob-
abilities for each task j for which i must precede. For a task
(for which i must precede) the probabilities to connect to a
host can be updated in OðjHjÞ time. The number of
dependencies considered to all tasks in the loop starting
in Step 3, is equal to jDj, which is the number of arcs in the
DAG. So, the total time complexity for all executions of
Step 5 is OðP & ðjDjþjJjÞ & jHjÞ.

In Step 6, it is computed the starting time of the task i. It
considers all tasks that task i depends and the finishing
time of the host where i is allocated. So, the total time to

D.M. Batista et al. / Computer Networks 52 (2008) 1762–1781 1779

compute Step 6 for all loops starting in Steps 1 and 3 is
OðP & ðjDjþjJjÞÞ. Therefore, the total time complexity of
Algorithm 4 is given by OðP & jHj & ðjJjþjDjÞÞ. h

Appendix IV

Theorem 4. The time complexity of Algorithm 5 is
OðjJj & jHj log jHjþ jNjþ P & jHj & ðjJjþ jDjÞÞ.

Proof. The probabilities computed with the first two rules
(Section 3.4) define initial probabilities that will be subse-
quently modified by the application of the last four rules
(Section 3.4). To this end, tasks are first ordered by its level
in the DAG (task with lower level first) and then rules are
applied for each task. Rules are applied from rule 3 to 6
and at last, the values of Xi;k are normalized to represent
probabilities.

The application of each rule may increase or decrease
the value Xi;k, computed by the previous rules, according to
the ranking of host k for some characteristics (e.g. number
of connecting links, processing rate, etc.).

For rule 3, the value Xi;k is increased, if host k has a large
number of connecting links (given by its rank, e.g., host k
has rank smaller than jHj=2); otherwise it is decreased.
The proportion to be increased/decreased is given by the
ratio between the number of arcs incident to task i and the
total number of arcs.

For rule 4, the value Xi;k is increased, if host k has large
capacity links connected to it (given by its rank);
otherwise it is decreased. The proportion to be
increased/decreased is given by the ratio between the
amount of data transferred by i and the total amount of
data transferred by tasks.

For rule 5, the value Xi;k is increased, if host k has a large
processing rate (given by its rank); otherwise it is
decreased. The proportion to be increased/decreased is
given by the ratio between the number of instructions of i
and the total number of instructions for all tasks.

To update the values of Xi;) by rule 6, hosts are first
ranked by the large values of Xi;k. Then, the value of Xi;k is
increased if k is one of the firsts in this ranking (e.g. rank
smaller than jHj=2); otherwise it is decreased. The
proportion to be increased/decreased is given by h'l

h , where
h is the higher DAG level and l is the level of task i.

Algorithm 5 differs from Algorithm 4, by the computa-
tion of the initial probability values in Step 2. In this case,
the probabilities are computed with the ‘‘set of rules 1”.
The first two rules are computed according to Eq. (1). All
terms in this equality are independent of i and some
summations are independent of k, which leads to a single
computation to each distinct value. So, the total time
complexity to compute the first two rules is OðjJj &jHjþ
jHjþjNjÞ.

Since the ranking computed by rules 3–5 can be
performed once for all jobs (by sorting), the time com-
plexity to apply these steps is given by OðjHj log jHjþ
jNjþ jDjþjDj &jHjÞ. For rule 6, the ranking used must be
recomputed for each job i just after the application of the
previous rules, since they modify values of Xi;k; so the time
complexity is given by OðjJj &jHj log jHjþ jNjþjJj &jHjÞ.

The time complexity of one execution of Step 2, that
computes starting probabilities Xi;k for all tasks i 2 J and
hosts k 2 H, using the ‘‘set of rules 1”, is given by
OðjJj & jHj log jHjþ jNjþjDjÞ. If these probabilities are
stored, they can be computed once and copied for each
iteration of Step 1. So, the time complexity of all executions
of Step 2 is OðjJj &jHj log jHjþjNjþ jDjþ P & jJj &jHjÞ.

The remaining steps of Algorithm 5 has the same
analysis of Algorithm 4. So, they can be computed in time
OðP & jHj & ðjJjþjDjÞÞ.

Therefore, Algorithm 5 can be implemented in
OðjJj & jHj log jHjþ jNjþ P & jHj & ðjJjþ jDjÞÞ time. h

References

[1] I. Foster, What is the grid? A three point checklist, GRIDToday 1 (6)
(2002). <http://www-fp.mcs.anl.gov/foster/Articles/WhatIsTheGrid.
pdf> (accessed at 20.10.2006).

[2] H. Casanova, Distributed computing research issues in grid
computing, SIGACT News 33 (3) (2002) 50–70.

[3] Y.-K. Kwok, I. Ahmad, Static scheduling algorithms for allocating
directed task graphs to multiprocessors, ACM Comput. Surv. 31 (4)
(1999) 406–471.

[4] E. Huedo, R.S. Montero, I.M. Llorente, Experiences on adaptive grid
scheduling of parameter sweep applications, in: Proceedings of the
12th Euromicro Conference on Parallel, Distributed and Network-
Based Processing, 2004, pp. 28–33.

[5] G. Allen, D. Angulo, I. Foster, G. Lanfermann, C. Liu, T. Radke, E. Seidel,
J. Shalf, The cactus worm: experiments with dynamic resource
discovery and allocation in a grid environment, Int. J. High
Performance Comput. Appl. 15 (4) (2001) 345–358.

[6] E. Huedo, R.S. Montero, I.M. Llrorent, An Experimental Framework
for Executing Applications in Dynamic Grid Environments, Tech. Rep.
2002-43, NASA Langley Research Center, 2002.

[7] F. Berman, R. Wolski, H. Casanova, W.W. Cirne, H.H. Dail, M.
Faerman, S. Figueira, J. Hayes, G. Obertelli, J. Schopf, G. Shao, S.
Smallen, N. Spring, A. Su, D. Zagorodnov, Adaptive computing on the
grid using AppLeS, IEEE Trans. Parallel Distribut. Syst. 14 (2003) 369–
382.

[8] S.S. Vadhiyar, J.J. Dongarra, A performance oriented migration
framework for the grid, in: Proceedings of 3rd IEEE/ACM
International Symposium on Cluster Computing and the
Grid(CCGRID’03), 2003, pp. 130–137.

[9] R.S. Montero, E. Huedo, I.M. Llorente, Grid resource selection for
opportunistic job migration, in: Proceedings of the 9th International
Euro-Par Conference, Springer, Berlin, Heidelberg, 2003, pp. 366–
373.

[10] K. Kurowski, B. Ludwiczak, J. Nabrzyski, A. Oleksiak, J. Pukacki,
Dynamic grid scheduling with job migration and rescheduling in the
GridLab resource management system, Sci. Program. 12 (2004) 263–
273.

[11] R. Sakellariou, H. Zhao, A low-cost rescheduling policy for efficient
mapping of workflows on grid systems, Sci. Program. 12 (2004) 253–
262.

[12] J.M. Schopf, Ten actions when grid scheduling, in: Grid Resource
Management: State of the Art and Future Trends, first ed., Springer,
2003, pp. 15–23.

[13] L. Renambot, T. van der Schaaf, H.E. Bal, D. Germans, H.J.W. Spoelder,
Griz: experience with remote visualization over an optical grid,
Future Generation Comput. Syst. 19 (6) (2003) 871–882.

[14] D.M. Batista, N.L.S. da Fonseca, F. Granelli, D. Kliazovich, Self-
adjusting grid networks, in: Proceedings of the IEEE International
Conference on Communications, 2007 – ICC’07, 2007, pp. 344–349.

[15] D.M. Batista, N.L.S. da Fonseca, F.K. Miyazawa, A set of schedulers for
grid networks, in: SAC’07: Proceedings of the 2007 ACM Symposium
on Applied Computing, ACM Press, New York, NY, USA, 2007, pp.
209–213.

[16] M. Cannataro, C. Mastroianni, D. Talia, P. Trunfio, Evaluating and
enhancing the use of the GridFTP protocol for efficient data transfer
on the grid, in: Proceedings of the 10th European PVM/MPI User’s
Group Meeting, Lecture Notes in Computer Science, vol. 2840, 2003,
pp. 619–628.

[17] F. Montesino-Pouzols, Comparative analysis of active bandwidth
estimation tools, in: Proceedings of the 5th Passive and Active

1780 D.M. Batista et al. / Computer Networks 52 (2008) 1762–1781

http://www-fp.mcs.anl.gov/foster/Articles/WhatIsTheGrid.pdf
http://www-fp.mcs.anl.gov/foster/Articles/WhatIsTheGrid.pdf

Measurement Workshop (PAM 2004), Lecture Notes in Computer
Science, vol. 3015, 2004, pp. 175–184.

[18] B.B. Lowekamp, Combining active and passive network
measurements to build scalable monitoring systems on the grid,
SIGMETRICS Perform. Evaluat. Rev. 30 (4) (2003) 19–26.

[19] J.M. Schopf, L. Yang, Using predicted variance for conservative
scheduling on shared resources, in: Grid Resource Management:
State of the Art and Future Trends, first ed., Springer, 2003, pp. 215–
236.

[20] X. Sun, M. Wu, GHS: a performance system of grid computing, in:
Proceedings of 19th IEEE International Parallel and Distributed
Processing Symposium, 2005, p. 228–233.

[21] R. Wolski, N.T. Spring, J. Hayes, The network weather service: a
distributed resource performance forecasting service for metacom-
puting, Future Generation Comput. Syst. 15 (5–6) (1999) 757–768.

[22] H. Zhao, R. Sakellariou, Scheduling multiple DAGs onto
heterogeneous systems, in: Proceedings of the 20h International
Parallel and Distributed Processing Symposium (IPDPS 2006), 2006.

[23] D. Ma, W. Zhang, A static task scheduling algorithm in grid
computing, in: Proceedings of the Second International Workshop
on Grid and Cooperative Computing (GCC 2003) – Part II, Lecture
Notes in Computer Science, vol. 3033, 2004, pp. 153–156.

[24] G.B. Dantzig, Maximization of linear function of variables subject to
linear inequalities, in: T.C. Koopmans (Ed.), Activity Analysis of
Production and Allocation, 1951, pp. 339–347.

[25] M.J. Todd, The many facets of linear programming, Math. Program.
91 (3) (2004) 417–436.

[26] R.E. Bixby, Implementing the simplex method: the initial basis, ORSA
J. Comput. 4 (1992) 267–284.

[27] H.W. Kuhn, R.E. Quandt, An experimental study of the simplex
method, in: E.A. Metropolis (Ed.), Proceedings of the 15th Sympo-
sium on Applied Mathematics, Amer. Math. Soc., 1963, pp. 107–124.

[28] N.K. Karmarkar, A new polynomial-time algorithm for linear
programming, Combinatorica 4 (4) (1984) 373–395.

[29] J.E. Mitchell, P.M. Pardalos, M.G.C. Resende, Interior point methods
for combinatorial optimization, in: D.-Z. Du, P.M. Pardalos (Eds.),
Handbook of Combinatorial Optimization, Kluwer Academic
Publishers, 1998, pp. 189–297.

[30] N.K. Karmarkar, K.G. Ramakrishnan, Computational results of an
interior point algorithm for large scale linear programming, Math.
Program. 52 (1991) 555–586.

[31] M. Iverson, F. Ozguner, G. Follen, Parallelizing existing applications
in a distributed heterogeneous environment, in: Proceedings of
Heterogeneous Computing Workshop, 1995, pp. 93–100.

[32] Montage. <http://montage.ipac.caltech.edu/> (accessed at 5.11.2007).
[33] M. Doar, I.M. Leslie, How bad is naive multicast routing? in:

Proceedings of IEEE INFOCOM’93, 1993, pp. 82–89.
[34] O. Sinnen, L.A. Sousa, Communication contention in task

scheduling, IEEE Trans. Parallel Distribut. Syst. 16 (6) (2005) 503–
515.

[35] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, K. Kennedy,
Task scheduling strategies for workflow-based applications in grids,
in: Proceedings of IEEE International Symposium on Cluster
Computing and the Grid (CCGRID’05), vol. 2, 2005, pp. 759–767.

[36] X. He, X. Sun, G. von Laszewski, QoS guided min–min heuristic for
grid task scheduling, J. Comput. Sci. Technol. 18 (4) (2003) 442–
451.

[37] N. Fujimoto, K. Hagihara, Near-optimal dynamic task scheduling of
precedence constrained coarse-grained tasks onto a computational
grid, in: Proceedings of the Second International Symposium on
Parallel and Distributed Computing, 2003, pp. 80–87.

Daniel Batista received a B.Sc. degree in
Computer Science from Federal University of
Bahia in 2004 and his M.Sc. degree in Com-
puter Science from State University of Cam-
pinas in June 2006. He is now a Ph.D. student
at the Institute of Computing, State University
of Campinas, Campinas, Brazil and he is affil-
iated with the Computer Networks Laboratory
at the same University. His research interests
include traffic engineering and grid networks.
His current research addresses optical net-
works mechanisms for grids.

Nelson L.S. da Fonseca received his Electrical
Engineer (1984) and M.Sc. in Computer Sci-
ence (1987) degrees from The Pontificial
Catholic University at Rio de Janeiro, Brazil,
and the M.Sc. (1993) and Ph.D. (1994) degrees
in Computer Engineering from The University
of Southern California, USA. Since 1995, he
has been affiliated with the Institute of Com-
puting of The State University of Campinas,
Campinas – Brazil where is currently an
Associate Professor. He is also a Consulting
Professor to the Department of Informatics

and Telecommunications of the University of Trento, Italy. He is the
Editor-in-Chief of the IEEE Communications Surveys and Tutorials. He
served as Editor-in-Chief of the IEEE Communications Society Electronic
Newsletter and Editor of the Global Communications Newsletter. He is
member of the editorial board of: Computer Networks, IEEE Communi-
cations Magazine, IEEE Communications Surveys and Tutorials, and Bra-
zilian Journal of Computer Science. He served on the editorial board of the
IEEE Transactions on Multimedia and on the board of the Brazilaina
Journal on Telecommunications. He is the recipient of Elsevier Computer
Networks Editor of the Year 2001, USC International Book award and of
the Brazilian Computing Society First Thesis and Dissertations award. He
is an active member of the IEEE Communications Society. He served as
ComSoc Director of On-line Services (2002–2003) and served as technical
chair for several ComSoc symposia and workshops. His main interests are
traffic control, and multimedia services.

Flávio K. Miyazawa joined the Institute of
Computing, State University of Campinas in
1998 and is currently an Associate Professor.
He obtained his B.Sc. degree in Computer
Science (1990) from the Federal University of
Mato Grosso do Sul and the M.Sc. (1993) and
Ph.D. (1997) in Applied Mathematics from the
University of São Paulo. His main research
activities are in the field of combinatorial
optimization, mainly in network design, cut-
ting stock and packing problems.

Fabrizio Granelli was born in Genoa in 1972.
He received the ‘‘Laurea” (M.Sc.) degree in
Electronic Engineering from the University of
Genoa, Italy, in 1997, with a thesis on video
coding, awarded with the TELECOM Italy
prize, and the Ph.D. in Telecommunications
from the same university, in 2001. Since 2000
he is carrying on his teaching activity as
Assistant Professor in Telecommunications at
the Department of Information and Commu-
nication Technology – University of Trento
(Italy). In August 2004, he was visiting pro-

fessor at the State University of Campinas (Brasil). He is author or co-
author of more than 40 papers published in international journals, books
and conferences, and he is member of the Technical Committee of the
International Conference on Communications (ICC2003, ICC2004 and
ICC2005) and Global Telecommunications Conference (GLOBECOM2003
and GLOBECOM2004). He is guest-editor of ACM Journal on Mobile Net-
works and Applications, special issue on ‘‘WLAN Optimization at the MAC
and Network Levels” and Co-Chair of 10th IEEE Workshop on Computer-
Aided Modeling, Analysis, and Design of Communication Links and Net-
works (CAMAD’04). He is General Vice-Chair of the First International
Conference on Wireless Internet (WICON’05) and General Chair of the
11th IEEE Workshop on Computer-Aided Modeling, Analysis, and Design
of Communication Links and Networks (CAMAD’06).

His main research activities are in the field of networking and signal
processing, with particular reference to network performance modeling,
medium access control, wireless networks, next-generation IP, and video
transmission over packet networks.

He is Senior Member of IEEE and Associate Editor of IEEE Commu-
nications Letters.

D.M. Batista et al. / Computer Networks 52 (2008) 1762–1781 1781

http://montage.ipac.caltech.edu/

	Self-adjustment of resource allocation for grid applications
	Introduction
	Procedure for self-adjustment of resource allocation
	Grid schedulers
	MIP Formulation with time as a continuous variable
	IP formulation with time as a discrete variable
	Random drawing with uniform probabilities
	Drawing using distribution involving grid-aware probability values
	Comparison of scheduler efficiency
	Results of experiments involving the Griz DAG
	Results of experiments involving the Montage DAG

	Examples of the use of self-adjustment procedure
	Related work
	Conclusions
	Acknowledgements
	Appendix I
	Appendix II
	Appendix III
	Appendix IV
	References

