
Practical Comparison of Approximation Algorithms for
Scheduling Problems

E. C. Xavier F.K. Miyazawa

April 23, 2003

Abstract

In this paper we consider an experimental study of approximation algorithms for schedul-
ing problems in parallel machines minimizing the average weighted completion time. We im-
plemented approximation algorithms for the following problems: , ,

, and . We generated about 900 tests over more than
190 different instances and present some practical aspects of the implemented algorithms. We
also made an experimental comparison on two lower bounds based in the formulations used
by the algorithms. The first one is a semidefinite formulation for the problem and
the other is a linear formulation for the problem . For all tests, the algorithms
obtained very good results. We note that algorithms using more refined techniques, when com-
pared to algorithms with simple strategies, does not necessary leads to better results. We also
present two heuristics, based in approximation algorithms, that generates solutions with better
quality in almost all instances considered.
KeyWords: Approximation algorithms, scheduling problems, practical analysis.

1 Introduction

In this paper, we consider an experimental study of approximation algorithms for scheduling
problems. Several job scheduling problems in parallel machines that appears in practice are NP-
hard. The scheduling problems we consider are all NP-hard and consists in scheduling a set of jobs,
under some restrictions, in a set of machines minimizing the average weighted completion time. If
we consider that , we cannot solve these problems to optimality efficiently. This motivates
the development of approximation algorithms, that are efficient and produces results with quality
guarantee. We implemented some approximation algorithms to scheduling jobs in parallel machines
and study their computational performance.

Given an algorithm for a minimization problem and an instance of this problem, we denote
by the value of the solution returned by when applied to the instance and we denote by

the value of an optimal solution to . We say that an algorithm has an approximation

This research was partially supported by FAPESP project 01/04412-4, MCT/CNPq under PRONEX program
(Proc. 664107/97-4) and CNPq (Proc. 470608/01–3, 464114/00–4, 300301/98–7).

Instituto de Computação — Universidade Estadual de Campinas, Caixa Postal 6176 — 13084–971 — Campinas–SP
— Brazil, {eduardo.xavier,fkm}@ic.unicamp.br.

1

2

factor , or is an -approximation, if , for all instances . When the algorithm
is probabilistic and the inequality is valid for all instances , where
is the expected value of the solution returned by algorithm , we say that is a probabilistic -
approximation algorithm.

For all problems considered in this paper, we denote by the set of jobs and
the set of machines. When machines are unrelated (e.g. have different processing

speed) we denote by the processing time of job when executed on machine , and by when all
machines are identical. We denote by the release date of job , which represents the moment that
a job can start and denote by the importance weight of finishing the job earlier. The completion
time of the job is denoted by .

Since we consider several scheduling problems, we use the notation introduced by Gra-
ham, Lawler, Lenstra and Rinnooy Kan [3]. In the following we detail the terms used in this paper
under this notation. The term corresponds to the machine environment, for identical machines
or for unrelated machines. The term tell us some restrictions about jobs, if they have release
dates, , if the jobs can be interrupted and continued later, , etc. Finally the term indicates
the objective function we want to minimize.

All problems we consider are non-preemptive, although algorithms for preemptive problems are
used to find intermediate solutions.

There are a lot of work in the development of approximation algorithms, but very few consider
practical performance analysis. In [5], Hepner and Stein present an implementation of a PTAS for a
single machine scheduling with release dates. In [7] Savelsbergh et al., also present an experimental
study of some approximation algorithms for scheduling problems in a single machine. They con-
sider the problem and a variant of this problem when an average weighted flow time
is minimized, i.e, problem .

We implemented algorithms for the following problems: , , ,
and . For the problem we implemented the algorithm devel-

oped by Phillips et al. [8]. This algorithm is combinatorial and is based in a heuristic for the pre-
emptive case. For the problem we implemented the algorithm of Kawaguchi and Kyan
[6], that is based in a list scheduling heuristic. For the problems and
we implemented algorithms of Schulz and Skutella [9]. The algorithm for the first problem is com-
binatorial and the algorithm for the second problem is based on a solution of a linear program. Both
algorithms are probabilistic. For the problem we implemented the algorithm developed
by Skutella [10] that is based on a solution of a semidefinite program.

We observe that there exists PTAS algorithms for parallel machines as presented by Afrati et al.
[1], but their implementation requires extra efforts and results in algorithms with time complexity
represented by very high degree polynomials.

To our knowledge, this paper is the first to consider practical analysis of approximation algo-
rithms for parallel machines. All algorithms are implemented in C. For the algorithms that require
solutions of linear or quadratic programs we use the Xpress-MP library, of Dash Optimization [2].
Based in the practical results, we propose a simple modification on the algorithm presented by
Schulz and Skutella [9] for and on the algorithm of Kawaguchi and Kyan [6]. In the
tests we consider, we show that these heuristics obtain solutions with better quality.

The paper is organized as follows. In section 2 we describe the implemented algorithms and
give some insight of how they work. In section 3 we compare two lower bounds for problems

3

and some of its particular cases. In section 4 we present the computational results.

2 Algorithms

In this section we describe the algorithms and the way they are implemented. We do not show
how their approximate factors are obtained. The interested reader can find more details about the
approximation results of these algorithms in the references.

All algorithms are implemented in C. To solve the linear and semidefinite programs considered,
we use the Xpress-MP library due to its recognized efficiency.

2.1 Algorithm PSW for

The algorithm of this section was developed by Phillips et al. [8] which we denote by PSW. It
finds a solution in two phases. In the first phase, the algorithm finds an approximated solution for
the preemptive version of this problem and in the second phase it uses an algorithm that converts
the preemptive schedule to a non-preemptive schedule. The preemptive version of this problem is
already NP-hard, and is approximated by a 2-approximation algorithm. The algorithm that con-
verts the preemptive schedule to a non-preemptive one, produces a new schedule that is at most
three times worse than the preemptive schedule. This leads to a 6-approximation algorithm for the
problem (see [8]).

The algorithm for the preemptive schedule is based in the following idea: at any time, execute
jobs with the shortest remaining amount of work. The time complexity of the implemented

algorithm, which we denote by Preemptive, is .
The algorithm PSW, uses the preemptive scheduled generated by the algorithm Preemptive

scheduling each job in the machine which completed in the preemptive schedule.
The algorithm generates a list , for each machine , of jobs ordered by their preemptive

completion times in the preemptive schedule. For each machine , the algorithm PSW generates
a non-preemptive schedule with jobs in the order specified by , with the constraint that no job
starts before its release date.

The time complexity of the implemented algorithm is plus the time complexity
to generate the preemptive schedule.

2.2 Algorithm KK for the problem

The algorithm of this section is an extension of the problem for the problem .
The problem can be solved optimally with the following algorithm developed by Smith
[11]: order jobs in non-decreasing order of and schedule the jobs in this order. The aproxima-
tion algorithm for the parallel machine case is an extension: order jobs in non-decreasing order of
and schedule jobs in this order every time a machine becomes free. Kawaguchi and Kyan [6]

have shown that this algorithm generates schedules with a factor of of the optimal. The
implemented algorithm, which we denote by KK, have time complexity .

4

2.3 Algorithm SZSK for the problem

The algorithm of this section was developed by Schulz and Skutella [9] and we denote it by
SZSK. The algorithm is a probabilistic 2-approximation algorithm. For each instance, the algorithm
SZSK is executed 100 times and the best generated schedule is returned. In our experiments, we
observed that more executions leads to very small improvements. The algorithm is related to the
linear formulation for a single machine problem presented below. We have variables , for each
job and for each time interval that a job can run. We also have variables , that represents
the finishing time of job . The constant is an upper bound for the completion time of any job.
The relaxed linear program, denoted by LPS, is the following:

Min

and
and

This linear program can be solved using a combinatorial algorithm [9]. Suppose we have just
one machine times faster than the machines considered. Consider the processing times of the
jobs to be times smaller. Construct a preemptive schedule for this single machine with the new
processing times using the following rule: at any time, construct a preemptive schedule on the
new single machine by scheduling, among the available jobs, the one with the smallest ratio.
The resulting schedule corresponds to an optimum solution to the formulation. Each variable
receive value if job is processed during time in the generated schedule.

Notice that the algorithm Preemptive is easily modified to solve this formulation and can be
implemented to run in . After this, we construct a schedule based in probabilistic as-
signments. We choose for each job , a variable uniformly distributed from the interval .
Then we consider the probabilistic finishing time, i.e., the first time in the schedule where the total
amount of work done is . We denote this value by . The algorithm SZSK attributes
each job uniformly and independent to one of the machines. For each machine the algorithm
schedules jobs in nondecreasing order of values .

The time complexity of the algorithm SZSK is .

2.4 Algorithm SK for

The algorithm of this section is a probabilistic 2-approximation algorithm based on a semidefi-
nite formulation and is presented by Skutella [10]. We denote the algorithm by SK. The quadratic
program for this problem has binary variables , that says that a job is to be processed in machine
, if and only if and variables that represents the finishing time of job . We also have
a function that specify the execution order of a job pair in machine . The job must be
processed before in machine if . The quadratic program is the following:

5

Min

Skutella have shown that this formulation is equivalent to the following quadratic formulation:

Min

where is a vector of all variables lexicographically ordered with respect to the natural
order of the machines and then, for each machine , the jobs ordered according to .
The vector is given by and is a symmetric -matrix
given by

if or ,
if and ,
if and .

This problem can be solved in polynomial time if, and only if, matrix is positive semidefinite.
This motivates the construction of a new formulation, which we call QSP:

Min diag

where diag is positive semidefinite and diag is a diagonal matrix with the vector .
Given a solution for QSP, job is assigned to machine with probability and in each ma-

chine the execution order is given by the function . In our implementation, this assignment is
performed 100 times returning the best generated schedule. For the special case of identical par-
allel machines, the optimal solution of the above formulation is given by . In this case,
we implemented a combinatorial algorithm for this especial case attributing each job to a machine
with probability . This combinatorial algorithm is denoted by SK-C. The time complexity of the
algorithm is plus the time complexity to solve the semidefinite program QSP.

2.5 Algorithm SZSK2 for

The algorithm for problem is also a probabilistic algorithm and is, presented
by Schulz and Skutella [9]. The algorithm, denoted by SZSK2, is based in the solution of a linear
formulation and is a generalization of the algorithm SZSK. As in the linear program of the algorithm

6

SZSK, this formulation have variables that represents the finishing time of job and variables
, that says that job is processed in machine at time , for each time interval . The

maximum time that a machine can execute is denoted by . The formulation is exponential, but it
can be made polynomial with a small loss in the objective function using interval times that increase
exponentially in their size. In this case, we have binary variables indicating the execution of job
in machine at interval . The size of an interval is denoted by .

For simplicity we denote by . The relaxed formulation, which is denoted by LPSS, is the
following:

e

The algorithm solves the linear program LPSS and assign each job to a machine-interval
pair at random with probability . The jobs assigned to a machine are scheduled
in non-decreasing order of intervals assignment. If there are more than one job assigned to the
same pair , the algorithm schedule them in order of their value . For a given setting

this algorithm has a probabilistic -approximation factor. As in the algorithm SK, the
probabilistic assignment step is executed 100 times and the best generated schedule is returned. The
time complexity of this algorithm is plus the time complexity to solve
the linear program LPSS. Since this algorithm is executed with different values of , we denote by
SZSK2 the algorithm SZSK2 with the given value of , that is, the algorithm SZSK2 is the
algorithm SZSK2 with value of .

7

2.6 Two Heuristic Algorithms

In this section we present a new algorithm denoted by HE1 for the problem ,
that is a simple modification of the algorithm SZSK2 and an extended heuristic of algorithm KK
for the problem , which we denote by HE2. In [4], Hariri and Potts present a simple
heuristic algorithm for used to find an upper bound for a branch and bound algorithm.
The algorithm is as follows:

1. Let be the set of all (unsequenced) jobs, let and and find .

2. Find the set and find a job with and .

3. Set , sequence job in position , set , set and set
.

4. If , then stop with the sequence generated having H as its cost. Otherwise set
and go to step 2.

In algorithm SZSK2, the jobs are assigned to pairs machine-interval and them executed in each
machine by the order of intervals assignments. In algorithm HE1, the assignment step is done as in
algorithm SZSK2, but the jobs assigned to a machine are scheduled using the algorithm of Hariri
and Potts.

The algorithm HE2 executes an extended heuristic of algorithm KK: every time a machine
becomes free, execute among the available jobs, the one with smallest ratio . Notice that without
the presence of release dates, this algorithm is essentially algorithm KK.

3 Study of Two Lower Bounds

In this section we present an experimental study of two formulations that provides lower bounds
for our algorithms. The first formulation is the semidefinite formulation QSP presented for algo-
rithm SK, and the second is a linear formulation LPSS presented for algorithm SZSK2. For prob-
lems that consider jobs with release dates we used the lower bounds provided by the linear program
LPSS. For problems without release dates we performed a computational study to determine which
formulation give lower bounds with better quality. For the most generic problem , we
consider three cases: , and . We also tried to study the case

but we could not solve integer instances of this problem in a reasonable amount of
time. We performed five tests with 100 jobs for each case. The processing times of jobs were taken
uniformly from the interval and was chosen uniformly from the interval . The
linear program LPSS is generated with time intervals defined with parameter and .
Besides the quality of the lower bound increases using when compared with the solutions
with , the solutions provided by the algorithms do not differ so much as we will see in the
next sections. The lower bounds of these two formulations are compared with the value of an integer
solution, which we obtained from the integral solutions of program QSP. The results of these tests
can be seen in table 1.

8

Problem Integer Optimal QSP LPSS LPSS
Value Ratio Value Ratio Value Ratio

163066 163052.92 0.999 152588.46 0.935 159313.82 0.976
228766 228732.05 0.999 214004.87 0.935 223453.15 0.976
223714 223673.35 0.999 209223.01 0.935 218505.52 0.976
174802 174764.49 0.999 163503.50 0.935 170744.85 0.976
180367 180337.23 0.999 168738.85 0.935 176189.91 0.976

Value Ratio Value Ratio Value Ratio
36767 36690.74 0.997 34506.58 0.938 35914.83 0.978
33675 33636.31 0.998 31603.44 0.938 32925.71 0.977
44130 44043.36 0.998 41379.21 0.937 43097.67 0.976
36168 36104.74 0.998 33948.00 0.938 35340.76 0.977
37343 37251.78 0.997 35028.43 0.938 36457.91 0.976

Value Ratio Value Ratio Value Ratio
26542 26473.41 0.997 24920.74 0.938 25924.81 0.976
22429 22361.25 0.996 21074.51 0.939 21915.70 0.977
26919 26857.20 0.997 25279.07 0.939 26302.32 0.977
29093 29017.66 0.997 27314.76 0.938 28415.94 0.976
25543 25440.19 0.995 23967.79 0.938 24928.01 0.975

Table 1: Comparison between formulations QSP and LPSS.

We also performed computational tests to compare the lower bounds for problem .
In this case we could solve only instances up to 20 jobs with 2 machines and 15 jobs with 5 ma-
chines. The next theorem, proved by Skutella [10], helps us to understand the hardness to obtain
integer solutions for instances of this problem.

Theorem 3.1 For instances of , an optimum vector solution of the quadratic pro-
gram QSP is for all . This optimum solution is unique if all ratios , are different and
positive.

In all instances the solution of the quadratic program is exactly the one provided in the theorem.
Since the Xpress solver finds the optimal integer solution using a branch and bound tree, the number
of nodes is exponential. We could not solve these kind of problems even if we use an upper bound
provided by our approximation algorithms. We could solve only instances with 20 jobs for problem

and instances with 15 jobs for problem . The results of our tests are
presented in table 2.

Problem Integer Optimal QSP LPSS LPSS
Value Ratio Value Ratio Value Ratio

19615 19546.75 0.996 18413.86 0.938 19142.58 0.975
19214 19164.00 0.997 18082.13 0.941 18773.20 0.977
17199 17135.75 0.996 16158.01 0.939 16785.03 0.975
16398 16322.50 0.995 15385.34 0.938 15992.72 0.975
16415 16365.00 0.996 15451.82 0.941 16033.15 0.976

Value Ratio Value Ratio Value Ratio
5121 4913.60 0.959 4712.12 0.920 4842.30 0.945
5467 5257.60 0.961 5035.09 0.920 5177.84 0.947
6536 6312.40 0.965 6039.39 0.924 6215.11 0.950
4875 4651.60 0.954 4468.68 0.916 4590.74 0.941
5105 4895.80 0.959 4694.55 0.919 4824.64 0.945

Table 2: Comparison between formulations QSP and LPSS.

In all generated tests, the lower bounds provided by the formulation QSP are better than the
lower bounds provided by formulation LPSS. Also note that when the difference is not so
large. We do not use smaller values of since the increase in the computational time to solve such
formulations is very high.

9

4 Practical Analysis of the Implemented Algorithms

In this section, we present the results of our tests. Since some problems are particular cases
of others, we performed several different tests. Each subsection is reserved for one case. Before
presenting the computational results for each problem, we describe the proceeding to generate each
test. For each test we generate 100 jobs with processing requirement uniformly chosen from the
interval and chosen from the interval . When the problem require release dates,
the data is generated using the same approach used by Hariri and Potts [4]. The release dates are
uniformly chosen from the interval . This simulates the arrival of jobs from a stable
queue according to a Poisson process with parameter [5]. The time in all tables is given in seconds.
The ratio in the table corresponds to , where is the value found by the algorithm and is a
lower bound for the optimal solution. We perform tests with 2, 5, 7 and 10 machines. As was done
in [5], we generated five different instances for each test problem, so the results in each line of the
tables corresponds to the mean of five tests. The algorithms were tested on a AMD Athlon 1.2Ghz
with 800 MB of RAM under Linux 2.4.2-2 kernel.

4.1 Tests for the problem

In this problem we used the algorithms KK, SZSK, SK-C, SZSK2 and HE1. We do not use
the algorithm HE2 here because without the presence of release dates this algorithm generates the
same solutions of algorithm KK. The table 3 presents the results of this tests. The LB column
corresponds to the fractional optimal solution of the quadratic formulation of the algorithm
SK.

Problem LB Algorithm Value Time Ratio
KK 383017.6 0.01 1.0002

382923.95 SZSK 383258.8 0.11 1.0008
SK-C 383319.6 0.05 1.0010

SZSK2 383463.6 6.15 1.0010
HE1 383265.0 6.18 1.0008
KK 146088.2 0.01 1.0018

145821.3 SZSK 148134.2 0.17 1.0158
SK-C 147933.6 0.07 1.0144

SZSK2 147929.6 16.85 1.0144
HE1 147860.6 16.95 1.0139
KK 115431.0 0.01 1.0032

115054.88 SZSK 117479.4 0.11 1.0210
SK-C 117882.6 0.07 1.0245

SZSK2 117906.6 28.45 1.0247
HE1 118298.4 28.14 1.0281
KK 82516.2 0.01 1.0063

81997.11 SZSK 85775.2 0.11 1.0460
SK-C 85646.6 0.06 1.0445

SZSK2 86259.0 43.45 1.0519
HE1 86200.0 43.57 1.0512

Table 3: Comparison between KK, SZSK, SZSK2, HE1 and SK-C.

The algorithms obtained very good results for all tested instances. The algorithm KK is the most
simple and obtained the best results generating solutions with values less than of the lower
bounds, besides the other algorithms use more advanced ideas. As we can see, the ratio grows when
we use more machines. For algorithm KK the increase is very small. For the other ones the growth
is more representative. We believe that with more jobs per machine the ratios obtained tends to

10

decrease. This can be seen in graphics (1, 2, 3 and 4). We will describe more about this behavior in
the next subsection.

4.2 Tests for the problem

To solve the problem we used the algorithms PSW, SZSK, SZSK2, HE1 and HE2.
Although the algorithm SZSK is the combinatorial version of the algorithm SZSK2 for identical
machines, we also included the algorithm SZSK2 in the comparisons. The algorithms SZSK2 and
HE1 were executed with parameter and . We perform different tests using different
values for parameter to generate the release dates. We used parameter , and

. The LB column has the fractional optimal solution of the linear program of algorithm
SZSK2 with . It is interesting to note that this lower bound may be far away from the
integer optimal, since the value of an optimal integer solution for the program is already a
lower bound for the original problem . The tables 4, 5 and 6 present the results obtained
for these tests.

Problem with LB Algorithm Value Time Ratio
PSW 109136.8 0.01 1.08
SZSK 124153.6 0.01 1.23

SZSK2 113298.6 5.08 1.13
100161.56 SZSK2 108391.2 78.45 1.08

HE1 105280.4 5.79 1.05
HE1 105276.4 79.72 1.05
HE2 104981.4 0.01 1.04
PSW 60768.4 0.01 1.15
SZSK 75553.8 0.25 1.43

SZSK2 63130.6 58.19 1.20
52569.48 SZSK2 62362.6 425.89 1.18

HE1 60418.6 52.95 1.14
HE1 60651.0 431.40 1.15
HE2 57960.8 0.01 1.10
PSW 57953.6 0.01 1.12
SZSK 68479.4 0.01 1.33

SZSK2 59530.8 90.13 1.15
51345.58 SZSK2 59246.2 807.20 1.15

HE1 58486.2 90.17 1.13
HE1 58983.2 819.64 1.14
HE2 57204.4 0.01 1.11
PSW 53526.4 0.01 1.12
SZSK 62120.2 0.24 1.30

SZSK2 55645.2 171.29 1.16
47731.29 SZSK2 54684.6 1584.29 1.14

HE1 54845.2 183.71 1.14
HE1 54618.4 1611.62 1.14
HE2 53494.6 0.01 1.12

Table 4: Comparison between PSW, SZSK, SZSK2, HE2 and HE1.

The algorithm HE2 generate the best schedules in all tests. Notice that the algorithm HE1
obtain better results when we have few machines and small values of . The algorithms PSW and
HE1 are the second best in all cases. For all tests, the algorithm PSW generate solutions that are at
most of the lower bound although its approximation factor is 6. Other interesting point is that
the ratio for the algorithm SZSK get better results when we have more machines with bigger values
of . The algorithm SZSK2 obtained better results than the algorithm SZSK for all cases, except
when we have big values of and more machines as we can see in table 6. Analyzing the fractional
solution of the linear program used by the algorithm SZSK2, we can see that the solver generates an
optimal fractional solution using less machines in such a way that variables of some machines are

11

Problem with LB Algorithm Value Time Ratio
PSW 126569.0 0.01 1.11
SZSK 162040.8 1.73 1.42

SZSK2 133894.2 6.52 1.17
113585.05 SZSK2 126938.2 86.24 1.11

HE1 121682.4 6.11 1.07
HE1 121691.0 95.55 1.07
HE2 121034.2 0.01 1.06
PSW 104561.0 0.01 1.10
SZSK 124759.4 0.26 1.32

SZSK2 107531.0 62.90 1.13
94406.70 SZSK2 104917.8 495.95 1.11

HE1 105297.2 59.61 1.11
HE1 104759.8 503.41 1.10
HE2 103638.0 0.01 1.09
PSW 108252.4 0.01 1.09
SZSK 119628.8 2.15 1.21

SZSK2 111726.6 112.95 1.13
98514.48 SZSK2 109100.8 952.18 1.10

HE1 109449.6 107.21 1.11
HE1 108890.2 967.13 1.10
HE2 108235.0 0.01 1.09
PSW 103936.8 0.01 1.10
SZSK 107757.0 0.17 1.14

SZSK2 107522.0 218.68 1.14
94268.95 SZSK2 104450.2 1912.04 1.10

HE1 105247.4 221.41 1.11
HE1 104419.4 1917.11 1.10
HE2 103936.8 0.01 1.10

Table 5: Comparison between PSW, SZSK, SZSK2, HE2 and HE1.

Problem with LB Algorithm Value Time Ratio
PSW 168188.8 0.01 1.11
SZSK 216423.0 1.55 1.43

SZSK2 175249.6 7.24 1.15
151285.05 SZSK2 168341.6 100.95 1.11

HE1 165981.0 6.60 1.09
HE1 165819.6 86.39 1.09
HE2 164796.0 0.01 1.08
PSW 155055.8 0.01 1.09
SZSK 176075.4 0.10 1.24

SZSK2 162046.8 62.90 1.14
141989.53 SZSK2 156466.4 497.253 1.10

HE1 156834.4 67.48 1.10
HE1 155801.2 490.57 1.09
HE2 154996.4 0.01 1.09
PSW 157384.2 0.01 1.09
SZSK 165377.2 2.21 1.14

SZSK2 162347.6 120.04 1.12
144311.06 SZSK2 158264.0 1023.78 1.09

HE1 158676.2 116.25 1.09
HE1 157997.0 1177.65 1.09
HE2 157384.2 0.01 1.09
PSW 152096.4 0.01 1.09
SZSK 153544.8 0.07 1.10

SZSK2 158748.8 246.22 1.13
139258.28 SZSK2 152670.2 2051.54 1.09

HE1 153621.8 243.68 1.10
HE1 152384.2 1955.04 1.09
HE2 152096.4 0.01 1.09

Table 6: Comparison between PSW, SZSK, SZSK2, HE2 and HE1.

little used. Consequently, the generated schedule have some machines that are almost unused. The
algorithm SZSK is the combinatorial version of SZSK2 but the jobs are attributed to all machines
uniformly. This also explains why the algorithm HE1 when compared to the algorithm PSW, get
better results using two machines than 7 and 10 machines. Based on this observation we try to

12

solve the linear program LPSS under the algorithm HE1 with an increase in the number of jobs per
machine. Note that the algorithm HE1 is based in the algorithm SZSK2 and we can expect the
same behavior in both algorithms. We perform several tests that can be seen in tables 7, 8, 9 and 10.
The interesting point to note is that when we get a ratio of approximately 60 jobs per machine the
algorithm HE1 produces better schedules. The solution of the linear program has better attribution
when this happens. We also present some graphics (1, 2, 3 and 4) that summarizes these results.
As we mentioned in the previous subsection, the algorithms get better results when we use more
jobs per machine. This can be easily verified in these graphics. Notice that we could not solve all
instances of the problem with a given . When we solved the problem with ten machines for
example, we used and the time to solve the linear program LPSS is still high. With such
values, the lower bound provided by the linear program becomes worse and the ratios obtained in
these tests are bigger than the ones of the previous tests. We believe that such ratios could be much
better.

with LB Algorithm Value Time Ratio
PSW 28791.2 0.01 1.24

23153.11 HE1 28870.0 0.310 1.24
PSW 64322.2 0.01 1.25

51281.51 HE1 64647.0 1.11 1.26
PSW 96616.0 0.01 1.25

76944.32 HE1 97042.4 2.35 1.26
PSW 122591.8 0.01 1.24

98227.78 HE1 122696.8 3.30 1.24
PSW 165469.8 0.01 1.23

133911.11 HE1 164117.6 4.20 1.22
PSW 204703.2 0.01 1.21

167971.42 HE1 200258.0 10.26 1.19
PSW 443288.6 0.01 1.16

381645.09 HE1 429205.6 45.11 1.12

Table 7: Comparison between PSW, and HE1.

with LB Algorithm Value Time Ratio
PSW 75690.0 0.01 1.24

60878.68 HE1 75998.6 9.920 1.24
PSW 156073.2 0.01 1.24

125460.43 HE1 157288.4 62.87 1.25
PSW 248198.8 0.01 1.25

198061.29 HE1 250604.0 138.54 1.26
PSW 319717.4 0.01 1.24

256076.57 HE1 322656.8 246.97 1.26
PSW 507942.0 0.01 1.23

411426.11 HE1 498390.2 579.96 1.21
PSW 763550.2 0.01 1.20

635731.46 HE1 735126.4 1066.96 1.15
PSW 1100436.4 0.01 1.17

936920.79 HE1 1064286.6 1648.83 1.13

Table 8: Comparison between PSW, and HE1.

13

with LB Algorithm Value Time Ratio
PSW 168822.6 0.01 1.47

114575.89 HE1 170932.8 31.11 1.49
PSW 317334.2 0.01 1.48

213171.61 HE1 321711.4 137.540 1.50
PSW 458481.0 0.01 1.48

308844.77 HE1 465342.2 308.92 1.50
PSW 643419.0 0.01 1.37

468532.64 HE1 644531.8 559.20 1.37
PSW 904658.2 0.01 1.34

671739.66 HE1 877560.8 912.38 1.30
PSW 1201110.0 0.01 1.30

921405.31 HE1 1168692.4 1306.86 1.26
PSW 1973292.2 0.01 1.25

1575752.90 HE1 1913924.2 2357.64 1.21

Table 9: Comparison between PSW, and HE1.

with LB Algorithm Value Time Ratio
PSW 160832.6 0.01 1.65

96960.46 HE1 162182.8 38.420 1.67
PSW 312235.6 0.01 1.66

187381.96 HE1 315302.8 174.60 1.68
PSW 635543.6 0.01 1.65

384035.05 HE1 644026.2 720.43 1.67
PSW 995554.0 0.01 1.46

677843.38 HE1 996502.2 1614.99 1.47
PSW 1535404.0 0.01 1.37

1113753.2 HE1 1494949.8 2901.76 1.34
PSW 2214162.8 0.01 1.32

1666006.6 HE1 2168788.2 4648.66 1.30
PSW 2994767.4 0.01 1.31

2269898.8 HE1 2920309.8 6843.41 1.28

Table 10: Comparison between PSW, and HE1.

1.12

1.14

1.16

1.18

1.2

1.22

1.24

1.26

1.28

10 20 30 40 50 60 70 80 90 100

ra
tio

jobs/machine

PSW
HE1

Figure 1: Graphics for 2 machines

4.3 Tests for the problem

In this problem we use the algorithms SK, SZSK2 and HE1. For the tests in table 11 we choose
uniformly from the interval . In the tests presented in table 12 the processing times

are chosen from different intervals to give the idea that we have machines with different speeds. Us-

14

1.12

1.14

1.16

1.18

1.2

1.22

1.24

1.26

1.28

10 20 30 40 50 60 70 80 90 100

ra
tio

jobs/machine

PSW
HE1

Figure 2: Graphics for 5 machines

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

0 20 40 60 80 100 120

ra
tio

jobs/machine

PSW
HE1

Figure 3: Graphics for 7 machines

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

0 20 40 60 80 100 120

ra
tio

jobs/machine

PSW
HE1

Figure 4: Graphics for 10 machines

ing two machines the processing times are chosen from the interval for the first machine
and from for the second machine. Using five machines the processing times are cho-
sen from intervals, . Using seven machines the process-
ing times are chosen from intervals, . In the tests with ten

15

machines, the processing times are chosen from intervals
. We use and in the algorithms SZSK2 and HE1. The LB column

corresponds to the fractional solution found by the quadratic formulation QSP of the algorithm SK.

Problem LB Algorithm Value Time Ratio
SK 194216.4 1.13 1.0005

194112.01 SZSK2 194149.8 1.40 1.0001
SZSK2 194156.4 6.14 1.0002
HE1 194143.8 1.21 1.0001
HE1 194143.8 6.78 1.0001
SK 37763.0 38.31 1.0038

37616.6 SZSK2 37644.0 4.08 1.0007
SZSK2 37635.8 21.31 1.0005
HE1 37627.4 3.81 1.0002
HE1 37625.8 21.99 1.0002
SK 26305.0 89.36 1.0097

26049.94 SZSK2 26154.2 5.15 1.0040
SZSK2 26149.8 25.43 1.0038
HE1 26140.2 5.06 1.0034
HE1 26145.6 26.21 1.0036
SK 11666.2 200.79 1.0290

11337.05 SZSK2 11474.6 8.15 1.0121
SZSK2 11463.0 40.96 1.0111
HE1 11450.2 8.79 1.0099
HE1 11465.2 39.56 1.0113

Table 11: Comparison between SK, SZSK2 and HE1.

Problem * LB Algorithm Value Time Ratio
SK 246873.6 0.97 1.0005

246745.49 SZSK2 246811.2 1.12 1.0002
SZSK2 246818.6 6.24 1.0002
HE1 246783.8 1.13 1.0001
HE1 246783.8 6.78 1.0001
SK 73934.6 37.41 1.0057

73513.03 SZSK2 73670.0 3.80 1.0021
SZSK2 73673.0 16.78 1.0022
HE1 73659.6 3.71 1.0019
HE1 73667.6 17.21 1.0021
SK 52211.6 98.06 1.0129

51544.92 SZSK2 51828.4 5.90 1.0054
SZSK2 51808.0 26.31 1.0051
HE1 51849.2 5.14 1.0059
HE1 51834.2 26.71 1.0056
SK 30516.2 207.62 1.0724

28453.73 SZSK2 29472.2 8.07 1.0357
SZSK2 29451.0 40.95 1.0350
HE1 29415.8 8.16 1.0338
HE1 29449.4 41.08 1.0349

Table 12: Comparison between SK, SZSK2 and HE1.

As we can see all algorithms produces schedules very close to the optimal. For all tests, the
algorithms produced solutions with values that are at most of the lower bound except for the
algorithm SK that generated a solution with value of the lower bound. In general the algorithm
HE1 generate better schedules. Other point is that although the semidefinite program QSP generate
fractional solutions that are closer to the optimal, the algorithm SK generate the worst schedules
even if compared with the algorithm SZSK2 .

16

4.4 Comparison for problem

In this case we use the algorithms SZSK2 and HE1 to solve problem . Table
13 show the results of the tests. The processing times were chosen uniformly from the interval

and we use to generate release dates. The LB is the optimal fractional solution
of the linear program with . We emphasize that this lower bound may be far away
from the integer optimal solution, since an integer optimal solution to is already a relaxation
of the problem . The algorithm HE1 get better results in all tests.

Problem LB Algorithm Value Time Ratio
SZSK2 352346.2 5.9 1.15
SZSK2 339533.6 80.6 1.11

306490.12 HE1 332137.8 5.6 1.08
HE1 331878.4 74.4 1.08
SZSK2 257145.8 51.8 1.12
SZSK2 252826.8 420.8 1.10

230274.71 HE1 251919.2 53.7 1.09
HE1 251915.8 364.7 1.09
SZSK2 254033.2 109.32 1.1
SZSK2 250782.6 840.1 1.09

229843.17 HE1 250165.8 94.7 1.09
HE1 250146.2 777.6 1.09
SZSK2 256892.4 186.3 1.10
SZSK2 253754.4 1603.6 1.09

233510.85 HE1 253180.0 185.5 1.08
HE1 253132.8 1491.8 1.08

Table 13: Comparison between SZSK2 and HE1.

5 Conclusion

We present computational results for some approximation algorithms for scheduling on parallel
machines. As expected, the practical solutions yields ratios better than the approximation factor
of the presented algorithms. We also note that algorithms with more refined techniques does not
lead to better results. In fact, for problems and algorithms PSW and KK
obtained the best results even when compared to algorithms with advanced ideas. We also note that
the solutions provided by the algorithm SK is worst than the solutions provided by the algorithm
SZSK2 despite the semidefinite program generate fractional solutions with better quality. Finally
we present two heuristics that get better results in almost all cases studied.

6 Bibliography

1. F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S. Khanna, I. Milis, M.
Queyranne, M. Skutella, M. Sviridenko and C. Stein. Approximation schemes for minimiz-
ing average weighted completion time with release dates. In Proceedings of the 40th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’99) pp. 32-44, 1999

2. Dash Optimization. Xpress-MP Release 13. Xpress-MP Manual, 2002.

17

3. E. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization and
approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete
Mathematics, 5:287-326, 1979.

4. A. M. A. Hariri and C. N. Potts. An algorithm for single machine sequencing with release
dates to minimize total weighted completion time. Discrete Applied Mathmatics 5, 99-109,
1983.

5. C. Hepner and C. Stein. Implementation of a PTAS for Scheduling with Release Dates. In
3rd Workshop on Algorithm Engineering and Experiments (ALENEX 2001). Lecture Notes
in Computer Sciense 2513 pp. 202-215, 2001.

6. T. Kawaguchi and S. Kyan. Worst Case Bound of an LRF Schedule for the Mean Weighted
Flow-Time Problem. SIAM J. Computing 4, 1986.

7. M. W. P. Savelsbergh, R. N. Uma, and J. M. Wein. An experimental study of LP-based
approximation algorithms for scheduling problems. Proceedings of the 9th Annual ACM–
SIAM Symposium on Discrete Algorithms pp. 453–462, 1998.

8. C. Phillips and C. Stein and J. Wein. Minimizing Average Completion time in the Presence
of Release Dates. Mathematical Programming B 82, 1998.

9. A. S. Schulz and M. Skutella. Scheduling Unrelated Machines by Randomized Rounding.
SIAM Journal on Discrete Mathematics Volume 15, Number 4, 2002.

10. M. Skutella. Semidefinite Relaxations for Parallel Machine Scheduling. In Proceedings
of the 39th Annual IEEE Symposium on Foundations of Computer Science (FOCS’98) pp.
472-481, 1998.

11. W. E. Smith. Various optimizers for single-stage production. Naval Res. Logist. Quart.,
1956, 3 pp. 58-66.

