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a b s t r a c t

We present algorithms for the following three-dimensional (3D) guillotine cutting problems:
unbounded knapsack, cutting stock and strip packing. We consider the case where the items have
fixed orientation and the case where orthogonal rotations around all axes are allowed. For the
unbounded 3D knapsack problem, we extend the recurrence formula proposed by [1] for the
rectangular knapsack problem and present a dynamic programming algorithm that uses reduced raster
points. We also consider a variant of the unbounded knapsack problem in which the cuts must be
staged. For the 3D cutting stock problem and its variants in which the bins have different sizes (and the
cuts must be staged), we present column generation-based algorithms. Modified versions of the
algorithms for the 3D cutting stock problems with stages are then used to build algorithms for the 3D
strip packing problem and its variants. The computational tests performed with the algorithms
described in this paper indicate that they are useful to solve instances of moderate size.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of cutting large objects to produce smaller objects
has been largely investigated, specially when the objects are one-
or two-dimensional. We focus here on the three-dimensional
case, restricted to guillotine cuts. In this context, the large objects
to be cut are called bins, and the small objects (to be produced)
are called boxes or items.

A guillotine cut is a cut that is parallel to one of the sides of the
bin and goes from one side to the opposite one. For the problems
considered here, not only the first cut, but also all the subsequent
cuts on the smaller parts must be of guillotine type.

A k-staged cutting is a sequence of at most k stages of cuts, each
stage of which is a set of parallel guillotine cuts performed on the
objects obtained in the previous stage. Moreover, the cuts in each
stage must be orthogonal to the cuts performed in the previous
stage. We assume, without loss of generality, that the cuts are
infinitely thin.

Each possible way of cutting a bin is called a cutting pattern (or
simply, pattern). To represent the patterns (and the cuts to be
performed), we consider the Euclidean space R3 with the xyz
coordinate system, and assume that the length, width and height
of an object is represented in the axes x, y and z, respectively. We

say that a bin (or box) B has dimension (L, W, H), and write B¼(L,
W, H), if it has length L, width W and height H. For such a bin, we
assume that the position (0, 0, 0) corresponds to its bottom-left
front corner, and position (L, W, H) represents its top-right behind
corner. Analogously, the same terminology is used for the boxes.

The problems considered in this paper are the following.
Three-dimensional unbounded knapsack problem (3UK): We

are given a bin B¼(L, W, H) and a list T of n types of boxes, each
type i with dimension (li, wi, hi) and value vi, i¼1,y,n. We wish to
determine how to cut B to produce boxes of some of the types in T
so as to maximize the total value of the boxes that are produced.
Here, no bound is imposed on the number of boxes of each type
that can be produced (some types may not occur). An instance of
this problem is denoted by a tuple (L, W, H, l, w, h, v), where
l¼(l1,y,ln) and w, h and v are lists defined likewise.

In the problem 3UK there is no demand associated with a box.
Differently, in the cutting stock and strip packing problems, to be
defined next, there is a demand associated with each type of box. In
this case, a box of type i with dimension (li, wi, hi) and demand di is
denoted by a tuple (li, wi, hi, di); and a set of n types of boxes is
denoted by (l, w, h, d), where l¼(l1,y,ln), and w, h and d are lists
defined analogously.

Three-dimensional cutting stock problem (3CS): Given an unlim-
ited quantity of identical bins B ¼ (L, W, H) and a set of n types of
boxes (l,w, h, d), determine how to cut the smallest possible number
of bins B so as to produce di units of each box type i, i¼1,y,n. An
instance for this problem is given by a tuple (L, W, H, l, w, h, d).

Three-dimensional cutting stock problem with variable bin sizes
(3CSV): Given an unlimited quantity of b different types of bins
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B1,y,Bb, each bin Bj with dimension (Lj,Wj, Hj) and value Vj, and a set
of n types of boxes (l, w, h, d), determine how to cut the given bins to
generate di units of each box type i, i¼1,y,n, so that the total value of
the bins used is the smallest possible. (Some types of bins may not
be used.) An instance of this problem is given by a tuple (L, W, H, V, l,
w, h, d).

Three-dimensional strip packing problem (3SP): Given a 3D strip
B¼ ðL,W ,1Þ (a bin with bottom dimension (L,W) and infinite height)
and a set of n types of boxes (l,w, h, d), determine how to cut the strip
B so that di units of each box type i, i¼1,y,n, is produced and the
height of the part of the strip that is used is minimized. We require
the cuts to be k-staged (and horizontal in the first stage); furthermore,
the distance between any two subsequent cuts must be at most A (a
common restriction imposed by the cutting machines).

For the problems above mentioned, we also consider variants in
which orthogonal rotations of the boxes are allowed. These variants
are called 3UKr, 3CSr, 3CSVr and 3SPr, respectively. When we allow a
box bi¼(li, wi, hi) to be rotated, this means that its dimension can be
considered as being any of the six permutations of (li, wi, hi).

Throughout the paper, the dimensions of the bins and the boxes
are assumed to be integer. For the staged variant of the 3CS problem,
we assume that the first cutting stage is performed in the horizontal
direction, that is, parallel to the xy-plane, denoted as 0H0; followed by
a cut in the lateral vertical direction, that is, parallel to the yz-plane,
denoted as 0V 0; and then, a cut in the frontal vertical direction
(parallel to the xz-plane), denoted as 0D0 (a depth cut).

All problems above mentioned are NP-hard. The one- and two-
dimensional versions of the unbounded knapsack problem have been
studied since the sixties. Herz [2] presented a recursive algorithm for
the two-dimensional version, called 2UK, which obtains canonical
patterns making use of discretization points. Beasley [1] proposed a
dynamic programming formulation that uses the discretization
points to solve the staged and non-staged variants of the 2UK pro-
blem. Cintra et al. [3] presented a dynamic programming approach
for the 2UK problem and some of its variants. They were able to
solve in a small computational time instances of the OR-Library for
which no optimal solution was known. Diedrich et al. [4] proposed
approximation algorithms for the 3UK problem with approximation
ratios ð9þeÞ, ð8þeÞ and ð7þeÞ; and for the 3UKr problem they
designed an approximation algorithm with ratio ð5þeÞ.

The first column generation approaches for the one- and two-
dimensional cutting stock problem, called 1CS and 2CS, were
proposed by Gilmore and Gomory [5–7]. They also considered
the variant of 2CS in which the bins have different sizes, called
2CSV, and proposed the k-staged version. Alvarez-Valdes et al. [8]
also investigated the 2CS problem, for which they presented a
column generation-based algorithm that uses the recurrence
formulas described in Beasley [1]. Puchinger and Raidl [9] pre-
sented a branch-and-price algorithm for the 3-staged case of 2CS.

For the 3CS problem with unit demand, Csirik and van Vliet [10]
presented an algorithm with asymptotic performance ratio of at
most 4.84. Miyazawa andWakabayashi [11] showed that the version
with orthogonal rotation is as difficult to approximate as the oriented
version, and they also presented a 4.89-approximation algorithm for
this case. Cintra et al. [12] showed that these approximation ratios
are also preserved in the case of arbitrary demands.

Some approximation algorithms have been proposed for the
two-dimensional strip packing (2SP) problem. Kenyon and Rémila
[13] presented an AFPTAS for the oriented case and Jansen and
van Stee [14] proposed a PTAS for the case in which rotations are
allowed. Other approaches like branch-and-bound and integer
linear programming models have also been proposed by Hifi [15],
Lodi et al. [16] and Martello et al. [17]. Cintra et al. [3] presented a
column generation-based algorithm for the staged 2SP problem
with and without rotations. For the three-dimensional case
(3SP), Jansen and Solis-Oba [18] proposed an algorithm with

asymptotic ratio of 2þe. This ratio was improved to 1.691 by
Bansal et al. [19].

The results we present in this paper are basically extensions of
the approaches obtained by Cintra et al. [3], combined with the
use of reduced raster points (an idea introduced by Scheithauer).
Section 2 focus on the unbounded knapsack problems 3UK, 3UKr

and its variants in which the cuts must be k-staged. For all these
problems we present exact dynamic programming algorithms.

For the cutting stock problems 3CS, 3CSr, 3CSV and 3CSVr, we
present in Sections 3 and 4 column generation-based algorithms that
use as a routine the algorithm proposed for the unbounded knapsack
problem. In Section 5 we focus on the 3SP problem and its variants
(with rotations and/or k-staged cuts). The algorithms for all these
problems use a column generation technique. The computational
experiments with the algorithms described here are reported in
Section 6.

2. The 3D unbounded knapsack problem

The algorithms we describe in this section are based on the use
of the so-called raster points. These are a special subset of the
discretization points (positions where guillotine cutting can be
performed) and were first presented by Scheithauer [20].

Discretization points were used (for the two-dimensional case)
by Herz [2] and also by Beasley [1] in a dynamic programming
algorithm. More recently, Birgin et al. [21] used raster points to
deal with the packing of identical rectangles in another rectangle,
obtaining very good results.

Let (L, W, H, l, w, h, v) be an instance of the 3UK problem. A
discretization point of the length (respectively, of the width and of the
height) is a value irL (respectively, jrW and krH) obtained by
an integer conic combination of l¼(l1,y,ln) (respectively,
w¼(w1,y,wn) and h¼(h1,y,hn)). We denote by P, Q and R the set
of all discretization points of length, width and height, respectively.

The set of reduced raster points ~P (relative to P) is defined as
~P ¼ f/L%rS : rAPg, where /sS¼maxftAP : trsg. In the same
way we define the sets ~Q (relative to Q) and ~R (relative to R).
To simplify notation, we refer to these points as r-points. An
important feature of the r-points is the fact that they are sufficient
to generate all possible cutting patterns (that is, for every pattern
there is an equivalent one in which the cuts are performed only
on r-points). As the set of r-points is a subset of the discretization
points, this may reduce the time for the search of an optimum
pattern. To refer to these points we define, for any rational
number xrrL, yrrW and zrrH, the following functions:

pðxrÞ ¼maxfij iA ~P , irxrg;

qðyrÞ ¼maxfjj jA ~Q , jryrg;

rðzrÞ ¼maxfkj kA ~R, krzrg: ð1Þ

The algorithm to compute the r-points of a given instance is
denoted by RRP. First, it generates the discretization points using
the algorithm DDP (discretization using dynamic programming)
presented by Cintra et al. [3], and then, it selects those that are
r-points, following the above definition.

The time complexity of the algorithm RRP is the same of the
algorithm DDP, that is, O(nD) where D :¼ maxfL,W ,Hg. This algo-
rithm is pseudo-polynomial; so when D is small, or the dimen-
sions of the boxes are not so small compared to the dimension of
the bin, then the algorithm has a good performance, as shown by
the computational tests, presented in Section 6.
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2.1. Algorithm for the 3UK problem

Let I¼(L, W, H, l, w, h, v) be an instance of the 3UK problem,
and let ~P , ~Q and ~R be the set of r-points, as defined previously. Let
G(L, W, H) be the value of an optimum guillotine pattern for the
instance I. The function G can be calculated by the recurrence
formula (2). In this formula, g(ln, wn, hn) denotes the maximum
value of a box that can be cut in a bin of dimension (ln, wn, hn).
This value is 0 if no box can be cut in such a bin.

Gðl&,w&,h&Þ ¼max

gðl&,w&,h&Þ;
maxfGðl0,w&,h&ÞþGðpðl&%l0Þ,w&,h&Þjl0A ~P ,l0r l&=2g;

maxfGðl&,w0,h&ÞþGðl&,qðw&%w0Þ,h&Þjw0A ~Q ,w0rw&=2g;
maxfGðl&,w&,h0ÞþGðl&,w&,rðh&%h0ÞÞjh0A ~R,h0rh&=2g:

8
>>>><

>>>>:

9
>>>>=

>>>>;

ð2Þ

We note that the recurrence above is an extension of the
recurrence formula of Beasley [1]. It can be solved by the
algorithm DP3UK (dynamic programming for the three-dimen-
sional unbounded knapsack), which we describe next.

Algorithm 1. DP3UK

Input: An instance I ¼ (L, W, H, l, w, h, v) of the 3UK problem.
Output: An optimum solution for I.

1:1 ~P’ RRP ðL,lÞ, ~Q’ RRP ðW ,wÞ, ~R’ RRP ðH,hÞ
1:2 Let ~P ¼ ðp1op2o . . . opmÞ, ~Q ¼ ðq1oq2o . . . oqsÞ,

~R ¼ ðr1or2o . . . oruÞ
1:3 for i’1 to m do
1:4

1:5

1:6

1:7

1:8

for j’1 to s do

for k’1 to u do
G½i,j,k(’maxðfvdj 1rdrn; ldrpi , wdrqj
and hdrrkg [ f0gÞ
item½i,j,k(’maxðfdj 1rdrn; ldrpi , wdrqj , hdrrk

and vd ¼ G½i,j,k(g [ f0gÞ
guil½i,j,k(’nil

66666664

66666666664

66666666666664

1.9 for i’1 to m do
1:10

1:11

1:12

1:13

1:14

1:15

1:16

1:17

1:18

1:19

1:20

1:21

1:22

1:23

1:24

1:25

1:26

1:27

1:28

1:29

1:30

1:31

1:32

1:33

for j’1 to s do

for k’1 to u do
nn’maxðdj 1rdr i and pdrbpi=2cÞ
for x’1 to nn do
t’maxðdj 1rdrm and pdrpi%pxÞ
if G½i,j,k(oG½x,j,k(þG½t,j,k( then
G½i,j,k(’G½x,j,k(þG½t,j,k(
pos½i,j,k(’px
guil½i,j,k(’0V 0

// Vertical cut; parallel to yz%plane

6666664

666666666664

nn’maxðdj 1rdr j and qdrbqj=2cÞ
for y’1 to nn do
t’maxðdj 1rdrs and qdrqj%qyÞ
if G½i,j,k(oG½i,y,k(þG½i,t,k( then
G½i,j,k(’G½i,y,k(þG½i,t,k(
pos½i,j,k(’qy
guil½i,j,k(’0D0

// Depth cut ðvertical; parallel to xy%planeÞ

6666664

666666666664

nn’maxðdj 1rdrk and rdrbrk=2cÞ
for z’1 to nn do
t’maxðdj 1rdru and rdrrk%rzÞ
if G½i,j,k(oG½i,j,z(þG½i,j,t( then
G½i,j,k(’G½i,j,z(þG½i,j,t(
pos½i,j,k(’rz
guil½i,j,k(’0H0 // Horizontal cut; parallel to xy%plane

66664

6666666664

6666666666666666666666666666666666666666666666666666664

6666666666666666666666666666666666666666666666666666666664

6666666666666666666666666666666666666666666666666666666666664

1.33 return Gðm,s,uÞ.

First, the algorithm DP3UK calls the algorithm RRP to compute
the sets ~P , ~Q and ~R (lines 1.1 – 1.2). Then (in the lines 1.3 – 1.8),
the algorithm stores in G[i, j, k] for each bin of dimension (pi, qj,
rk), with piA ~P , qjA ~Q and rkA ~R, the maximum value of a box
that can be cut in such a bin. The variable item[i, j, k] indicates
the corresponding box type, and the variable guil[i, j, k] indicates
the direction of the guillotine cut if its value is not nil. The value
nil indicates that no cut has to be performed, and pos[i, j, k]

contains the position (point) at x, y or z-axis where the cut has to
be made.

Next, (in the lines 1.9 – 1.32) the algorithm iteratively finds
the optimum solution for a bin of the current iteration by the best
combination of solutions already known for smaller bins. In other
words, for a bin of dimension (pi, qj, rk), the optimum solution is
obtained in the following way: for each possible r-point px where
a vertical cut 0V 0 can be performed, the algorithm determines the
best solution by comparing the best solution so far with one that
can be obtained with a vertical cut 0V 0 (lines 1.12 – 1.18); repeat
the same process for a depth cut 0D0 (lines 1.19 – 1.25), and for a
horizontal cut 0H0 (lines 1.26 – 1.32). Finally, (at line 1.33) the
algorithm returns the value of an optimum solution.

The algorithm avoids generating symmetric patterns by con-
sidering, in each direction, r-points up to half of the size of the
respective bin (see lines 1.12, 1.19 and 1.26). In fact, consider a
bin of width ‘ and an orthogonal guillotine cut in the x-axis at
position tA ~P , for t4‘=2. This cut divides the current bin into two
smaller bins: one with length t and the other with length ‘%t. The
patterns that can be obtained with these two smaller bins can
also be obtained using a guillotine cut at position t0 ¼ ‘%t on the
original bin. If t0A ~P , then such a cut is considered as t0r‘=2; if
t0=2 ~P then the cut at position /t0S generates two bins in which we
can obtain the same patterns considered for the cut made on t0.

The time complexity of the algorithm DP3UK is directly
affected by the time complexity of the algorithm RRP (line 1.1).
Therefore, the time complexity of the algorithm DP3UK is
OðnLþnWþnHþ m2suþms2uþmsu2Þ where m, s and u are the
total number of r-points of ~P , ~Q and ~R, respectively. On the other
hand, the space complexity of the DP3UK is O(L þ W þ H þ msu).

2.2. Algorithm for the k-staged 3UK problem

We present now a dynamic programming algorithm to solve
the k-staged 3UK and 3UKr problems. We consider that in each
stage a different cut direction is considered, following the cyclic
order: H2V2D2H2 . . . A cutting stage may possibly be empty
(when no cut has to be performed), and in this case, after it, the
next cutting stage is considered.

In the next recurrence formulas, G(ln, wn, hn, k, V), G(ln, wn, hn, k,
H) and G(ln, wn, hn, k, D) denote the value of an optimum guillotine
k-staged solution for a bin of dimension (ln, wn, hn). The para-
meters V, H and D indicate the direction of the first cutting stage.

Gðl&,w&,h&,0,V or H or DÞ : ¼ gðl&,w&,h&Þ;

Gðl&,w&,h&,k,VÞ :¼ max

Gðl&,w&,h&,k%1,DÞ;
maxfGðl0,w&,h&,k%1,DÞ
þGðpðl&%l0Þ,w&,h&,k,VÞjl0A ~P , l0r l&=2g

8
><

>:

9
>=

>;
,

Gðl&,w&,h&,k,HÞ :¼ max

Gðl&,w&,h&,k%1,VÞ;
maxfGðl&,w0,h&,k%1,VÞ
þGðl&,qðw&%w0Þ,h&,k,HÞjw0A ~Q , w0rw&=2g

8
><

>:

9
>=

>;
,

ð3Þ

Gðl&,w&,h&,k,DÞ :¼ max

Gðl&,w&,h&,k%1,HÞ;
maxfGðl&,w&,h0,k%1,HÞþGðl&,w&,rðh&%h0Þ,k,DÞ
jh0A ~R, h0rh&=2g

8
><

>:

9
>=

>;
:

The algorithm DPS3UK (dynamic programming for the k-staged
3UK) described in Algorithm 2 solves the recurrence formulas above.
It is very similar to the former algorithm (for the non-staged case). It
computes first the sets ~P , ~Q and ~R and stores in G[0, i, j, l] the
maximum value of a box that can be cut on a bin of dimension (pi, qj,
rl) (lines 2.1– 2.8). Then, the algorithm computes, for each stage b, the
best solution for cuts done only in one direction, and it uses this
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information to compute the best solution for the next stage, and so on
(guaranteeing that two subsequent stages have cuts in different
directions). This is the basic difference between the algorithm
DP3UK and DPS3UK. In some cases, the best solution for the stage
b%1 is also the solution for the stage b, and no cut is needed in this
case. In this case, the value nil is stored in the variable guil (line 2.15).

Algorithm 2. DPS3UK

Input: An instance I ¼ (L,W ,H,l,w,h,v,k) of the k-staged 3UK problem.
Output: An optimum k-staged solution for I.

2:1 ~P’ RRP ðL,l1,...,nÞ, ~Q’ RRP ðW ,w1,...,nÞ,
~R’ RRP ðH,h1,...,nÞ

2:2 Let ~P ¼ ðp1op2o . . . opmÞ, ~Q ¼ ðq1oq2o . . . oqsÞ,
~R ¼ ðr1or2o . . . oruÞ

2:3 for i’1 to m do
2:4

2:5

2:6

2:7

2:8

for j’1 to s do
for l’1 to u do
G½0,i,j,l(’maxðfvdj 1rdrn; ldrpi , wdrqj

and hdrrlg [ f0gÞ
item½0,i,j,l(’maxðfdj 1rdrn; ldrpi , wdrqj , hdrrl

and vd ¼ G½0,i,j,l(g [ f0gÞ
guil½0,i,j,l(’nil

66666664

66666666664

666666666666664

2:9 if (k mod 3) ¼ 1 then previous’0V 0 else if (k mod3) ¼ 2
then previous’0D0 else previous’0H0

2:10 for b’1 to k do
2:11

2:12

2:13

2:14

2:15

2:16

2:17

2:18

2:19

2:20

2:21

2:22

2:23

2:24

2:25

2:26

2:27

2:28

2:29

2:30

2:31

2:32

2:33

2:34

2:35

2:36

2:37

2:38

2:39

2:40

2:41

2:42

for i’1 to m do
for j’1 to s do

for l’1 to u do
G½b,i,j,l(’G½b%1,i,j,l(
guil½b,i,j,l(’ nil

if previous¼ 0D0 then
nn’maxðdj 1rdrm and pdrbpi=2cÞ
for x’1 to nn do
t’maxðdj 1rdrm and pdrpi%pxÞ
if G½b,i,j,l(oG½b%1,x,j,l(þG½b,t,j,l( then
G½b,i,j,l(’G½b%1,x,j,l(þG½b,t,j,l(
pos½b,i,j,l(’px
guil½b,i,j,l(’0V 0

6666664

6666666666664

previous’0V 0

66666666666666666666664

elseif previous¼ 0V 0 then
nn’maxðdj 1rdru and rdrbrl=2cÞ
for z’1 to nn do
t’maxðdj 1rdru and rdrrl%rzÞ
if G½b,i,j,l(oG½b%1,i,j,z(þG½b,i,j,t( then
G½b,i,j,l(’G½b%1,i,j,z(þG½b,i,j,t(
pos½b,i,j,l(’rz
guil½b,i,j,l(’0H0

6666664

6666666666664

previous’0H0

66666666666666666666664

else
nn’maxðdj 1rdrs and qdrbqj=2cÞ
for y’1 to nn do
t’maxðdj 1rdrs and qdrqj%qyÞ
if G½b,i,j,l(oG½b%1,i,y,l(þG½b,i,t,l( then
G½b,i,j,l(’G½b%1,i,y,l(þG½b,i,t,l(
pos½b,i,j,l(’qy
guil½b,i,j,l(’0D0

6666664

6666666666664

previous’0D0

66666666666666666666664

6666666666666666666666666666666666666666666666666666666666666666666666666666666666666664

66666666666666666666666666666666666666666666666666666666666666666666666666666666666666666664

666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666664

6666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666664

2.43 return Gðk,m,s,uÞ.

The algorithm DPS3UK stores in G[k, i, j, l] the optimum k-staged
solution for a bin with dimension (pi, qj, rl). The variables guil[k, i, j, l],
pos[k, i, j, l] and item[k, i, j, l] indicate, respectively, the direction of
the first guillotine cut, the position of this cut at x, y or z-axis, and
the corresponding item if no cut has to be made in the bin.

The time complexity of the algorithm DPS3UK is the same of
the algorithm DP3UK multiplied by the number of cutting stages
k. This is also true for the space complexity. On the other hand, if k
is limited by some constant, then DPS3UK have the same com-
plexity of the algorithm DP3UK.

2.3. The 3UKr problem and its variant with k stages

The problem 3UKr is a variant of 3UK that allows orthogonal
rotations of the boxes (to be cut) around any of the axes. This means
that each box of type i can be considered as having one of the six
dimensions obtained by the permutations of li, wi, hi (as long as they
are feasible). We refer to these feasible dimensions as PERM(li, wi, hi).

The problem 3UKr can be solved with the algorithms for the
problem 3UK. For that, we only need a preprocessing phase to change
the instance. Given an instance I for the 3UKr, we construct another
instance I0 by adding to I, for each box i in I of dimension (li,wi, hi), the
set of new types of boxes PERM(li, wi, hi), all with the same value vi.
Then, we solve the new instance I0 with the algorithm 3UK.

For the k-staged 3UKr problem, we proceed analogously. We
denote the corresponding algorithms for these problems by
DP3UKr and DPS3UKr.

3. The three-dimensional cutting stock problem

We first present some heuristics which will be used as subrou-
tines in the column generation approach described in this section for
the 3CS problem. We also compare the sole performance of these
heuristics with the performance of the column generation approach.

3.1. Primal heuristics for the three-dimensional cutting stock
problem

The primal heuristic we present here – HFF3 – is a hybrid
heuristic that generates patterns composed of levels. It uses an
algorithm for the 2CS problem to generate the levels and an
algorithm for the 1CS problem to pack these levels into bins. We
first describe the algorithms for the 1CS and 2CS problems, and
then we present the algorithm HFF3.

The algorithms for the 1CS problem that we use here are the
well-known first fit (FF), and first fit decreasing (FFD) algorithms.
We describe here only the algorithm we use for the 2CS problem.
It is called HFF2 (hybrid first fit 2), as it is based on the hybrid first
fit algorithm, designed by Chung et al. [22]. (For convenience, we
describe it as ‘packing’ algorithm.)

The algorithm HFF2 includes two variants: HFFl and HFFw. With-
out loss of generality, we suppose that each box has unit demand.
Thus, for an instance (L, W, l, w) of the 2CS problem, the algorithm
HFFl considers the items sorted decreasingly by length
ðl1Z l2Z ) ) ) Z lnÞ. Then, it considers each item i as a one-dimen-
sional item of size wi, and applies the algorithm first fit, FF ðW ,wÞ, to
obtain a packing of those items into recipients S1,y,Sm, which we
call strips. Finally, each strip Si is considered as a one-dimensional
item of size si ¼maxflj : jASig and the algorithm FFD ðL,sÞ is applied
to pack these strips into rectangular (2D) bins. The strips of the
algorithm HFFl are generated in the length direction, whereas the
HFFw generates the strips in the width direction. The algorithm
HFF2 executes both variants and returns a solution with the best
value. To deal with the 3CSr problem (the variant of 3CS in which
orthogonal rotations are allowed), we denote by HFFx (respectively,
HFFy) the variant of the algorithm HFF2 that rotates the rectangles i
to obtainwiZ li (respectively, liZwi) before applying the algorithms
HFFl and HFFw. The algorithm HFF2r executes these algorithms and
returns the best solution found.
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Instead of presenting the algorithm HFF3 directly, we present an
algorithm called H3CS (see Algorithm 3) that uses as subroutines
algorithms for the 1CS and 2CS problems. The algorithm HFF3 is a
specialization of the algorithm H3CS using particular subroutines.
The algorithm H3CS first sorts the items decreasingly by height.
Then, it iteratively generates a new level using an algorithm for the
2CS problem, privileging the packing of the higher items into each
level. For each item i, the largest possible number of them is packed
without violating its demand and keeping the packing in one level
(see line 3.7). When all levels are generated, they are packed into
bins by an algorithm for the 1CS problem (see line 3.10).

We denote by HFF3h (respectively, HFF3rh) the algorithm
H3CS that uses the algorithms FFD and HFF2 (respectively, HFF2r)
as subroutines. Observe that the algorithms HFF3h and HFF3rh gen-
erate and pack the levels in the height direction. We denote by HFF3w
and HFF3rw (respectively, HFF3l and HFF3rl) the variants where levels
are generated and packed in the width (respectively, length) direc-
tion. Finally, the algorithm HFF3 (respectively, HFF3r) executes the
algorithms HFF3h, HFF3w and HFF3l (respectively, HFF3

r
h, HFF3

r
w and

HFF3rl) and returns the best packing obtained.

Algorithm 3. H3CS

Input: An instance I ¼ (L, W, H, l, w, h, d) of the
3CS problem.
Output: A solution for I.
Subroutine: Algorithms A and B for the 1CS and
2CS problems.

3:1 Sort the items of I decreasingly by height:
h1Zh2Z . . . Zhn.

3:2 m’0
3:3 while exists di40 for some iAf1, . . . ,ng do
3:4

3:5

3:6

3:7

3:8

3:9

m’mþ1

Let d0 ¼ ðd1
0, . . . ,dn

0Þ where d0i ¼ 0 for i¼ 1, . . . ,n

for i’1 to n do

di
0’maxft : trdi, d̂ ¼ ðd01, . . . ,d

0
i%1,t,0, . . . ,0Þ and

jBðL,W ,l,w,d̂Þjr1g
di’di%di

0

666664

Let Nm’BðL,W ,l,w,d0Þ and hðNmÞ ¼maxfhi : di
040g

666666666666666664

3:10 Let P be a packing of the levels (Ni) in bins of height H by
the algorithm AðH,hÞ.

3:11 return P

3.2. The column generation-based heuristics

A well-known ILP formulation for the cutting stock problem
uses one variable for each possible pattern. This formulation is the
following. Let P denote the set of cutting patterns and m : ¼ jPj
denote its size. Now let P be an n*m matrix whose columns
represent the cutting patterns, and Pij indicates the number of
copies of item i in pattern j. For each jAP, let xj be the variable
that indicates the number of times pattern j is used, and let d be
the n-vector of demands.

The following linear program is a relaxation of an ILP formula-
tion for the cutting stock problem:

min
P
jAP

xj

subject to
PxZd

xjZ0 for all jAP:

(
ð4Þ

As wementioned before, the column generation approach to solve
the 1CS and 2CS problems was proposed in the early sixties by
Gilmore and Gomory. The idea of this approach is to apply the

simplex method starting with a small set of columns of P as a basis,
and generate new ones as needed. That is, in each iteration it obtains
a new pattern (column) z with

Pn
i ¼ 1 vizi41 such that zi is the

number of times box i appears in this pattern and vi is the value of
this box. After solving (4), one considers the integer part of the
solution; and deal the residual problems iteratively using the same
approach.

In the case of 3CS we use the algorithm presented for the three-
dimensional unbounded knapsack (3UK) problem to generate such a
pattern. In what follows, we describe the algorithm, denoted by
SimplexCS, that solves the linear program (4). In step 4.1, the matrix
In*n is the identity matrix corresponding to n patterns, each one
with items of one type and one orientation. More details about the
column generation approach can be found in Chvátal [23].

Algorithm 4. SimplexCS

Input: An instance I ¼ (L,W ,H,l,w,h,d) of the
3CS problem.
Output: An optimum solution for the linear program (4)
Subroutine: An algorithm A for the 3UK or 3UKr

problem.
4:1 Let x’d and B’In*n

4:2 Solve yTB¼ ½1,1, . . . ,1(Tn
4:3 z’AðL,W ,H,l,w,h,yÞ
4:4 if yTzr1 then return ðB,xÞ else solve Bw¼z
4:5

Let t’min
xj
wj

j 1r jrn,wj40

! "
and

s’min j j 1r jrn,
xj
wj

¼ t

! "

4:6 for i’1 to n do
4:7

4:8

Bi,s’zi
if i¼ s then xi’t else xi’xi%wit

66664

4:9 Go to line 4.2

We present below the algorithm CG3CS that solves the
3CS problem. It receives the solution (possibly fractional) found
by the algorithm SimplexCS and returns an integer solution for the
3CS problem. If needed, this algorithm uses a primal heuristic to
obtain a cutting pattern that causes a perturbation of some
residual instance (see line 14 in 5).

Algorithm 5. CG3CS

Input: An instance I ¼ (L, W, H, l, w, h, d) of the 3CS problem.
Output: A solution for I.
Subroutine: An algorithm A for the 3CS problem or for the
3CSr problem.

5:1 ðB,xÞ’ SimplexCSðL,W ,H,l,w,h,dÞ
5:2 for i’1 to n do x&i ’bxic
5:3 if there is i such that x&i 40 for some 1r irn then
5:4

5:5

5:6

5:7

5:8

5:9

5:10

5:11

5:12

5:13

return ðB,x&1,...,nÞ ðbut do not haltÞ
for i’1 to n do

bfor j’1 to n do di’di%Bi,jx
&
j

n0’0, l0’ð Þ, w0’ð Þ, h0’ð Þ, d0’ð Þ
for i’1 to n do
if di40 then

bn0’n0 þ1, l0’l0JðliÞ, w0’w0JðwiÞ, h0’h0JðhiÞ, d0’d0JðdiÞ

66664

if n0 ¼ 0 then HALT

n’n0 , l’l0 , w’w0 , h’h0 , d’d0

Go to line 5:1

666666666666666666666666664

5:14 return a pattern of AðL,W ,H,l,w,h,dÞ that has the largest volume, and
update the demands (but do not halt).

5.15 if there exists i ð1r irnÞ such that di40 then go to line 5.1

The algorithm CG3CS solves (in each iteration) a linear system
for an instance I and obtain B and x (line 5.1). Then, it obtains an
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integer vector x&, just by rounding down the vector x (see line 5.2).
The vector xn is a ‘partial’ solution that possibly fulfills only
part of the demands. Thus, if there is a box i with part of its
demand fulfilled by xn, the algorithm returns (B, xn), and the
patterns corresponding to B. After this, the algorithm defines a
new residual instance I0 ¼ ðL,W ,H,l,w,h,d0Þ, where the vector
d0 ¼ ðd10, . . . ,dn0Þ contains the residual demand of each item i (see
lines 5.7– 5.12). If d0 is a null vector, then the algorithm halts (see
line 5.11), as this means that each item i has its demand fulfilled;
otherwise, the execution proceeds to solve the new updated
instance I.

The vector x returned by the algorithm SimplexCS might have all
components smaller than 1. In this case, xn is a null vector and the
subroutine A is used to obtain a good cutting pattern (line 5.14).
Therefore, the demands are updated and if there is some residual
demand (lines 5.14– 5.15) the execution is restarted for the new
residual instance (see line 5.1). Note that the number of residual
instances solved by the algorithm CG3CS can be exponential inn. But,
clearly, the algorithm halts because in each iteration the demands
decrease. The algorithm A used as subroutine by the algorithm
CG3CS is the hybrid algorithm HFF3 described in Section 3.1.

An algorithm for the k-staged version of 3CS can be obtained
analogously, just by changing the subroutine by the correspond-
ing k-staged versions.

3.3. The 3CSr problem

We can solve the 3CSr problem also using the algorithms
SimplexCS and CG3CS, each one with the appropriate subroutines.
Namely, in the SimplexCS we use the algorithm HFF3r, and in the
algorithm CG3CS, we use the algorithm DP3UKr. We denote this
version by CG3CSr. The same idea applies to the k-staged
3CSr problem in which we use the algorithm DPS3UK as subrou-
tine for the algorithm SimplexCS.

4. The 3CSV problem

We can solve the 3CSV problem using a column generation
approach similar to the one described for the 3CS problem. For
that, basically we have to adapt the algorithm SimplexCS.

In this problem we are given a list of different bins B1, y, Bb,
each bin Bi with dimension (Li, Wi, Hi) and value Vi, and we want
to minimize the total value of the bins used to fulfill the demands.
Using an analogous notation as before, the following is a relaxa-
tion of the integer linear program for the 3CSV problem:

min
P
jAP

Cjxj

subject to
PxZd

xjZ0 for all jAP:

(
ð5Þ

The coefficient Cj in the above formulation indicates the value of
the bin type used in pattern j. So, each Cj corresponds to some Vi.

Similarly to the 3CS problem, if each box i has value yi and occurs
zi times in a pattern j, we take a new column with

Pn
i ¼ 1 yizi4Cj.

Here, we can also use the algorithms we proposed for the three-
dimensional unbounded knapsack problem to generate the (new)
columns. The algorithm to solve (5) is called SimplexCSV. The basic
difference between the algorithms SimplexCS and SimplexCSV is that
the latter has a vector f that associates one bin with each column of
the matrix B. This vector and the variables B, guil and pos are used to
reconstruct the solution found.

Algorithm 6. SimplexCSV

Input: An instance I¼(L, W, H, V, l, w, h, d) of the
3CSV problem.
Output: An optimum solution for (5), where the columns of P
are cutting patterns.
Subroutine: An algorithm A for the 3UK or 3UKr problem.
6:1 Let f be a vector, where fi is the smallest index j such

that lirLj, wirWj and hirHj

6:2 Let x’d and B’In*n

6:3 Solve yTB¼ CT
B // CB is the vector C ¼ ðC1, . . . ,CnÞ

restricted to the columns of B
6:4 for i’1 to b do
6:5

6:6
z’AðLi,Wi,Hi,l,w,h,yÞ
if yTz4Vi then go to line 6:8

$

6:7 return ðB,f ,x&1,...,nÞ
6:8 Solve Bw¼ z
6:9 Let t’minð xjwj

j1r jrn, wj40Þ and

s’minðjj1r jrn,
xj
wj ¼ tÞ

6:10 Let fj ¼ i
6:11 for i’1 to n do
6:12

6:13
Bi,s’zi
if i¼ s then xi’t else xi’xi%wit

$

6:14 Go to line 6.3

We describe now the algorithm CG3CSV that solves the
3CSV problem. It uses the algorithm SimplexCSV and is very
similar to algorithm CG3CS described for the 3CS problem (we
omit the details). The algorithm A used as subroutine by
CG3CSV is the hybrid algorithm HFF3.

Algorithm 7. CG3CSV

Input: An instance I¼(L, W, H, V, l, w, h, d) of the
3CSV problem.
Output: A solution for I.
Subroutine: An algorithm A for the 3CSV problem or
for the 3CSVr problem.

7:1 ðB,f ,xÞ’SimplexCSV ðL,W ,H,V ,l,w,h,dÞ
7:2 for i’1 to n do x&i ’bxic
7:3 if there is i such that x&i 40 for some 1r irn then
7:4

7:5

7:6

7:7

7:8

7:9

7:10

7:11

7:12

7:13

return ðB,f ,x&1,...,nÞ ðbut do not haltÞ
for i’1 to n do

bfor j’1 to n do di’di%Bi,jx
&
j

n0’0, l0’ð Þ, w0’ð Þ, h0’ð Þ, d0’ð Þ
for i’1 to n do
if di40 then

bn0’n0 þ1, l0’l0JðliÞ, w0’w0JðwiÞ,
h0’h0JðhiÞ, d0’d0JðdiÞ

66664

if n0 ¼ 0 then HALT

n’n0, l’l0, w’w0, h’h0, d’d0

Go to line 7:1

6666666666666666666666666664

7.14 Let V&’minð Vi
LiWiHi

ji¼ 1, . . . ,f Þ
and j’minði j Vi

LiWiHi
¼ V&Þ

7.15 return a pattern of AðLj,Wj,Hj,l,w,h,dÞ that
has the largest volume, and update
the demands:

7.16 if there exists i ð1r irnÞ such that di40 then go to line
7.1
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The algorithm for the k-staged 3CSV problem also uses the
algorithm SimplexCSV, but in this case with the subroutine for the
k-staged 3UK problem.

4.1. The 3CSVr problem

For this problem, we use the algorithm CG3CSV with the sub-
routine HFF3r; and the algorithm SimplexCSV with the subroutine
DP3UKr. This version of the algorithm is called CG3CSVr. For the k-
staged 3CSVr, problem we use the algorithm SimplexCSV with the
subroutine DPS3UK.

5. The three-dimensional strip packing problem

The 3D strip packing problem (3SP) has been less tackled with
the column generation approach. One advantage of this approach
is that it is less sensitive to large values of demands. In the
3SP problem the cuts must be k-staged, the first cutting stage has
to be horizontal (that is, orthogonal to the height), and the
distance between two subsequent cuts must be at most some
given value A. We call A-pattern a guillotine cutting pattern
between two subsequent horizontal cuts.

Let P be the set of all A-patterns, jPj ¼m, and let Aj be the
height of an A-pattern jAP.

The following is a relaxation of the integer linear program for
the 3SP problem:

min
P
jAP

Ajxj

subject to
PxZd

xjZ0 for all jAP:

(

ð6Þ

We can use the same approach presented for the 3CSV problem to
solve the 3SP problem. For that, note that, each A-pattern of height Aj
corresponds to a bin with dimension (L, W, Aj) and value precisely Aj
in the 3CSV problem. Thus, if R ¼ {a1, y, ab} is the set of
discretization points of height at most A, we can assume that
A¼maxða1, . . . ,abÞ, and we can consider that we are given b different
types of bins (A-patterns), each one with dimension (L,W,aj).

The algorithm to solve the k-staged 3SP problem, called
CG3SP, is basically the algorithm presented for the k-staged
3CSV problem with two modifications. First, to perturb the
residual instance we generate a level with maximal volume
(considering the height of such level). To do this, we use the
algorithm HFF2 (for the 2CS problem). Second, every call to the
algorithm SimplexCSV only solves one instance of the k-staged
3UK problem, the one with dimensions (L,W,ab). Observe that the
variables G, guil and pos computed by the algorithm DPS3UK have
the solutions for each height aiAR. This is an important modifica-
tion because jRj can be very large, and solving instances for each
aiAR considering a different bin would consume a lot of time.

For the k-staged 3SPr problem, we consider the algorithm
HFF2r to generate a perturbed instance. We also consider a
modification in the algorithm HFF3 when we compare its solu-
tions with the solution computed by the column generation
algorithm. This modification basically consists in packing the
levels generated by the algorithm HFF2 (or HFF2r) one on top of
the other in the direction z. We call M-HFF3 this modified
algorithm. Finally, the maximum distance between two subse-
quent cuts is considered as the width of the bin.

6. Computational tests

The tests were performed on several instances adapted from the
literature. We present computational results for the set of instances
adapted from Cintra et al. [3]. These instances were obtained in the
following way: we considered the instances for the two-dimensional
version of the problem, then we added the third dimension for each
box (bin) by randomly choosing it from the dimensions already used
for the other boxes (bins). These instances are available at the
following url: http://www.loco.ic.unicamp.br/binpack3d.

We only considered the first 12 instances, which we called
gcut1d, . . . ,gcut12d. For each one the number of items and the
dimensions of the bin are shown in Table 1. The length and width
of the items were originally generated (see [1]) by sampling an
integer from the uniform distribution [25%–75%] of the respective
dimension (length and width) of the bin.

We also considered the set of 700 instances from Bischoff and
Ratcliff [24]. In the work of Bischoff and Ratcliff [24] these

Table 1
Comparison between the number of subproblems using raster points and using discretization points for the instances adapted from [3] and [24].

Instance Number of
items

Bin
dimensions

Raster points Discretization points #Subprob (%)
Rast./discr.

m s u #Subprob m s u #Subprob

gcut1_3d 10 (250, 250, 250) 13 5 5 325 68 20 20 27.2K 1.19
gcut2_3d 20 (250, 250, 250) 17 24 13 5.3K 95 112 69 73.4K 0.72
gcut3_3d 30 (250, 250, 250) 44 26 22 25.1K 143 107 122 1.8M 1.35
gcut4_3d 50 (250, 250, 250) 45 50 29 65.2K 146 146 133 2.8M 2.30
gcut5_3d 10 (500, 500, 500) 10 13 8 1K 40 76 26 79K 1.32
gcut6_3d 20 (500, 500, 500) 12 18 8 1.7K 96 120 41 472.3K 0.37
gcut7_3d 30 (500, 500, 500) 23 19 17 7.4K 179 126 140 3.1M 0.24
gcut8_3d 50 (500, 500, 500) 44 59 27 70K 225 262 164 9.6M 0.73
gcut9_3d 10 (1000, 1000, 1000) 15 7 7 735 92 42 32 123.6K 0.59
gcut10_3d 20 (1000, 1000, 1000) 14 20 5 1.4K 89 155 37 510.4K 0.27
gcut11_3d 30 (1000, 1000, 1000) 20 38 14 10.6K 238 326 127 9.8M 0.11
gcut12_3d 50 (1000, 1000, 1000) 49 42 27 55.5K 398 363 291 42M 0.13

AVERAGE 0.77

thpack1 3 (587, 233, 220) 36 10 22 7.9K 100 27 53 143.1K 5.53
thpack2 5 (587, 233, 220) 88 65 48 274.5K 267 65 113 1.9M 14.00
thpack3 8 (587, 233, 220) 206 37 93 708.8K 390 114 155 6.8M 10.29
thpack4 10 (587, 233, 220) 263 52 110 1.5M 425 134 165 9.3M 16.01
thpack5 12 (587, 233, 220) 302 65 123 2.4M 445 146 172 11.1M 21.61
thpack6 15 (587, 233, 220) 339 81 134 3.6M 463 157 177 12.8M 28.60
thpack7 20 (587, 233, 220) 375 101 147 5.5M 481 167 184 14.7M 37.67

AVERAGE 19.1
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instances were used in the container loading problem with the
objective of maximizing the occupied volume of the container
(we ignored the restriction that there is a bound on the number of
copies of each item and the orientation restrictions). We used
these instances only for the knapsack problem, as we would not
be able to show the results for each of the problems considered
here. These instances were organized in groups of 100 instances.
In each group, the dimensions of the container and the number of
items are the same: only the dimensions of the items are
different. For example, in the first group named thpack1, each
instance consists of exactly three boxes, and the subsequent
groups, thpack 2,y, thpack7, have 5,y,20 boxes, respectively. A
standard ISO container of dimensions (587, 233, 220) is consid-
ered for all the instances. The average number of items per items
type is 50.2 for the group thpack1, but decreases continuously
and is only 6.5 for the group thpack7. The length, width, and
height of the items are integers in the range of [30–120], [25–100]
and [20–80], respectively.

The algorithms presented in this paper were implemented in C
language, and the tests were run on a computer with processor
Intels CoreTM 2 Quad 2.4 GHz, 4 GB of memory and operating
system Linux. The linear systems in the column generation
algorithms were solved by the Coin-OR CLP solver [25].

We are not aware of other works in the literature to compare
our results. We did not find instances for the 3D unbounded
knapsack problem, so we generated some to test our algorithms.
We hope these instances will be useful to future researches on the
3D unbounded knapsack problem (and other problems) to per-
form comparative studies.

6.1. Comparing the use of raster points and discretization points

In this section we show, for some of the instances considered,
the number of raster points, the number of discretization points,
and the corresponding number of subproblems obtained. These
numbers are shown in Table 1. We recall that m, s and u denotes
the total number of r-points (or discretization points) of length,
width and height, respectively. The productmsu gives the number
of subproblems (#Subprob in the tables), where in the table we

show the approximate number of subproblems where K stands
for 103 and M for 106. In many cases it is very impressive the
reduction on the number of subproblems that occurs with the use
of the r-points. This has a great impact in the dynamic program-
ming approach.

For the instances gcut1–gcut12, the number of subproblems
using r-points were, on average, 0.77% of the number of subpro-
blems using discretization points. For instances thpack1–thpack7,
the columns with the numbers of r-points and discretization
points indicate the average number (truncated) in each group. For
the thpack instances, the number of subproblems using r-points
corresponds, on average, to 19.1% of the number of subproblems
using discretization points.

When we consider orthogonal rotations, the use of raster
points also leads to a good reduction on the number of subpro-
blems, as we can see in Table 2. In the average, the number of
subproblems reduced to 2.13% for gcut1–gcut12 instances and to
45.44% for thpack1–thpack7 instances.

6.2. Computational results for the three-dimensional unbounded
knapsack problem

In this section, we present the computational results for the 3D
unbounded knapsack problem. For this section, we consider the
value vi of each box i equal to its volume. Note that for the thpack
instances the values in each group correspond to the average volume
for that group. We first observe that for all instances, the computa-
tional time required to solve each instance was less than 0.001 s.

The columns of the Table 3 have the following information:
instance name, volume for the case without rotations, volume for
the case with rotations, percentage of volume increased when
considering rotations, volume for the 4-staged case without
rotations, volume for the 4-staged case with rotations, percentage
of volume increased when considering rotations in 4-staged
patterns.

As one would expect, we have a better use of the bin when
orthogonal rotations are allowed. Indeed, when we compare the
occupied volume of the bin in Table 3, the use of rotations leads to
an improvement of 5.63% on gcut instances and of 3.19% on

Table 2
Comparison between the number of subproblems using raster points and using discretization points for the instances adapted from [3] and [24], considering rotations.

Instance Number of
items

Bin
dimensions

Raster points Discretization points #Subprob (%)
Rast./discr.

m s u #Subprob m s u #Subprob

gcut1_3dr 10 (250, 250, 250) 15 15 15 3.3K 92 92 92 778.6K 0.43
gcut2_3dr 20 (250, 250, 250) 41 41 41 68.9K 142 142 142 2.8M 2.41
gcut3_3dr 30 (250, 250, 250) 58 58 58 195.1K 152 152 152 3.5M 5.56
gcut4_3dr 50 (250, 250, 250) 81 81 81 531.4K 166 166 166 4.5M 11.62
gcut5_3dr 10 (500, 500, 500) 23 23 23 12.1K 154 154 154 3.6M 0.33
gcut6_3dr 20 (500, 500, 500) 28 28 28 21.9K 201 201 201 8.1M 0.27
gcut7_3dr 30 (500, 500, 500) 43 43 43 79.5K 232 232 232 12.4M 0.64
gcut8_3dr 50 (500, 500, 500) 95 95 95 857.3K 292 292 292 24.8M 3.44
gcut9_3dr 10 (1000, 1000, 1000) 17 17 17 4.9K 174 174 174 5.2M 0.09
gcut10_3dr 20 (1000, 1000, 1000) 32 32 32 32.7K 294 294 294 25.4M 0.13
gcut11_3dr 30 (1000, 1000, 1000) 60 60 60 216K 461 461 461 97.9M 0.22
gcut12_3dr 50 (1000,1000, 1000) 85 85 85 614.1K 511 511 511 133.4M 0.46

AVERAGE 2.13

thpack1 3 (587, 233, 220) 393 58 50 1.1M 490 137 124 8.3M 13.69
thpack2 5 (587, 233, 220) 451 99 86 3.8M 519 165 152 13M 29.5
thpack3 8 (587, 233, 220) 486 132 119 7.6M 537 183 170 16.7M 45.7
thpack4 10 (587, 233, 220) 496 142 129 9M 542 188 175 17.8M 50.95
thpack5 12 (587, 233, 220) 504 150 137 10.3M 546 192 179 18.7M 55.19
thpack6 15 (587, 233, 220) 511 157 144 11.5M 549 195 182 19.4M 59.29
thpack7 20 (587, 233, 220) 520 166 153 13.2M 554 200 187 20.7M 63.74

AVERAGE 45.44
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thpack instances, on average. When considering 4-staged pat-
terns, the use of rotations leads to an improvement of 6.65% on
gcut instances and of 3.89% on thpack instances, on average.

6.3. Computational results for the three-dimensional cutting stock
problem

The results for the 3CS problem and its variants are shown in
Tables 4–7. For each of them, we indicate the instance name; a
lower bound (LB) for the value of an optimum integer solution
(obtained by solving the linear relaxation (4) by the algorithm
SimplexCS); the difference (in percentage) between the solutions
obtained by the algorithm CG3CS and the lower bound (LB); the
CPU time in seconds; the total number of columns generated; the
solution obtained only by the algorithm HFF3 (or HFF3r); and the
difference between (improvement over) HFF3 (respectively,
HFF3r) and algorithm CG3CS (respectively, CG3CSr).

We exhibit in Table 4 and 5 the results for the non-staged
cutting stock problem. In these tables we can see that the
difference between the solutions of the algorithm CG3CS (and
CG3CSr) and the lower bound (LB) is 0.407% (and 2.320%), on

average. When we compare the performance of the column
generation algorithm with the algorithm HFF3 (respectively,
HFF3r) the improvement on the value of the solution is of
20.932% (respectively, 29.819%), on average. The time spent to
solve these instances was at most 42 s for the 3CS problem and at
most 2600 s for the 3CSr problem. For the k-staged version, k¼4,
we show in Table 6 and 7 the results obtained. We omitted the
results for k¼3, since they are very similar to those for k¼4.

Observing Table 6 and 7, we have a difference of 0.381% (and
2.402%), on average, between the values of the solutions found by
the algorithm CG3CS (and CG3CSr) and the lower bound (LB).
Moreover, comparing them with the HFF3 (respectively, HFF3r)
the gain in the value of the solution was 19.088% (respectively,
29.694%), on average.

The algorithm CG3CS found optimum solution for the
instances gcut1_3d, gcut2_3d, gcut5_3d, gcut9_3d as shown in
Tables 4 and 6.

6.4. Computational results for the 3CSV problem

We tested the algorithm CG3CSV (and CG3CSVr) with the
instances above mentioned, with three different bins. In these
instances, the value of each bin corresponds to its volume. The
results are shown in Table 8 and 9.

We can note that the problem with different bins size is harder
to solve, demanding more computational time than the 3CS
problem. But the results were also very good, where the largest
difference from the lower bound for the 3CSV (3CSVr) problem
was 2.052%) (7.907%), and was 1.260% (4.196%), on average.

Table 10 and 11 show the results for the staged version of the
problem. We note that some instances like gcut4_3dr, gcut8_3dr
and gcut12_3dr require tens of thousand of seconds to be solved.
On the other hand, when we compare the solutions found by the
algorithm CG3CSV (and CG3CSVr) and the lower bound, the
difference is 0.970% (and 3.920%), on average.

6.5. Computational results for the Strip Packing problem

The results obtained for the k-staged 3SP and 3SPr problems
with k¼4 are shown in Table 12 and 13. We omit the results for
k¼3 because they were very similar to the case k¼4. As expected,
the computational time required to solve these problems is
considerably larger than the time required to solve the respective
cutting stock problems. The instance gcut12 for example (and its
version with rotation) required 461 s (28,057 s) to be solved for
the strip packing problem, and demanded 14 s (920 s) for the
4-staged version of the cutting stock problem. But the algorithm
CG3SP (and CG3SPr) obtained very good results, computing

Table 3
Results for the 3UK problem on instances adapted from [3] and [24].

Instance Unbounded 3UK 4-staged unbounded 3UK

Without
rot.

With rot. Increase
(%)

Without
rot.

With
rot.

Increase
(%)

gcut1_3d 80.6 86.7 7.58 80.6 85.7 6.4
gcut2_3d 84.9 94.9 11.82 84.4 93.1 10.36
gcut3_3d 92.5 95.3 3 88.1 94.4 7.19
gcut4_3d 95.4 97 1.63 91.6 96.7 5.62
gcut5_3d 84.3 94.1 11.52 83.8 92.5 10.34
gcut6_3d 84.8 90 6.04 81.8 88 7.54
gcut7_3d 88.1 93.3 5.95 87.6 93.1 6.34
gcut8_3d 93.2 96.6 3.67 92.6 96.6 4.4
gcut9_3d 93.2 96.5 3.59 93.2 96.5 3.59
gcut10_3d 85.2 89 4.51 85.2 89 4.51
gcut11_3d 91.4 95 3.88 89.2 95 6.49
gcut12_3d 92.7 96.7 4.39 89.7 96 7.04

AVERAGE 5.63% 6.65%

thpack1 90.9 98.1 7.94 89.5 97 8.35
thpack2 94.4 98.9 4.73 93 98.1 5.45
thpack3 96.7 99.3 2.74 95.4 98.7 3.5
thpack4 97.3 99.5 2.22 96 99 3.06
thpack5 97.7 99.6 1.88 96.5 99.1 2.67
thpack6 98.2 99.7 1.55 97.1 99.3 2.28
thpack7 98.6 99.8 1.25 97.6 99.5 1.93

AVERAGE 3.19 3.89

Table 4
Results for the 3CS problem on instances adapted from [3].

Instance Solution of
CG3CS

LB Difference
from LB (%)

Time (s) Columns
generated

HFF3 Improvement
over HFF3 (%)

gcut1_3d 177 177 0.000 0.03 72 181 2.21
gcut2_3d 220 220 0.000 0.56 652 245 10.20
gcut3_3d 142 140 1.429 6.93 2272 194 26.80
gcut4_3d 520 517 0.580 41.41 4230 747 30.39
gcut5_3d 122 122 0.000 0.03 48 160 23.75
gcut6_3d 305 304 0.329 0.20 338 364 16.21
gcut7_3d 395 394 0.254 0.66 607 467 15.42
gcut8_3d 371 369 0.542 26.87 3610 558 33.51
gcut9_3d 60 60 0.000 0.08 156 70 14.29
gcut10_3d 217 216 0.463 0.08 150 276 21.38
gcut11_3d 191 189 1.058 1.33 958 281 32.03
gcut12_3d 429 428 0.234 8.63 1,473 572 25.00

AVERAGE 0.407 20.932
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solutions differ from the lower bound at most 0.835% (and
1.534%), and 0.257% (and 0.874%), on average. Moreover the
improvement over M-HFF3 was 7.779% (and 22.325%), on
average.

7. Concluding remarks

We presented algorithms and computational tests for the
problems 3UK, 3CS, 3CSV and 3SP and its variants with k stages
and orthogonal rotations.

For the three-dimensional unbounded knapsack and its var-
iants, the results obtained showed that the use of raster points in
the dynamic programming approach was very successful, with
considerable reduction on the number of subproblems. On the
oriented 3UK problem with gcut instances, for example, the
number of subproblems reduced to less than 0.77% of the number
of subproblems using discretization points.

When orthogonal rotations are allowed, the occupied volume
of the bin increases significantly (on average, this improvement
was 5.63% on gcut instances). This is natural, since the domain of
the feasible solutions increases too. The highlight is for the

Table 5
Results for the 3CSr problem on instances adapted from [3].

Instance Solution of
CG3CSr

LB Difference
from LB (%)

Time (s) Columns
generated

HFF3 Improvement
over HFF3 (%)

gcut1_3dr 163 161 1.242 0.15 150 181 9.94
gcut2_3dr 157 153 2.614 4.63 466 255 38.43
gcut3_3dr 135 129 4.651 154.09 2977 199 32.16
gcut4_3dr 460 453 1.545 518.62 3669 666 30.93
gcut5_3dr 100 98 2.041 0.31 119 140 28.57
gcut6_3dr 226 225 0.444 2.07 438 330 31.52
gcut7_3dr 372 369 0.813 17.52 1032 467 20.34
gcut8_3dr 327 318 2.830 2554.40 8258 529 38.19
gcut9_3dr 57 54 5.556 0.25 187 81 29.63
gcut10_3dr 198 196 1.020 1.66 226 269 26.39
gcut11_3dr 167 161 3.727 136.24 2432 282 40.78
gcut12_3dr 375 370 1.351 525.99 3580 543 30.94

AVERAGE 2.320 29.819

Table 6
Results for the 4-staged3CS problem on instances adapted from [3].

Instance Solution of
CG3CS

LB Difference
from LB (%)

Time (s) Columns
generated

HFF3 Improvement
over HFF3 (%)

gcut1_3d 177 177 0.000 0.05 106 181 2.21
gcut2_3d 220 220 0.000 0.40 428 245 10.20
gcut3_3d 146 144 1.389 8.15 2103 194 24.74
gcut4_3d 519 517 0.387 39.04 3906 747 30.52
gcut5_3d 132 132 0.000 0.03 62 160 17.50
gcut6_3d 305 304 0.329 0.06 120 364 16.21
gcut7_3d 396 394 0.508 0.56 511 467 15.20
gcut8_3d 399 397 0.504 28.84 3243 558 28.49
gcut9_3d 62 62 0.000 0.05 91 70 11.43
gcut10_3d 218 217 0.461 0.10 157 276 21.01
gcut11_3d 204 202 0.990 2.31 1198 281 27.40
gcut12_3d 434 434 0.000 14.52 1806 572 24.13

AVERAGE 0.381 19.088

Table 7
Results for the 4-staged3CSr problem on instances adapted from [3].

Instance Solution of
CG3CSr

LB Difference
from LB (%)

Time (s) Columns
generated

HFF3 Improvement
over HFF3 (%)

gcut1_3dr 163 161 1.242 0.13 118 181 9.94
gcut2_3dr 157 153 2.614 5.34 459 255 38.43
gcut3_3dr 136 130 4.615 121.33 2697 199 31.66
gcut4_3dr 460 453 1.545 650.82 3883 666 30.93
gcut5_3dr 100 98 2.041 0.35 133 140 28.57
gcut6_3dr 228 225 1.333 3.51 601 330 30.91
gcut7_3dr 373 369 1.084 17.34 908 467 20.13
gcut8_3dr 325 319 1.881 2155.94 7789 529 38.56
gcut9_3dr 57 54 5.556 0.28 194 81 29.63
gcut10_3dr 198 196 1.020 1.24 177 269 26.39
gcut11_3dr 167 161 3.727 158.81 2657 282 40.78
gcut12_3dr 378 370 2.162 920.53 4376 543 30.39

AVERAGE 2.402 29.694
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computational time, since all instances were solved (to optim-
ality) in at most 0.01 s.

For the three-dimensional cutting stock problem and its
variants, the column generation algorithm found solutions, on
average, within 1.8% of the lower bound. And, when we compare
with the primal heuristic we have high improvements. The
computational time was high for the case when ortho-
gonal rotations are allowed. We had instances solved in about
2600 s.

For the three-dimensional cutting stock problem with variable
bin size (and its variants) the column generation algorithm found
solutions differing 2.6%, on the average, from the lower bound. On
the other hand, a lot of computational time (more than 100
thousand seconds), was required to solve some instances, mainly
for the case in which orthogonal rotations are allowed. So this
problem showed to be harder to solve than the 3CS problem.

The column generation algorithms for the strip packing pro-
blem and its variants also obtained solutions very close to the

Table 8
Results for the 3CSV problem on instances adapted from [3].

Instance Solution of CG3CSV LB Difference
from LB (%)

Time (s) Columns
generated

gcut1_3d 2,431,875,000 2,415,000,000.0 0.699 0.60 1821
gcut2_3d 2,386,093,750 2,338,125,000.0 2.052 9.64 10,699
gcut3_3d 2,179,687,500 2,137,243,406.8 1.986 114.06 33,936
gcut4_3d 6,894,218,750 6,845,773,809.5 0.708 1572.03 163,072
gcut5_3d 13,342,500,000 13,190,833,333.3 1.150 0.35 542
gcut6_3d 29,420,000,000 29,130,171,875.0 0.995 5.73 7796
gcut7_3d 36,553,750,000 36,153,136,160.7 1.108 44.05 26,332
gcut8_3d 41,788,750,000 41,280,158,270.4 1.232 1622.03 197,427
gcut9_3d 59,860,000,000 58,847,226,277.4 1.721 0.41 646
gcut10_3d 197,420,000,000 196,062,395,833.3 0.692 0.33 550
gcut11_3d 174,270,000,000 171,061,388,146.2 1.876 74.32 38,689
gcut12_3d 370,100,000,000 366,802,923,728.8 0.899 143.49 18,204

AVERAGE 1.260

Table 9
Results for the 3CSVr problem on instances adapted from [3].

Instance Solution of CG3CSVr LB Difference
from LB (%)

Time (s) Columns
generated

gcut1_3dr 1,582,187,500 1,521,787,500.0 3.969 5.56 3946
gcut2_3dr 1,917,812,500 1,823,075,945.0 5.197 169.04 12,384
gcut3_3dr 2,011,718,750 1,908,532,902.9 5.407 4049.10 68,502
gcut4_3dr 5,819,531,250 5,652,226,962.2 2.960 113,341.67 373,377
gcut5_3dr 10,518,750,000 9,932,319,046.0 5.904 14.35 4639
gcut6_3dr 22,545,000,000 21,728,068,481.4 3.760 178.02 20,807
gcut7_3dr 31,166,250,000 30,536,088,859.9 2.064 2464.12 77,720
gcut8_3dr 38,084,200,000 37,119,105,733.3 2.534 335,101.12 354,237
gcut9_3dr 54,280,000,000 50,302,713,615.5 7.907 9.61 6112
gcut10_3dr 157,500,000,000 154,562,209,821.4 1.901 64.77 6583
gcut11_3dr 152,710,000,000 143,306,761,029.1 6.562 7636.69 102,188
gcut12_3dr 300,410,000,000 293,985,781,261.7 2.185 51,168.44 211,262

AVERAGE 4.196%

Table 10
Results for the 4-staged3CSV problem on instances adapted from [3].

Instance Solution of CG3CSV LB Difference
from LB (%)

Time (s) Columns
generated

gcut1_3d 2,432,500,000 2,415,000,000.0 0.725 0.43 1193
gcut2_3d 2,443,125,000 2,417,773,437.5 1.049 8.85 8907
gcut3_3d 2,238,750,000 2,205,086,568.8 1.527 149.56 39,142
gcut4_3d 6,963,906,250 6,900,824,728.3 0.914 1678.22 134,327
gcut5_3d 14,187,500,000 14,122,500,000.0 0.460 0.25 356
gcut6_3d 29,960,000,000 29,722,351,562.5 0.800 4.88 5936
gcut7_3d 37,412,500,000 37,028,616,071.4 1.037 33.46 18,482
gcut8_3d 43,150,000,000 42,814,590,460.7 0.783 958.29 90,063
gcut9_3d 61,620,000,000 61,051,648,936.2 0.931 0.17 271
gcut10_3d 198,200,000,000 196,451,666,666.7 0.890 1.17 1532
gcut11_3d 181,930,000,000 178,705,312,500.0 1.804 24.25 12,067
gcut12_3d 374,660,000,000 371,975,610,351.6 0.722 258.72 20,801

AVERAGE 0.970%
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lower bound: the difference was at most 1.6%. As in the case of
the 3CS and 3CSV problems, the improvement over the solutions
returned by the primal heuristics was larger than 22.5%, on
average. It is important to note that the solutions for the k-staged
version of the 3CS, 3CSV and 3SP problems for k¼3 were very
similar to those for k¼4. The main difference was in the little
increase of computational time when k¼4.

The computational results indicate that the algorithms pro-
posed in this paper may be useful to solve real-world instances of
moderate size. For the instances considered here, the algorithms
found optimum or quasi-optimum solutions in a satisfactory
amount of computational time.
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Table 12
Results for the 4-staged3SP problem on instances adapted from [3].

Instance Solution of
CG3SP

LB Difference
from LB (%)

Time (s) Columns
generated

M-HFF3 Improvement
over M-HFF3 (%)

gcut1_3d 35,510 35,458.2 0.146 0.02 41 35,648 0.39
gcut2_3d 45,400 45,372.2 0.061 0.72 138 48,151 5.71
gcut3_3d 37,632 37,565.5 0.177 26.60 1201 43,537 13.56
gcut4_3d 112,507 112,334.5 0.154 303.90 5077 134,169 16.15
gcut5_3d 54,311 54,208.8 0.188 0.02 39 55,413 1.99
gcut6_3d 114,387 114,114.7 0.239 0.37 408 127,178 10.06
gcut7_3d 162,829 162,551.2 0.171 2.88 370 182,543 10.80
gcut8_3d 185,854 185,425.5 0.231 440.59 5993 208,859 11.01
gcut9_3d 58,804 58,317.3 0.835 0.04 79 61,002 3.60
gcut10_3d 191,638 190,937.9 0.367 0.34 238 205,111 6.57
gcut11_3d 192,456 191,962.8 0.257 19.61 1915 209,980 8.35
gcut12_3d 399,664 398,647.1 0.255 461.47 3930 421,417 5.16

AVERAGE 0.257% 7.779%

Table 13
Results for the 4-staged3SPr problem on instances adapted from [3].

Instance Solution of
CG3SPr

LB Difference
from LB (%)

Time (s) Columns
generated

M-HFF3 Improvement
over M-HFF3 (%)

gcut1_3dr 24,863 24,757.1 0.428 0.73 246 32,808 24.22
gcut2_3dr 30,824 30,440.4 1.260 105.28 2276 43,364 28.92
gcut3_3dr 32,246 31,922.2 1.014 978.46 7776 41,750 22.76
gcut4_3dr 90,838 90,175.2 0.735 14,590.06 31,584 117,003 22.36
gcut5_3dr 40,931 40,263.0 1.659 1.82 147 52,695 22.32
gcut6_3dr 87,297 86,758.8 0.620 39.90 1660 113,529 23.11
gcut7_3dr 121,259 120,707.1 0.457 441.89 5446 159,555 24.00
gcut8_3dr 149,917 148,765.7 0.774 23,620.73 25,946 190,709 21.39
gcut9_3dr 52,314 51,523.6 1.534 1.22 219 60,608 13.68
gcut10_3dr 151,532 150,583.5 0.630 22.70 303 193,338 21.62
gcut11_3dr 150,444 149,160.8 0.860 2005.83 4856 193,689 22.33
gcut12_3dr 296,361 294,843.5 0.515 28,057.17 24,402 376,038 21.19

AVERAGE 0.874% 22.325%
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