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Abstract

In this paper we consider an experimental study of approximation algorithms for schedul-
ing problems in parallel machines minimizing the average weighted completion time. We im-
plemented approximation algorithms for the following problems: P|r ;| >~ C; , P|| > w;C}; ,
Plr;| > w;Cj, R|| > w;C; and R|r;| Y w;C;. We generated about 900 tests over more than
190 different instances and present some practical aspects of the implemented algorithms. We
also made an experimental comparison on two lower bounds based in the formulations used
by the algorithms. The first one is a semidefinite formulation for the problem R|| Y~ w;C; and
the other is a linear formulation for the problem R|r ;| >~ w;C;. For all tests, the algorithms
obtained very good results. We note that algorithms using more refined techniques, when com-
pared to algorithms with simple strategies, does not necessary leads to better results. We also
present two heuristics, based in approximation algorithms, that generates solutions with better
quality in almost all instances considered.
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1 Introduction

In this paper, we consider an experimental study of approximation algorithms for scheduling
problems. Several job scheduling problems in parallel machines that appears in practice are NP-
hard. The scheduling problems we consider are all NP-hard and consists in scheduling a set of jobs,
under some restrictions, in a set of machines minimizing the average weighted completion time. If
we consider that P # N P, we cannot solve these problems to optimality efficiently. This motivates
the development of approximation algorithms, that are efficient and produces results with quality
guarantee. We implemented some approximation algorithms to scheduling jobs in parallel machines
and study their computational performance.

Given an algorithm 4 for a minimization problem and an instance I of this problem, we denote
by A(I) the value of the solution returned by .A when applied to the instance I and we denote by
OPT(I) the value of an optimal solution to . We say that an algorithm .4 has an approximation

“This research was partially supported by FAPESP project 01/04412-4, MCT/CNPq under PRONEX program
(Proc. 664107/97-4) and CNPq (Proc. 470608/01-3, 464114/00-4, 300301/98-7).

nstituto de Computagdo — Universidade Estadual de Campinas, Caixa Postal 6176 — 13084-971 — Campinas—SP
— Brazil, {eduardo.xavier,fkm} @ic.unicamp.br.



factor «, or is an a-approximation, if A(I)/OPT(I) < a,for all instances . When the algorithm A
is probabilistic and the inequality E[A(I)]/OPT(I) < «is valid for all instances I, where E[A(I)]
is the expected value of the solution returned by algorithm A, we say that A is a probabilistic «-
approximation algorithm.

For all problems considered in this paper, we denote by J = {1,...,n} the set of jobs and
M ={1,...,m} the set of machines. When machines are unrelated ( e.g. have different processing
speed) we denote by p;; the processing time of job 7 when executed on machine 7, and by p; when all
machines are identical. We denote by r; the release date of job j, which represents the moment that
a job can start and denote by w; the importance weight of finishing the job earlier. The completion
time of the job is denoted by Cj.

Since we consider several scheduling problems, we use the notation «|f3|y introduced by Gra-
ham, Lawler, Lenstra and Rinnooy Kan [3]. In the following we detail the terms used in this paper
under this notation. The term « corresponds to the machine environment, P for identical machines
or R for unrelated machines. The term £ tell us some restrictions about jobs, if they have release
dates, r;, if the jobs can be interrupted and continued later, pmtn, etc. Finally the term +y indicates
the objective function we want to minimize.

All problems we consider are non-preemptive, although algorithms for preemptive problems are
used to find intermediate solutions.

There are a lot of work in the development of approximation algorithms, but very few consider
practical performance analysis. In [5], Hepner and Stein present an implementation of a PTAS for a
single machine scheduling with release dates. In [7] Savelsbergh et al., also present an experimental
study of some approximation algorithms for scheduling problems in a single machine. They con-
sider the problem 1|;| > w;C; and a variant of this problem when an average weighted flow time
is minimized, i.e, problem 1|r;| > w;(C;j — rj).

We implemented algorithms for the following problems: P|rj| >~ C;, P|| Y- w;C;, Plrj| Y- w;Cj,
R|| > w;Cjand R|r;| Y w;C;. For the problem P|r;| > C; we implemented the algorithm devel-
oped by Phillips et al. [8]. This algorithm is combinatorial and is based in a heuristic for the pre-
emptive case. For the problem P|| ) w;C; we implemented the algorithm of Kawaguchi and Kyan
[6], that is based in a list scheduling heuristic. For the problems P|r;j| Y w;C}; and R|r;| Y w;C;
we implemented algorithms of Schulz and Skutella [9]. The algorithm for the first problem is com-
binatorial and the algorithm for the second problem is based on a solution of a linear program. Both
algorithms are probabilistic. For the problem R||> w;C; we implemented the algorithm developed
by Skutella [10] that is based on a solution of a semidefinite program.

We observe that there exists PTAS algorithms for parallel machines as presented by Afrati et al.
[1], but their implementation requires extra efforts and results in algorithms with time complexity
represented by very high degree polynomials.

To our knowledge, this paper is the first to consider practical analysis of approximation algo-
rithms for parallel machines. All algorithms are implemented in C. For the algorithms that require
solutions of linear or quadratic programs we use the Xpress-MP library, of Dash Optimization [2].
Based in the practical results, we propose a simple modification on the algorithm presented by
Schulz and Skutella [9] for R|r;| > w;C; and on the algorithm of Kawaguchi and Kyan [6]. In the
tests we consider, we show that these heuristics obtain solutions with better quality.

The paper is organized as follows. In section 2 we describe the implemented algorithms and
give some insight of how they work. In section 3 we compare two lower bounds for problems



R|| >~ w;C; and some of its particular cases. In section 4 we present the computational results.

2 Algorithms

In this section we describe the algorithms and the way they are implemented. We do not show
how their approximate factors are obtained. The interested reader can find more details about the
approximation results of these algorithms in the references.

All algorithms are implemented in C. To solve the linear and semidefinite programs considered,
we use the Xpress-MP library due to its recognized efficiency.

2.1 Algorithm PSW for P|r;| > C;

The algorithm of this section was developed by Phillips et al. [8] which we denote by PSW. It
finds a solution in two phases. In the first phase, the algorithm finds an approximated solution for
the preemptive version of this problem and in the second phase it uses an algorithm that converts
the preemptive schedule to a non-preemptive schedule. The preemptive version of this problem is
already NP-hard, and is approximated by a 2-approximation algorithm. The algorithm that con-
verts the preemptive schedule to a non-preemptive one, produces a new schedule that is at most
three times worse than the preemptive schedule. This leads to a 6-approximation algorithm for the
problem P|r;| > Cj (see [8]).

The algorithm for the preemptive schedule is based in the following idea: at any time, execute
m jobs with the shortest remaining amount of work. The time complexity of the implemented
algorithm, which we denote by Preemptive, is O(n(logn +m)).

The algorithm PSW, uses the preemptive scheduled generated by the algorithm Preemptive
scheduling each job 7 in the machine which completed j in the preemptive schedule.

The algorithm generates a list M;, for each machine 4, of jobs ordered by their preemptive
completion times C in the preemptive schedule. For each machine i, the algorithm PSW generates
a non-preemptive schedule with jobs in the order specified by M, with the constraint that no job 5
starts before its release date.

The time complexity of the implemented algorithm is O(n log n 4+ m) plus the time complexity
to generate the preemptive schedule.

2.2 Algorithm KK for the problem P|| > w;C;

The algorithm of this section is an extension of the problem 1||>  w;C'; for the problem P|| ) w;C}.
The problem 1|| > w;C; can be solved optimally with the following algorithm developed by Smith
[11]: order jobs in non-decreasing order of % and schedule the jobs in this order. The aproxima-
tion algorithm for the parallel machine case is an extension: order jobs in non-decreasing order of
% and schedule jobs in this order every time a machine becomes free. Kawaguchi and Kyan [6]

have shown that this algorithm generates schedules with a factor of (@) of the optimal. The

implemented algorithm, which we denote by KK, have time complexity O(n logn + nm).



2.3 Algorithm SzSK for the problem P|r;| > w;C;

The algorithm of this section was developed by Schulz and Skutella [9] and we denote it by
SzSK. The algorithm is a probabilistic 2-approximation algorithm. For each instance, the algorithm
SzSK is executed 100 times and the best generated schedule is returned. In our experiments, we
observed that more executions leads to very small improvements. The algorithm is related to the
linear formulation for a single machine problem presented below. We have variables 1, for each
job j and for each time interval (¢, ¢+1] that a job can run. We also have variables C, that represents
the finishing time of job j. The constant 7" is an upper bound for the completion time of any job.
The relaxed linear program, denoted by LPS, is the following:

Min ZjEJ ’U)jCj

t=r;
ies it < 1 t=0,..T
. T .
Cj = pTJ + i Zt:’l"j yjt(t + %)V] €J,
yjt = 0 V] c J and t = 0, ~~'a,rj - ]"
yig > 0 VjeJandt=rj,..,T.

This linear program can be solved using a combinatorial algorithm [9]. Suppose we have just
one machine m times faster than the machines considered. Consider the processing times of the
jobs to be m times smaller. Construct a preemptive schedule for this single machine with the new
processing times using the following rule: at any time, construct a preemptive schedule S on the
new single machine by scheduling, among the available jobs, the one with the smallest ;: Di ratio.
The resulting schedule corresponds to an optimum solution to the formulation. Each Varlable Yt
receive value 1 if job j is processed during time [t — 1,¢) in the generated schedule.

Notice that the algorithm Preemptive is easily modified to solve this formulation and can be
implemented to run in O(nlogn). After this, we construct a schedule based in probabilistic as-
signments. We choose for each job j, a variable «; uniformly distributed from the interval [0, 1].
Then we consider the probabilistic finishing time, i.e., the first time in the schedule where the total
amount of work done is pja;. We denote this value by Cj(c;). The algorithm SzSK attributes
each job 7 uniformly and independent to one of the m machines. For each machine the algorithm
schedules jobs in nondecreasing order of values G ().

The time complexity of the algorithm SzSK is O(nlogn + m).

24 Algorithm SK for R|| > w;C;

The algorithm of this section is a probabilistic 2-approximation algorithm based on a semidefi-
nite formulation and is presented by Skutella [10]. We denote the algorithm by SK. The quadratic
program for this problem has binary variables ¢;;, that says that a job j is to be processed in machine
i, if and only if @;; = 1 and variables C; that represents the finishing time of job j. We also have
a function <; that specify the execution order of a job pair 7, k£ in machine 7. The job 7 must be
processed before £ in machine 7 if % > %. The quadratic program is the following:



Min ZjGJ ijj

C; = XL (pij + Xpe,j aikpik) Vi € J,
ajj € {0,1} Vie M, VjedJ

Skutella have shown that this formulation is equivalent to the following quadratic formulation:
Min cTa+ %aTDa

Z;il Ajj = 1 v.] € J:
a > 0,

where a € R™" is a vector of all variables a;; lexicographically ordered with respect to the natural
order 1,2, ..., m of the machines and then, for each machine 7, the jobs ordered according to <.
The vector ¢ € R™ is given by ¢;; = w;p;; and D = (d(;;)(nk)) is @ symmetric mn X mn-matrix
given by

Oifi £horj =k,
d(ij)(hk) = Qw;pirifi =hand k <; j,
Wk Pij ifi=handj <; k.

This problem can be solved in polynomial time if, and only if, matrix D is positive semidefinite.
This motivates the construction of a new formulation, which we call QSP:

Min icfa+ La® (D + diag(c))a

E?ll Qij = 1 V] S J,
a > 0,

where (D + diag(c)) is positive semidefinite and diag(c) is a diagonal matrix with the vector c.
Given a solution for QSP, job j is assigned to machine 7 with probability ¢; and in each ma-
chine 7 the execution order is given by the function <;. In our implementation, this assignment is
performed 100 times returning the best generated schedule. For the special case of identical par-
allel machines, the optimal solution of the above formulation is given by g; = % In this case,
we implemented a combinatorial algorithm for this especial case attributing each job to a machine
with probability % This combinatorial algorithm is denoted by SK-C. The time complexity of the
algorithm is O(n logn + m) plus the time complexity to solve the semidefinite program QSP.

2.5 Algorithm SzSK2 for R|r;| > w;C;

The algorithm for problem R|r;| > w;C}; is also a probabilistic algorithm and is, presented
by Schulz and Skutella [9]. The algorithm, denoted by SZSK2, is based in the solution of a linear
formulation and is a generalization of the algorithm SZSK. As in the linear program of the algorithm



SzSK, this formulation have variables C; that represents the finishing time of job j and variables
Yijt, that says that job j is processed in machine 4 at time ¢, for each time interval (¢, + 1]. The
maximum time that a machine can execute is denoted by 7'. The formulation is exponential, but it
can be made polynomial with a small loss in the objective function using interval times that increase
exponentially in their size. In this case, we have binary variables y;; indicating the execution of job
4 in machine i at interval I, = ((1 + 8)'=%, (1 + B)!]. The size of an interval I, is denoted by |1j].
For simplicity we denote (1 + 3)' by ;. The relaxed formulation, which is denoted by LPSS, is the
following:

n
E :chj
i=1

>y <1l VieM, e 1=0,..L,
JjEJ

m L
I 1 ;
=y >ty g UiV €

i—11=0 Pii

yiu=0 VieM, VjeJ [Bi<r;—1

)

yiﬂZO Vie M, VjelJ, VI=0,.. L

The algorithm solves the linear program LPSS and assign each job j to a machine-interval
pair (i,1;) at random with probability it vl - ppe jobs assigned to a machine ¢ are scheduled
in non-decreasing order of intervals as51gffment. If there are more than one job assigned to the
same pair (7, [;), the algorithm schedule them in order of their value j. For a given € > 0 setting
8 = § this algorithm has a probabilistic (2 + €)-approximation factor. As in the algorithm SK, the
probabilistic assignment step is executed 100 times and the best generated schedule is returned. The
time complexity of this algorithm is O(nm logy ;) T + nlogn) plus the time complexity to solve
the linear program LPSS. Since this algorithm is executed with different values of €, we denote by
S7ZSK2, the algorithm SzSK2 with the given value of e, that is, the algorithm SzZSK2j; is the
algorithm SzZSK2 with value of e = 0.1.



2.6 Two Heuristic Algorithms

In this section we present a new algorithm denoted by HE1 for the problem R|r| )" w;C},
that is a simple modification of the algorithm SZSK2 and an extended heuristic of algorithm KK
for the problem P|r;| > w;C;, which we denote by HE2. In [4], Hariri and Potts present a simple
heuristic algorithm for 1|r;| Y w;C; used to find an upper bound for a branch and bound algorithm.
The algorithm is as follows:

1. Let S be the set of all (unsequenced) jobs, let H = 0 and k = 0 and find 7" = min;cs{r;}.
2. Find the set S" = {j|j € S,r; < T} and find a job ¢ with i € $" and 7+ = ma%eS’{%}-

3. Set k = k + 1, sequence job i in position k, set T' = T + p;, set H = H + w;T and set
S=5-{i}.

4. If S = (), then stop with the sequence generated having H as its cost. Otherwise set T' =
maz{T, minjcs{r;}} and go to step 2.

In algorithm SZSK?2, the jobs are assigned to pairs machine-interval and them executed in each
machine by the order of intervals assignments. In algorithm HE1, the assignment step is done as in
algorithm SZSK?2, but the jobs assigned to a machine ¢ are scheduled using the algorithm of Hariri
and Potts.

The algorithm HE2 executes an extended heuristic of algorithm KK: every time a machine
becomes free, execute among the available jobs, the one with smallest ratio%. Notice that without
the presence of release dates, this algorithm is essentially algorithm KK.

3 Study of Two Lower Bounds

In this section we present an experimental study of two formulations that provides lower bounds
for our algorithms. The first formulation is the semidefinite formulation QSP presented for algo-
rithm SK, and the second is a linear formulation LPSS presented for algorithm SZSK2. For prob-
lems that consider jobs with release dates we used the lower bounds provided by the linear program
LPSS. For problems without release dates we performed a computational study to determine which
formulation give lower bounds with better quality. For the most generic problem R||Y " w,;C;, we
consider three cases: R2||>_ w;Cj, R5|| Y w;Cjand R7|| Y w;C;. We also tried to study the case
R10|| >~ w;C; but we could not solve integer instances of this problem in a reasonable amount of
time. We performed five tests with 100 jobs for each case. The processing times of jobs were taken
uniformly from the interval [1,100] and w; was chosen uniformly from the interval [1,10]. The
linear program LPSS is generated with time intervals defined with parameter € = 0.3 and € = 0.1.
Besides the quality of the lower bound increases using ¢ = 0.1 when compared with the solutions
with € = 0.3, the solutions provided by the algorithms do not differ so much as we will see in the
next sections. The lower bounds of these two formulations are compared with the value of an integer
solution, which we obtained from the integral solutions of program QSP. The results of these tests
can be seen in table 1.



Problem Integer Optimal ospP LPSSe = 0.3 || LPSS € = 0.1
Value |Ratio Value |Ratio Value |Ratio
163066 163052.92]0.999[[152588.46[0.935][159313.82[0.976
R2|| Y w; O 228766 228732.05[0.999[[214004.87[0.935[[223453.15[0.976
223714 223673.35[0.999]]209223.01[0.935[[218505.52[0.976
174802 174764.4910.999]]163503.50[0.935][170744.85]0.976

180367 180337.23]0.999[[168738.85[0.935][176189.91[0.976

Value |Ratio Value |Ratio Value |Ratio

36767 36690.74 [0.997[[ 34506.58 [0.938]] 35914.83 [0.978

R5|| X w; O 33675 33636.31 [0.998 ([ 31603.44 [0.938][ 32925.71 [0.977
44130 44043.36 [0.998 ] 41379.21 [0.937[[ 43097.67 [0.976

36168 36104.74 10.998 [ 33948.00 [0.938]] 35340.76 [0.977

37343 37251.78 10.997 ([ 35028.43 [0.938]] 36457.91 [0.976

Value |Ratio Value |Ratio Value |Ratio
26542 26473.41 [0.997[ 24920.74 10.938]] 2592481 [0.976
R7|| X w; C; 22429 22361.25[0.996 ([ 21074.51 [0.939]] 21915.70 [0.977
26919 26857.20 [0.997]] 25279.07 [0.939] 26302.32 [0.977
29093 29017.66 [0.997[] 27314.76 [0.938[ 28415.94 [0.976
25543 25440.19 [0.995]] 23967.79 [0.938][ 24928.01 [0.975

Table 1: Comparison between formulations QSP and LPSS.

We also performed computational tests to compare the lower bounds for problem P|[} " w;C}.
In this case we could solve only instances up to 20 jobs with 2 machines and 15 jobs with 5 ma-
chines. The next theorem, proved by Skutella [10], helps us to understand the hardness to obtain
integer solutions for instances of this problem.

Theorem 3.1 For instances of Pm||Y_ w;C}, an optimum vector solution o of the quadratic pro-
gram QSP is a;j = %for all v, j. This optimum solution is unique if all ratios %, are different and
positive.

In all instances the solution of the quadratic program is exactly the one provided in the theorem.
Since the Xpress solver finds the optimal integer solution using a branch and bound tree, the number
of nodes is exponential. We could not solve these kind of problems even if we use an upper bound
provided by our approximation algorithms. We could solve only instances with 20 jobs for problem
P2|| > w;C; and instances with 15 jobs for problem P5||>" w;C;. The results of our tests are
presented in table 2.

Problem Integer Optimal ospP LPSS ¢ = 0.3 ||LPSS ¢ = 0.1
Value |Ratio|[ Value [Ratio|| Value [Ratio

19615 19546.75[0.996[[18413.86{0.938[[19142.58[0.975

P2|| > wy Cj 19214 19164.00[0.997 [ 18082.13[0.941 [[18773.20(0.977
17199 17135.75]0.996][16158.01{0.939[[16785.03[0.975

16398 16322.50[0.995][15385.34{0.938[[15992.72[0.975

16415 16365.00[0.996]]15451.82{0.941[[16033.15[0.976

Value |Ratio|[ Value [Ratio|| Value [Ratio

5121 4913.60 [0.959]] 4712.12 [0.920(] 4842.30 [0.945

P5|| X w; C; 5467 5257.60 [0.961]] 5035.09 [0.920] 5177.84 [0.947
6536 6312.40 [0.965]] 6039.39 [0.924[ 6215.11 [0.950

4875 4651.60 [0.954]] 4468.68 [0.916][ 4590.74 [0.941

5105 4895.80 [0.959]] 4694.55 [0.919]] 4824.64 [0.945

Table 2: Comparison between formulations QSP and LPSS.

In all generated tests, the lower bounds provided by the formulation QSP are better than the
lower bounds provided by formulation LPSS. Also note that when e = 0.1 the difference is not so
large. We do not use smaller values of e since the increase in the computational time to solve such
formulations is very high.



4 Practical Analysis of the Implemented Algorithms

In this section, we present the results of our tests. Since some problems are particular cases
of others, we performed several different tests. Each subsection is reserved for one case. Before
presenting the computational results for each problem, we describe the proceeding to generate each
test. For each test we generate 100 jobs with processing requirement uniformly chosen from the
interval [1,100] and w; chosen from the interval [1,10]. When the problem require release dates,
the data is generated using the same approach used by Hariri and Potts [4]. The release dates are
uniformly chosen from the interval [0, E[p]n<y]. This simulates the arrival of n jobs from a stable
queue according to a Poisson process with parameter «y [5]. The time in all tables is given in seconds.
The ratio in the table corresponds to %, where V' is the value found by the algorithm and LB is a
lower bound for the optimal solution. We perform tests with 2, 5,7 and 10 machines. As was done
in [5], we generated five different instances for each test problem, so the results in each line of the
tables corresponds to the mean of five tests. The algorithms were tested on a AMD Athlon 1.2Ghz
with 800 MB of RAM under Linux 2.4.2-2 kernel.

4.1 Tests for the problem P|| > w,C;

In this problem we used the algorithms KK, SzSk, SK-C, SzZSk2 and HE1. We do not use
the algorithm HE2 here because without the presence of release dates this algorithm generates the
same solutions of algorithm KK. The table 3 presents the results of this tests. The LB column
corresponds to the fractional optimal solution of the quadratic formulation QS P of the algorithm
SK.

|| Problem || LB | Algorithm | Value |Timc | Ratio ||
KK 383017.6] 0.01 [1.0002
P2|| 3" w; C; |[382923.95 SzSk [383258.8] 0.1 | 1.0008

SK-C__|383319.6] 0.05 |1.0010
SZSK2,.1 | 383463.6] 6.15 | 1.0010
TEI,.; |3832650] 6.18 | 1.0008

KK [ 146088.2] 0.01 [1.0018
P5|| S w;C; || 1458213 [ SzSK__| 1481342 0.17 [ 1.0158
SK-C__|147933.6]| 007 |1.0144
S7ZSK2(.1 | 1479296 16.85 | 1.0144
HElo., |147860.6]|16.95]|1.0139

KK 115431.0( 0.01 | 1.0032
P7|| 3 w; C; |[115054.88 [  SzSK 11747941 0.11 [1.0210
SK-C 117882.6( 0.07 [1.0245

SZSK2p, 1 [ 117906.628.45[1.0247
HElg 1 [118298.4]28.141.0281

KK | 825162 | 0.01 [1.0063
P10|| S w; Oy || 81997.11 [ SZSK__| 857752 | 0.11 | 10460
SK-C__| 85646.6 | 0.06 | 1.0445
SZSK2g.1 | 862590 |4345 10519
HETo.; | 862000 (435710512

Table 3: Comparison between KK, SZSK, SZSK2, HE1 and SK-C.

The algorithms obtained very good results for all tested instances. The algorithm KK is the most
simple and obtained the best results generating solutions with values less than 0.7% of the lower
bounds, besides the other algorithms use more advanced ideas. As we can see, the ratio grows when
we use more machines. For algorithm KK the increase is very small. For the other ones the growth
is more representative. We believe that with more jobs per machine the ratios obtained tends to
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decrease. This can be seen in graphics (1, 2, 3 and 4). We will describe more about this behavior in
the next subsection.

4.2 Tests for the problem P|r;| > C;

To solve the problem P|r;| ) C; we used the algorithms PSW, SzZSK, SzZSk2,HE1 and HE2.
Although the algorithm SzZSK is the combinatorial version of the algorithm SzZSK2 for identical
machines, we also included the algorithm SZSK2 in the comparisons. The algorithms SZSK2 and
HE1 were executed with parameter ¢ = 0.3 and ¢ = 0.1. We perform different tests using different
values for parameter y to generate the release dates. We used parameter v = 0.2, v = 0.4 and
v = 0.6. The LB column has the fractional optimal solution of the linear program of algorithm
SzSK2 with € = 0.1. It is interesting to note that this lower bound may be far away from the
integer optimal, since the value of an optimal integer solution for the program LPSS is already a
lower bound for the original problem P|r;| > C;. The tables 4, 5 and 6 present the results obtained
for these tests.

[[Problem withy = 0.2] LB [ Algorithm | Value [ Time [Ratio ]|
PSW 1091368 001 | 1.08
SzSK  [124153.6] 001 | 123
SZSK2¢ 3 [113298.6[ 508 [ 1.13
P2|r;| 30 C; 100161.56 [SZSK2q 1 [108391.2] 78.45 [ 1.08

HEly 5 |1052804] 579 | 105
HEl, , |1052764] 7972 | 105
HE2 |1049814| 001 | 104

PSW_ | 607684 | 001 [ L.I5
SZSK_ | 755538 | 025 | 143
SZ5K20 3 | 631306 | 58.19 | 1.20
P5lr;| S C; 52569.48 [SZSK2( 1 | 623626 | 42580 | 118
HEl, 3 | 604186 | 5295 | .14
HET, ; | 606510 | 43140 | 1.15

HE2 | 579608 | 001 [ 110

PSW_ [ 579536 ] 001 [ 112

SZSK_ | 684794 | 001 | 133

S75K20.3 | 595308 | 90.13 | .15

PTir;| 3 C; 51345.58 [SZSK2g 1 | 592462 | 807.20 | .15

HEly 5 | 554862 | 9017 | 1.13
HET, ; | 559832 | 81964 | 1.14
HOE2 | 572044 | 001 | 1.1

PSW [ 535264 | 001 [ 112
SZSK_ | 621202 | 024 | 130
S75K20.3 | 556452 | 171.29 | .16
P10|r;| Y C; 4773129 [SZSK2.1 | 546846 | 158429 1.14

HElg 3 | 548452 | 18371 | 1.14
HElg 1 | 546184 |1611.62] 1.14
HE2 53494.6 | 001 1.12

Table 4: Comparison between PSW, SzSk, SzZSk2, HE2 and HEI.

The algorithm HE2 generate the best schedules in all tests. Notice that the algorithm HE1
obtain better results when we have few machines and small values of . The algorithms PSW and
HET1 are the second best in all cases. For all tests, the algorithm PSW generate solutions that are at
most 12% of the lower bound although its approximation factor is 6. Other interesting point is that
the ratio for the algorithm SZSK get better results when we have more machines with bigger values
of . The algorithm SzZSK2 obtained better results than the algorithm SzZSK for all cases, except
when we have big values of y and more machines as we can see in table 6. Analyzing the fractional
solution of the linear program used by the algorithm SZSK2, we can see that the solver generates an
optimal fractional solution using less machines in such a way that variables of some machines are
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|| Problem with v = 0.4 || LB | Algorithm | Value | Time |Rali0 ||
PSW 1265690 001 1.11
SZSK 1620408 1.73 [ 142
SZSK2¢ 3 [1338942] 6.52 [ 1.17
P2|r;| 30 C; 113585.05 [SZSK2¢g 1 [126938.2] 86.24 | 1.11
HElg. 3 [1216824] 6.11 [1.07
HEIg 1 [121691.0] 9555 | 107
HE2 1210342 0.01 1.06
PSW 1045610 001 1.10
SzSK 1247594 026 [ 132
SZSK2¢ 3 [107531.0] 6290 [ 1.13

P5lr;| S C; 94406.70 [SZSK2q.1 | 1049178 | 49505 | T.11
HEly 3 |1052972] 5961 | 1.1
HET, ; |1047598 ] 50341 | 1.10
HE2 | 1036380 001 | 1.00

PSW_ [1082524] 001 | 1.09
SZSK_ | 1196288 2.15 | 121
SZ5K20 3 | 1117266 112.95 | 1.13
PTir;| S C; 98514.48 [SZSK2(_ 1 | 1091008 | 952.18 | 1.0
HEly 5 | 1094496 10721 | T.11
HET, ; |1088902] 967.13 | 1.10
HOE2 |1082350] 001 | 1.09

PSW_ [103936.8] 001 | 1.0
SZSK_[1077570] 017 | L4
SZSK2g.3 | 1075220 21868 | 1.14
P10|r;| Y C; 94268.95 [SZSK2(.1 | 1044502 | 1912.04| 1.10
HElg 5 |1050474 ] 22141 | 111
T
T

HElg 1 [1044194]1917.11] 1.10
HE2 1039368 [ 0.01 .10

Table 5: Comparison between PSW, SzSK, SzSk2, HE2 and HE1.

[[Problemwithy = 0.6 LB [ Algorithm | Value [ Time [Ratio]]

PSW [168188.8] 001 | I.11
SZSK 2164230 155 | 143
SZSK20.3 | 1752496 724 | 115
P2[r;| 3 C; 151285.05 [SZSK2.1 | 168341.6| 10095 | T.11
HElg.3 |165981.0| 660 | 1.00
HETo.; |165819.6] 8630 | 1.00
AE2 |1647960| 001 | 1.08

PSW_ ]1550558] 001 | 1.09
SZSK_ | 1760754 010 | 124
SZSK2, 5 | 1620468 | 6290 | 1.14
P5|r;| 3 C; 141989.53 [SZSK2 .1 | 1564664 [497.253 | 1.10
HElg.5 |1568344| 6748 | .10
HETg.q | 1558012 49057 | 1.09
HE2 [1549964| 001 | 109

PSW  [1573842] 001 | 1.09
SZSK | 1653772 221 | 114
SZSK20.3 | 1623476 12004 | 112
P7lrj| 3 C; 144311.06 [SZSK2.1 | 1582640 | 1023.78 | 1.00
HElg.3 |1586762| 11625 | 1.00
HEIlo.; |157997.0|1177.65| 1.00
HE2 [1573842| 001 | 109

PSW_ [1520964] 001 | 1.0
SZSK | 1535448 007 | 1.0
S75K20.3 | 1587488 | 24622 | 1.13
P10|r;1 3 O 139258.28 [SZ5K2.1 | 1526702 | 2051.54| 1.09
HElo.3 |153621.8| 243.68 | 1.10
HETo.; | 1523842195504 | 1.00
HE2 |1520064| 001 | 109

Table 6: Comparison between PSW, SzSK, SzZSk2, HE2 and HE1.

little used. Consequently, the generated schedule have some machines that are almost unused. The
algorithm SZSK is the combinatorial version of SZSK?2 but the jobs are attributed to all machines
uniformly. This also explains why the algorithm HE1 when compared to the algorithm PSW, get
better results using two machines than 7 and 10 machines. Based on this observation we try to



12

solve the linear program LPSS under the algorithm HE1 with an increase in the number of jobs per
machine. Note that the algorithm HE1 is based in the algorithm SzZSK2 and we can expect the
same behavior in both algorithms. We perform several tests that can be seen in tables 7, 8,9 and 10.
The interesting point to note is that when we get a ratio of approximately 60 jobs per machine the
algorithm HE1 produces better schedules. The solution of the linear program has better attribution
when this happens. We also present some graphics (1, 2, 3 and 4) that summarizes these results.
As we mentioned in the previous subsection, the algorithms get better results when we use more
jobs per machine. This can be easily verified in these graphics. Notice that we could not solve all
instances of the problem with a given ¢ = 0.3. When we solved the problem with ten machines for
example, we used € = 0.8 and the time to solve the linear program LPSS is still high. With such
values, the lower bound provided by the linear program becomes worse and the ratios obtained in
these tests are bigger than the ones of the previous tests. We believe that such ratios could be much
better.

[P2Ir;[3C; withy =0.6[] LB |Algorithm| Value [ Time [Ratio ]|
H PSW 287912001 [ 124 ]

[ -

23153.11 | HEIg.5 | 288700 [0310] 1.24 ||

PSW | 643222 [ 001 [ 1.5 ||

|J] = 40 S]ZXISI|HEI03|646470|11I|]26||
PSW__ ] 966160 [ 001 [ 1.25 ||

|J] =60 7694432|HE|03|970424|2zs|1 % |
PSW_[1225918] 001 [ 1.24 |

|J] =80 9822778|HEI03|]226968|330|]24||
PSW__ [165469.8] 001 [ 1.23 ||

|J| =100 ]339]1]1|HEI03|]64l]76|42()|]22||
PSW__[2047032] 001 [ 121 |

|J| =120 ]6797142| HEI.3 | 2002580 10.26] 1.19 ||
PSW_ [443288.6] 001 [ 1.16 ||

|7| = 200 18164509|HE103 [429205.6[45.1T| 1.12 ||

Table 7: Comparison between PSW, and HE1.

|| P5[r ][> C; withy = 0. 6|| LB |Alg0rithm| Value | Time |Rati0||

PSW | 756900 | 001 [124]]
|7] = 50 60878.68 | HEIo 5 | 759986 | 9920 | 124 ||
PSW_ | 1560732 | 001 [ 124 ]
|7| = 100 1254604%| HETo 5 | 1572884 | 6287 | 125 |
PSW | 2481988 | 001 [ 125
|7| = 150 19806129| HETo 5 | 2506040 | 13854 | 1.26 ||
PSW_ [ 3197174 | 001 [ 124
|J| = 200 256076. s7| HEIp 5 | 3226568 | 24697 | 126 ||
PSW_ [ 5079420 | 001 [ 123 ]|
|J| = 300 4]14261]| HEIg 3 | 4983902 | 579.96 | 121 ||
PSW [ 7635502 [ 001 [1.20 ]|
|J| = 400 635731 46| HETg 5 | 7351264 | 106696 1.15 ||
PSW_ [11004364] 001 [1.17 ]|
|J| = 500 93692079| HETg 5 | 10642866 164883 1.13 ||

Table 8: Comparison between PSW, and HE1.
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|| P7r;| > Cj withy = 0. 6|| LB |Alg0rithm| Value | Time |Rati0||
H PSW [ 1685226 | 001 [147]|

[ -

114575.89 | HETo.6 | 1709328 | 3101 | 149 ]

PSW_ [ 3173342 001 [ 1438])

|J| = 200 213171.61 | HETo.6 | 3217114 | 137.540] 150 ||

PSW | 4584810 | 001 | 148

|J| = 300 308844.77 | HEI, 5 | 4653422 | 30892 | 1.50 ||
PSW_ [ 6434190 | 001 [ 137

|J| = 400 468532.64 | HEIg o | 6445318 | 55920 | 137 ||

PSW [ 9046582 | 001 [ 134

|J| =500 671739.66 | HEIg o | 8775608 | 91238 | 130 ||

PSW__[12011100] 001 [ 130 |

|J| = 600 92140531 | HETo.o | 11686924 | 1306.86] 1.26 ||

PSW_ [19732922] 001 [125 ]|

|J| = 800 157575290| HETg.o |1913924.2|2357.64| 121 ||

Table 9: Comparison between PSW, and HE1.

[P10[r;[> C; withy =0.6]] LB |A]g0rithm| Value | Time [Ratio]]
H PSW [ 1608326 [ 001 [ 165 ]|

[ -

96960.46 | HElo 5 | 162182.8 | 38420 | 167 |
PSW_ [ 3122356 | 001 [ 1.66 ]|
|7| = 200 18738196| HElo 5 | 3153028 | 17460 | 168 ||
PSW | 6355436 | 001 [ 165 ]|
|7| = 400 384035 05| HEl, 5 | 6440262 | 72043 | 167 |
PSW [ 9955540 | 001 [ 146 ]|
|7| = 600 677843. %8| HETy 5 | 9965022 | 161499 147 |
PSW_[15354040] 001 [ 137 ]|
|J| = 800 11137532| HEI g | 1494949.8 | 2901.76| 1.34 ||
PSW_[2214162.8] 001 [ 132 ]|
|J| = 1000 1666()()66| HEIp g |2168788.2 464866 1.30 ||
PSW_ [29947674] 001 | 131
|J| = 1200 2269898.8 [ HET g g | 29203008 | 684341 1.28

Table 10: Comparison between PSW, and HE1.
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Figure 1: Graphics for 2 machines

4.3 Tests for the problem R|| > w;C

In this problem we use the algorithms SK, SZSK2 and HE1. For the tests in table 11 we choose
pi; uniformly from the interval [1,...,100]. In the tests presented in table 12 the processing times
are chosen from different intervals to give the idea that we have machines with different speeds. Us-
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Figure 2: Graphics for 5 machines
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Figure 4: Graphics for 10 machines

ing two machines the processing times are chosen from the interval [1,. .., 50] for the first machine
and from [50, ..., 100] for the second machine. Using five machines the processing times are cho-
sen from intervals, [1,...,20], [20,...,40], ...,[80,...,100]. Using seven machines the process-
ing times are chosen from intervals, [1, ..., 15],[15,...,30],...,[90,...,100]. In the tests with ten
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machines, the processing times are chosen from intervals [1, ..., 10][10,...,20][20,...,30],...,
[90,...,100]. We use € = 0.1 and € = 0.3 in the algorithms SZSK2 and HE1. The LB column
corresponds to the fractional solution found by the quadratic formulation QSP of the algorithm SK.

Il Problem [ LB [Algorithm [ Value [ Time [ Ratio ]|

SK 1942164 1.13 | 1.0005
R2|| S w; O |[194112.01[SZSK20. 5 [ 1941498 1.40 | 1.0001
SZSK2o.1 | 1941564 | 6.14 [1.0002
HElg.3 | 1941438 121 |1.0001
HEIp., |1941438| 6.78 | 10001

SK 377630 | 3831 | 1.0038
R5|| Y w;C; || 376166 [SZSK2q.3 | 376440 | 408 [1.0007
S75K20.1 | 376358 | 21.31 | 1.0005
HElg.5 | 376274 | 381 | 1.0002
HET,., | 37625.8 | 21.99 | 1.0002

SK 263050 | 89.36 | 1.0097
RT|| X w; C; || 26049.94 [S75K2g 5 | 261542 | 5.15 | 1.0040
SZSK2( .1 | 261498 | 2543 | 10038
HEly.3 | 261402 | 506 |[1.0034
HEl,. 1 | 261456 | 2621 |1.0036

SK 116662 [200.79 | 1.0290
R10|| 3" w; C; || 11337.05 [SZ5K2q 5 | 114746 | 8.15 |T0120
SZSK2,.1 | 114630 | 4096 [T0I11
HEly 3 | 114502 | 8.79 | 10099
HEl, ; | 114652 | 3956 | 10113

Table 11: Comparison between SK, SZSK2 and HE1.

I Problem * [ LB [Algorithm | Value [ Time [ Ratio ]

Sk [2468736] 097 | 10005
R2|| X w; C; ||246745.49 [SZ5K2, 5 | 2468112 1.12 | 1.0002
SZSK2,.1 | 246818.6] 624 |1.0002
HEl, 5 |246783.8| 1.13 |1.0001
HET, , |246783.8| 6.78 |1.0001

SK 739346 | 3741 | 10057
R5|| S w; C; || 73513.03 [SZ5K2q 3 | 736700 | 3.80 | 10021
SZSK20.1 | 736730 | 1678 | 10022
HElg.5 | 736596 | 3.71 |1.0010
HETg.1 | 73667.6 | 7721 | 10021

SK 52211.6 | 98.06 [ 1.0129
R7|| S w; Oy || 51544.92 [SZSK20 3 | 518284 | 590 [ 10054
SZSK20.1 | 518080 | 2631 [ 1.0051
HEIg.3 | 518492 | 5.14 |1.0059
HEIy.1 | 518342 | 26.71 | 1.0056

SK 305162 [207.62] 10724
R10|| 3" w; C; || 28453.73 [SZ5K2g 5 | 204722 | 807 | 10357
SZ8K20.1 | 294510 | 40.95 [1.0350
AElg.5 | 294158 | 8.16 |1.0338
HElg., | 204494 | 41.08 | 10349

Table 12: Comparison between SK, SZSK2 and HE1.

As we can see all algorithms produces schedules very close to the optimal. For all tests, the
algorithms produced solutions with values that are at most 3% of the lower bound except for the
algorithm SK that generated a solution with value 7% of the lower bound. In general the algorithm
HE1 generate better schedules. Other point is that although the semidefinite program QSP generate
fractional solutions that are closer to the optimal, the algorithm SK generate the worst schedules
even if compared with the algorithm SZSK2; 3.
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4.4 Comparison for problem R|r;| > w;C;

In this case we use the algorithms SzZSK2 and HEI to solve problem R|r;| Y w;C;. Table
13 show the results of the tests. The processing times were chosen uniformly from the interval
[1,...,100] and we use y = 0.2 to generate release dates. The LB is the optimal fractional solution
of the linear program LPSS with e = 0.1. We emphasize that this lower bound may be far away
from the integer optimal solution, since an integer optimal solution to LPSS is already a relaxation
of the problem R|r;| Y w;C;. The algorithm HE1 get better results in all tests.

Il Problem [ LB [Algorithm | Value [ Time [Ratio]]
SZSK2o 5 |3523462] 59 | 115
SZSK2o 1339533.6] 806 | .11
R2|r;| S w;C; ||306490.12[ HETg. 3 [3321378] 56 | 108

HEl,., |3318784] 744 | 1.08

SZSK2.3]2571458] 518 | 1.12
SZSK2,.1 | 2528268 4208 | 1.10
R5|r;| S w; O ||230274.71 [ HEIg. 5 |2519192] 53.7 | 1.09
HET,.; |2519158] 3647 | 1.00

SZSK2g.3]2540332] 10932 1.1
SZSK2,.1 | 250782.6] 8401 | 1.00
R7|rj| S w;C; ||229843.17 [ HEIg.5 |2501658| 947 | 1.09
HETy.1 |2501462| 7776 | 109

SZSK20.3 ] 2568924 1863 | 1.10
S78K20.1 | 2337544 16036 1.00
R10|r;| Y w; C; ||233510.85  HETg.5 |2531800] 1855 | 108
HEly.1 | 253132814918 108

Table 13: Comparison between SZSK2 and HE1.

5 Conclusion

We present computational results for some approximation algorithms for scheduling on parallel
machines. As expected, the practical solutions yields ratios better than the approximation factor
of the presented algorithms. We also note that algorithms with more refined techniques does not
lead to better results. In fact, for problems P||> " w;C; and P|r;| > C; algorithms PSW and KK
obtained the best results even when compared to algorithms with advanced ideas. We also note that
the solutions provided by the algorithm SK is worst than the solutions provided by the algorithm
SZSK2 despite the semidefinite program generate fractional solutions with better quality. Finally
we present two heuristics that get better results in almost all cases studied.
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