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Combinatorial Optimization Problems

I Finite Domain (enumerable)
I Optimization function: costs, lengths, quantities
I Objective: minimization or maximization

Example: Traveling Salesman Problem (TSP)
I Input:

- Non-oriented graph: G = (V ,E),
- cost in the edges: ce ≥ 0, ∀e ∈ E .

I Objective:
Find a tour (hamiltonian cycle) of minimum cost that visits
each node exactly once.
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Find a hamiltonian cycle with minimum cost
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hamiltonian cycle of minimum cost: 27
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Naive algorithm for TSP: Try all possible tours.
Complexity: O(n!), where n = |V |.
Good algorithm = polynomial time algorithm
(Cobham’64&Edmonds’65)
Probably there will not exists efficient algorithms for TSP
Other hard problems:
I Frequency assignment in cellular phones
I Packing of objects into containers
I Scheduling of workers/people
I Scheduling of tasks in computers
I Object classification
I Map coloring
I Computer network design
I Many others...
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Computational Complexity

Decision Problems
I Example: Given a graph G, do there exists a hamiltonian

cycle in G ?

I Example: Given a complete graph G = (V ,E), with edge
weights c : E → Z+ and a positive integer K , do there
exists a hamiltonian cycle in G, of cost at most K ?

I Example: Given a map M and an integer K , can I color M
with K colors without conflict ?

I Example: Given a complete graph G = (V ,E), weight in
the edges c : E → Z+, nodes s and t and a positibe
integer K , do there exists a path in G, from s to t , of weight
at most K ?
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Polynomial time reduction between problems
P1 is polynomially reducible to P2 (P1 � P2) if
I ∃ Ti transforms instance I1 of P1 to instance I2 of P2

I ∃ Ts tranforms solution S2 of I2 to solution S1 of I1
I Ti and Ts have polynomial time complexity

I1

S2:=A2(I2)

S2

I2
I2:=Ti(I1)

S1:=Ts(S2)
S1Solução

Instância

Consequences:
If P2 is “polynomial” then P1 is “polinomial”.
If P1 is “exponential” then P2 is at least “exponential”.
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Polynomial time reduction between decision problems

P1 is polynomial time reducible to P2 (P1 � P2) if
I ∃ T that tranforms instance I1 of P1 to instance I2 of P2

I I1 has solution if and only if I2 has solution
I T is “polynomial”

Consequences:
If P2 is “polynomial” then P1 is “polynomial”.
If P1 is “exponential” then P2 is at least “exponential”.
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Complexity classes:
P, NP, NP-Complete, NP-Hard

X ∈ P:
X can be decided in polynomial time.

X ∈ NP:
X has “short” certificate verifiable in polynomial
time.

X ∈ NP-Complete:
X ∈ NP and ∀Y ∈ NP, Y � X .

X ∈ NP-hard:
∀Y ∈ NP, Y � X , where X does not necessarily
belongs to NP.
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P

NP−Difíceis

NP−Completos

Polinomiais

NP

Vários Problemas Práticos

Conjecture: P=NP ?
US$ 1 million prize.
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Problems in P

I Given a set of integers S, do there exists n ∈ S such that
n =

∑
i∈S\{n} i ?

I Is a graph G connected ?

I Given a complete graph G = (V ,E), weight on the edges
c : E → Z+, nodes s and t and a positive integer K , do
there exists a path in G, from s to t , of cost at most K ?

I Can a map be colored with 4 colors without conflicts ?
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NP-complete problems

I Given a set of integers S, do there exists N ⊆ S such that∑
i∈N i =

∑
i∈S\N i ?

I Given a graph G, do there is a hamiltonian cycle in G ?

I Given a complete graph G = (V ,E), weight in the edges
c : E → Z∗ and a positive integer K , do there exists a
hamiltonian cycle in G, of weight at most K ?

I Given a complete graph G = (V ,E), weight in the edges
c : E → Z, nodes s and t and a positive integer K , do there
exists a path in G, from s to t , of weight at most K ?

I Can I color a map with 3 colors without conflicts ?
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NP-hard problems
I Several practical problems are NP-hard

Examples:
I Frequency assignment in cellular phones
I Packing of objects into containers
I Scheduling of workers/people
I Scheduling of tasks in computers
I Object classification
I Map coloring
I Computer network design
I Many others...

I P6=NP⇒ there is no efficient algorithmf for NP-hard
problems
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Comparing polynomial and exponential times

f (n) n = 20 n = 40 n = 60 n = 80 n = 100
n 2,0×10−11seg 4,0×10−11seg 6,0×10−11seg 8,0×10−11seg 1,0×10−10seg
n2 4,0×10−10seg 1,6×10−9seg 3,6×10−9seg 6,4×10−9seg 1,0×10−8seg
n3 8,0×10−9seg 6,4×10−8seg 2,2×10−7seg 5,1×10−7seg 1,0×10−6seg
n5 2,2×10−6seg 1,0×10−4seg 7,8×10−4seg 3,3×10−3seg 1,0×10−2seg
2n 1,0×10−6seg 1,0seg 13,3dias 1,3×105séc 1,4×1011séc
3n 3,4×10−3seg 140,7dias 1,3×107séc 1,7×1019séc 5,9×1028séc

Considering a 1 Terahertz computer (one thousand faster than
a 1 Gigahertz computer).
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Comparing polynomial and exponential times
f (n) Current computer 100×faster 1000×faster

n N1 100N1 1000N1
n2 N2 10N2 31.6N2
n3 N3 4.64N3 10N3
n5 N4 2.5N4 3.98N4
2n N5 N5 + 6.64 N5 + 9.97
3n N6 N6 + 4.19 N6 + 6.29

Fixing execution time
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Approximation Algorithms
I Approach to deal with NP-hard problems
− NP-hard problems need solutions

I Fast algorithms (polynomial time algorithms)
− In general approximation algorithms are fast
− adequate for large instances where exact algorithms are prohibitive

I Guarantee of proximity to an optimal solution
− Formal analysis about the generated solutions

I New complexity classes in NP-hard
− NP-complete problems are polynomially equivalent, but
− optimization problems present many different
complexities

under the approximation approach
I Aggregate theoretical value to algorithms/heuristics
− Academic area values formal analysis
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I Inspiration to the development of heuristics
− Heuristics take advantage of the combinatorial
structures used in approximation algorithms

I Development of recent theories
− Large attention academic community
− New techniques in the development of algorithms
− new theories about inapproximability of problems

I Development of exact algorithms
− Exact algorithms use feasible solutions to bound search
− Most exact algorithms are based in enumeration

I Algorithmic game theory
− similar analysis/measures to find price of anarchy

I Analysis of online algorithms
− algorithms without information about further events

Motivação 19



Computational experiments

I Williamson’93
Matching problem: Graphs up ot 131.000 nodes, within 2%
of optimum

I Goemans & Willamson’94
Max-Cut problem: Graphs with up to 200 nodes, within 4%
of the optimum

I Homer & Peinado’94
Max-Cut problem: Graphs with up to 13.000 nodes
distributed implementation of Goemans & Williamson
algorithm

I Hall’95
Steiner tree problem: Graphs with up to 1000 nodes /
60.000 edges within 7% of optimum
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I Hu & Wein
Steiner Forest: Graphs with up to 64 nodes, within 5% of
optimum

I Johnson, Minkoff, Phillips’00
Steiner tree problem with penalties: graphs with up to
76.000 nodes. Close to optimum solutions

I Barahona & Chudak’99
Facility Location Problem: hybrid technique in graphs with
3000 facilities and 3000 clients, within 1% of optimum

I Mihail, Mostrel, Dean & Shallcross’95
Survivable Network Design Problem: Bellcore software.
Solutions close to the optimum.
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Great challenges

I VLSI circuit design instances
Johnson’90: TSP graphs with 1.2 million nodes (and
increasing)
Other large instances occur in crystallography

I expensive bounds
For many instances it is impossible to solve large
linear/semidefinite programs in reasonable time (many
used to develop approximation algorithms)

I Real applications have large instances
Currently, solved by parts.
Examples: VLSI circuit design, scheduling of workers,
facility locations...
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Main techniques

I Combinatorial methods
I Dynamic programming
I Methods based on linear programming
I Probabilistic methods
I Semidefinite programming
I inapproximability techniques
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Some problems

I Task scheduling problem
I Set cover problem
I Knapsack problem
I Bin packing
I Traveling salesman problem
I Steiner forest
I Maximum satisfiability
I Maximum cut
I Maximum clique
I Facility Location
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Measures of approximation

I Absolute approximation
I Approximation factor
I Asymptotic approximation factor
I Approximation factor for probabilistic algorithms
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Absolute Approximation

Given an algorithm A and an instance I,
I OPT(I) is the value of an optimum solution
I A(I) is the value of a solution generated by A over I

A has absolute approximation k if

|A(I)− OPT(I)| ≤ k ∀ instance I.

Absolute Approximation 26



Coloring of planar graphs

Def.: A graph G = (V ,E) is planar if there is an immersion of
the graph in the plane so that two edges can only intersect on
the nodes they are incident.

Problema PLANAR-COLORING: Given a simple planar graph
G = (V ,E), color the nodes of G with the minimum number of
colors, in such a way that adjacent nodes have distinct colors.

Theorem: PLANAR-COLORING is NP-hard.

Theorem: There exists a 1-absolute approximation for the
PLANAR-COLORING (Appel & Haken’76)
Absolute Approximation 27



A 3-absolute approximation

Idea of the algorithm: Induction based on the following theorem

Theorem: If G is simple and planar, then G has at least one
node with degree at most 5.
Proof. Euler theorem for connected planar graphs says:

|E | = |V |+ |F | − 2,
where F is the number of faces of a immersion of G in the
plane. Proof: Exercise.

Using this theorem, we can prove that

|E | ≤ 3|V | − 6 (Exercise)

Using the relation of number of edges and the total sum of
node degrees, the result follows. (Exercise).
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ALGORITHM 6-COLORS G = (V ,E)
1 If E = ∅ then,
2 color(v) := 1, ∀v ∈ V .
3 else, if G is bipartite, V = (X ,Y ) then
4 color(x):= 1, ∀x ∈ X and color(y):= 2, ∀y ∈ Y .
5 else,
6 let v ∈ V such that degree(v) ≤ 5
7 Paint G′ := G − v recursively.
8 Let c ∈ {1, . . . ,6} a color not used by adjacent nodes
of v
9 color(v) := c.

Theorem: 6-Colors is a 3-absolute approximation.
Proof. If E = ∅ or G is bipartite,

6-Colors(G) = OPT(G)
otherwise, OPT(G) ≥ 3

6-Colors(G)− OPT(G) ≤ 3.
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A 2-absolute approximation

Theorem: Describe an algorithm 5-Colors that is a 2-absolute
approximation.
Proof. Exercise.
Idea: Based on the algorithm 6-Colors. Let v the removed node
of degree at most 5.
• If the neighbours of v use ≤ 4 cores, paint v with one of
remaining colors for it.
• Otherwise, consider an immersion of G in the plane.
W.L.G. (Without Loss of Generality) let 1, . . . ,5 the neighbours
of v , numbered from the horary sense around v and let i and j
be two non-consecutive neighbours (in the acyclic order) of v .
Try to recolor i with the color of j changing the two colors from i .
If possible, we obtain a new color available for v . Otherwise,
repaint other nodes.
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Edge Coloring

Problem EDGE COLORING: Given a graph G, color the edges
of G with the minimum number of colors, where the adjacent
edges must have distinct colors.

Applications: Scheduling, coloring of circuit wires, etc.

Theorem: (Holyer’81) The Edge Coloring problem is NP-hard.

Theorem: (Vizing’64) It is possible to color the edges of G with
∆(G) + 1 colors, where ∆(G) is the largest degree of a node in
G.

Corollary: There exists an algorithm with absolute
approximation 1 for the Edge Coloring problem.
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Negative Results: Scale sensibility

Knapsack problem

Knapsack Problem: Given set of items S = {1, . . . ,n}, each
item i with integer weight vi and integer size si , i = 1, . . . ,n,
and integer B, find S′ ⊆ S that maximizes

∑
i∈S′ vi such that∑

i∈S′ si ≤ B.

Theorem: If P 6= NP then there is no polynomial time algorithm
with absolute approximation k for the Knapsack problem, for
any fixed k.
Proof. Suppose there exists algorithm A and k such that

|OPT(I)− A(I)| ≤ k ,
where k is bounded by a polynomial in n.
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Let I := {S = (1, . . . ,n), v = (v1, . . . , vn), (s1, . . . , sn),B} an
instance.
Let I′ := {S = (1, . . . ,n), v = (v ′1, . . . , v

′
n), (s1, . . . , sn),B} an

instance where v ′i := (k + 1) · vi .

OPT(I)

A(I)

OPT(I’)

A(I’)

K

K’
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(k + 1)OPT(I) = OPT(I′)
Let Sol a solution of I corresponding the one generated by A for
I′.

|OPT(I′)− A(I′)| ≤ k

=⇒
|(k + 1) · OPT(I)− (k + 1)Sol | ≤ k

=⇒
(k + 1) · |OPT(I)− Sol | ≤ k .

=⇒
|OPT(I)− Sol | ≤ k

k + 1
.

=⇒
|OPT(I)− Sol | ≤ 0.

=⇒
OPT(I) = Sol
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Maximum Clique Problem

Def.: Given a graph G = (V ,E), a set S ⊆ V is a clique if
∀u, v ∈ S ⇒ {u, v} ∈ E.

Clique Problem: Given a graph G, find a clique in G of
maximum cardinality.

Theorem: (Karp’72) Clique is an NP-hard problem.
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Absolute inapproximability of Maximum Clique Problem

Def.: Let Gm a graph with m copies of G adding all edges
between nodes of distinct copies.

Fato: If the largest clique of G has size k then, the largest
clique of Gm has size k ·m.

Theorem: If P 6= NP then there does not exists a polynomial
time algorithm with absolute approximation k for the Maximum
Clique Problem, for any value of k bounded by a polynomial in
n.
Proof.
Suppose there exists an algorithm A and positive integer k ,
bounded by a polynomial in n, such that

|OPT(G)− A(G)| ≤ k ∀ instance I
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Then

|OPT(Gk+1)− A(Gk+1)| ≤ k
|(k + 1) · OPT(G)− A(Gk+1)| ≤ k

Let Sol the largest sub-clique in a copy of the clique produced
by A(Gk+1).
Sol has size at least A(Gk+1)

k+1 .
=⇒

|(k + 1) · OPT(G)− (k + 1)Sol | ≤ k .

=⇒
|(k + 1)(OPT(G)− Sol)| ≤ k .

=⇒
|OPT(G)− Sol | ≤ k

k + 1
.

=⇒
|OPT(G)− Sol | ≤ 0.

=⇒
Sol = OPT(G)
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Approximation Factor

Given an algorithm A and instance I,
I OPT(I) is the value of an optimum solution
I A(I) is the value of the solution produced by A
I A is an approximation algorithm with factor α if

A(I) ≤ α · OPT(I) ∀I, for minimization

A(I) ≥ α · OPT(I) ∀I, for maximization

I A has a tight factor α if ∀ε > 0 we have

∃I such that A(I) > (α− ε)OPT(I), for minimization

∃I such that A(I) < (α + ε)OPT(I), for maximization

Approximation Factor 38



Task scheduling
Scheduling problem: Given a list of tasks L = (J1, . . . , Jn),
task Ji with time t(Ji) and m identical machines, find a partition
of L, (M1, . . . ,Mm), such that maxi t(Mi) is minimum.
Theorem: SCHEDULING is NP-hard.

Graham Algorithm: Schedule the next task in a less loaded
machine.

GRAHAM (m,n, t)
1 for j from 1 to m do Mj ← ∅
2 for i from 1 to n do
3 let k a machine such that

∑
i∈Mk

ti is minimum

4 Mk ← Mk ∪ {i}
5 return {M1, . . . ,Mm}
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Example:

L= ( )
2 3 1 5 4 5 10

L= ( )
2 3 1 5 4 5 10

Graham algorithm

L= ( )
2 3 1 5 4 5 10

Graham algorithm

L= ( )
2 3 1 5 4 5 10

Graham algorithm

L= ( )
2 3 1 5 4 5 10

Graham algorithm

L= ( )
2 3 1 5 4 5 10

Graham algorithm

L= ( )
2 3 1 5 4 5 10

Graham algorithm

L= ( )
2 3 1 5 4 5 10

Graham algorithm

Graham(L) = 16

L= ( )
2 3 1 5 4 5 10

Graham algorithm

Graham(L) = 16

OPT(L) = 10

Optimum scheduling
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Theorem: Graham(L) ≤ 2 OPT(L) .
Proof. Let Jk the last executed task in the scheduling.

k

k

Graham(L)Graham(L)−t

OPT(L) ≥ maxi t(Ji) ≥ t(Jk )

OPT(L) ≥ 1
m

∑
i

t(Ji) ≥ Graham(L)− t(Jk )

I.e., 2 · OPT(m,n, t) ≥ Graham(L).

Exercı́cio: O fator de aproximação do algoritmo Graham(L)
pode ser melhorado para 2− 1/m.

Exercı́cio: O fator de aproximação do algoritmo Graham(L) é
justo.
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Algorithm LPT - Longest Processing Time

LPT (m,n, t)
1 Sort tasks such that t1 ≥ t2 ≥ . . . ≥ tn.
2 return Graham (m,n, t)

Theorem: LPT(m,n, t) ≤ 3
2 OPT(m,n, t) .

Proof.
Let k the last task executed in the LPT scheduling.

If n ≤ m or tk =LPT(m,n, t) then LPT(m,n, t) = OPT(m,n, t).

Else, we have OPT(m,n, t) ≥ 2tk . I.e., tk ≤ OPT(m,n,t)
2 .

We know that: LPT(L) ≤
∑

i ti
m + tk ,

∑
i ti

m ≤ OPT(L) and
tk ≤ OPT(m,n,t)

2

So, LPT(L) ≤ OPT(L) + OPT(m,n,t)
2 = 3

2OPT(m,n, t)

Is this analysis tight ?
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Theorem: LPT(m,n, t) ≤ 4
3 OPT(m,n, t) .

Proof. By contradiction. Supose there exists an instance such
that LPT(L)

OPT(L) >
4
3 . Consider such an instance with smallest

number of tasks.

As the instance has minimum number of tasks, tn is the last
executed task.

LPT(L) ≤
∑

i ti
m + tn and OPT(L) ≥

∑
i ti

m

So, LPT(L) ≤ OPT(L) + tn.

That is, 4
3 <

LPT(L)
OPT(L) ≤ 1 + tn

OPT(L) .

Therefore: OPT(L) < 3tn.

As tn is the smallest task, all machines have at most 2 tasks. In
this case, we can conclude that the obtained LPT scheduling is
optimum (exercise), leading to a contradiction.
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Lema: The factor 4
3 for algorithm LPT is tight.

Proof. Exercise.

Idea: Consider m = 4 machines and n = 9 tasks, where
t1 = t2 = 7, t3 = t4 = 6, t5 = t6 = 5, t7 = t8 = 4, and
t9 = 4. Extrapolate the instance for large values of m.
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Vertex Cover
Vertex Cover Problem: Given graph G = (V ,E), find C ⊆ V
such that {u, v} ∩ C 6= ∅ ∀{u, v} ∈ E and |C| is minimum.

Applications: Given museum, dispose the minimum number of
guards that cover all rooms of the museum.

Negative Results

Theorem: VERTEX COVER is NP-hard.

Theorem: If there exists α-approximation for the Vertex Cover
problem with α < 7/6 then P=NP (Hastad’97).
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Find a vertex cover:
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Vertex Cover:
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Greedy algorithm by edge
Idea: Find a maximal matching.
EDGE-GREEDY-VERTEX-COVER (G)
1 C ← ∅
2 while E 6= ∅
3 choose (i , j) ∈ E
4 C ← C ∪ {i , j}
5 remove all adjacent edges i and j
6 return C
Theorem: Greedy-Vertex-Cover is 2-approximation (Gavril).
Proof. Chosen edges form a maximal matching.

C

Any vertex cover must have at least ≥ |C|/2 nodes.

Vertex Cover 48



Set Covering

Def.: Given a collection S of subsets of E we say that S cover E , or
is a covering of E , if ∪S∈SS = E .

Set Cover Problem: Given set E , subsets S of E , costs c(S),
S ∈ S, find a covering S′ ⊆ S that minimizes c(S′).

Negative results

Theorem: SET COVER PROBLEM is NP-Hard.

Theorem: There is no approximation algorithm with factor
(1− ε) ln |E |, for ε > 0, to the Set Cover Problem, unless
P = NP (Dinur, Steurer’14).
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Find a set covering:
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Set covering:
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Virus detection

Application (Williamson/IBM): There exists some sequences
to detect each virus, each sequence has 20 or more bytes, in a
total of 900 sequences. The objective is to find the minimum
number of sequences that detect all 500 virus.
I Sets: Each sequence identify a set of virus.
I Base set: Set of all virus.

Greedy algorithm: 190 sequences
Lower bound the optimum solution: 185 sequences
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Greedy approach:
Select the set with smallest relative weight.

MINCC-CHVÁTAL (E , S, c)

1 if E = ∅
2 then return ∅
3 else let Z in S such that cZ/|Z ∩ E | is minimum
4 E ′ ← E \ Z
5 S′ ← {S ∈ S : S ∩ E ′ 6= ∅ }
6 let c′ be a restriction of c to S′

7 T ′ ← MINCC-CHVÁTAL (E ′, S′, c′)
8 return {Z} ∪ T ′
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Lemma: If Z ∈ S is such that c(Z )/|Z | is minimum,

then
cZ
|Z |
≤ OPT(E , S, c)

|E |

Proof.
Let S∗ be an optimum covering.

cZ
|Z |
|E | ≤

cZ
|Z |
∑

S∈S∗ |S|

≤
∑

S∈S∗
cS
|S|
|S|

=
∑

S∈S∗ cS

= c(S∗)

= OPT(E , S, c) .
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Theorem: Algorithm MINCC-CHVÁTAL is an Hn-approximation to
the MINCC (E , S, c), where n := |E | and

Hn := 1 + 1
2 + 1

3 + · · ·+ 1
n .

Proof. By induction in |E |.
If |E | = 0, the theorem is clearly valid.
Consider the instance (E , S, c), |E | > 0.

c({Z} ∪ T ′) =

= cZ + c′(T ′)
≤ |Z |

n OPT(E , S, c) + H|E ′|OPT(E ′, S′, c′)

≤ |Z |
n OPT(E , S, c) + Hn−|Z |OPT(E , S, c)

=
(1

n
+

1
n

+ · · ·+ 1
n

+ Hn−|Z |

)
OPT(E , S, c)

≤
(1

n
+

1
n − 1

+ · · ·+ 1
n − |Z |+ 1

+ Hn−|Z |

)
OPT(E , S, c)

= Hn OPT(E , S, c) .
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Theorem: The approximation factor of the algorithm
MINCC-CHVÁTAL is tight.
Proof.

1/(n−1)

1+  ε

1 1/2 1/3 1/4 1/n

E := {1, . . . ,n},
S := {E , {1}, . . . , {n}},

c(E) := 1+ε e
c({i}) := 1/i para cada i .

Optimum covering has cost {E}.
OPT(E , S, c) = 1+ε.

MINCC-CHVÁTAL produces set {{1}, . . . , {n}}.
MINCC-CHVÁTAL(E , S, c) = Hn.
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Traveling Salesman Problem

Problema TSP: Given a graph G and cost function
ce : E → Q≥, find a hamiltonian cycle C that miminizes c(C).

B

C

A

D9

3

9

5

10

6

Graph G

B

C

A

D9

3

9

5

10

6

Hamiltonian Cycle in G of cost 27

Applications:
• Soldering or drilling points in circuit boards.
• Finding minimum routes.
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Negative results
Theorem: Given a graph G, the problem to decide if G has
hamiltonian cycle is NP-complete.

Theorem: There is no α-approximation to TSP, for any value α that
can be computed in polynomial time, unless P=NP

Proof. Suppose there exists α-approximation for the TSP.

1

1

MM

M

M

1

1

1

1

Given graph G = (V ,E) let G′ = (V ′,E ′, c′) be such that
• V ′ = V
• E ′ = V × V

• c′(e) =

{
1 if e ∈ E ,
α|V | otherwise

If G has hamiltonian cycle, OPT(G′) = |V |

otherwise, OPT(G′) > α|V |.

=⇒ we can decide the existence of a hamiltonian cycle in G.
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Metric TSP

Def.: The cost of a graph satisfy triangular inequality if

c(i , j) ≤ c(i , k) + c(k , j), ∀i , j , k ∈ V

i j

k

c(i,j)

c(i,k) c(k,j)

Metric TSP Problem: Given a graph G with cost function ce in
Q≥ for each edge e, satisfying triangular inequality, find a
hamiltonian cycle C with minimum cost.
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Strategy:
Find a spanning cycle and perform “shortcuts”.

ALGORITHM SHORTCUT(P),
Find a closed trail P =
(v0, . . . , vm = v0)
1 w0 ← v0

2 n← 0
3 for i from 1 to m do
4 if vi /∈ {w0, . . . ,wn}
5 then n← n + 1
6 wn ← vi

7 return {w0, . . . ,wn} v

v

v3

v4
1

2

v

v

v3

v4
1

2

0v

v5

v5

0v
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Theorem: A minimum spanning tree can be found in
polynomial time.

Theorem: G has eulerian cycle⇔ G is connected and
degree(v) is even, ∀v ∈ V.

Theorem: Finding an eulerian cycle can be done in polynomial time.

TSPM-ROSENKRANTZ-STEARNS-LEWIS (G, c)

1 T ← MINIMUM-SPANNING-TREE (G, c)

2 T ′ ← T u ET

3 P ← EULERIAN-CYCLE (T ′)
4 C ← SHORTCUT (P)

5 return C
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T T

0

1 2

3

5
4

Shortcut

9
1 2

4

8

67

3

5

10
0

Eulerian cycle

T+E

Theorem: TSPM-Rosenkrantz-Stearns-Lewis is a
2-approximation.
Proof.

c(T ) ≤ OPT(G) =⇒ c(T + ET ) ≤ 2OPT(G).
Shortcuts cannot worsen the value of the solution cost.
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Christofides algorithm
Strategy:
Augment the spanning tree with light edges, in a way to obtain
an eulerian cycle.

Theorem: The problem to find a minimum perfect matching
can be done in polynomial time.

TSPM-CHRISTOFIDES (G, c)

1 T ← MINIMUM-SPANNING-TREE (G, c)

2 let I be the set of nodes with odd degree in T
3 M ← MINIMUM-PERFECT-MATCHING (G[I], c)

4 T ′ ← T u M
5 P ← EULERIAN-CYCLE (T ′)
6 C ← SHORTCUT (P)

7 return C
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Lema. c(M) ≤ 1
2OPT(G).

An optimum circuit C.
Odd nodes in red.

Circuit C′ after shortcut on even nodes
We have c(C′) ≤ c(C)

Decomposition of C′ into M ′ and M ′′

(c(M ′)+c(M ′′)=c(C′)≤c(C)=OPT(G))
Therefore,
c(M) ≤ c(M′)+c(M′′)

2 ≤ c(C)
2 = OPT(G)

2
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7

ShortcutEulerian cycle

T T+M

6

0 1

2

4

5

78

9

10
0 1

2

33

4

5

6

Theorem: TSPM-Christofides is a 3
2 -approximation.

Proof. From previous lema: c(M) ≤ 1
2OPT(G).

Therefore
c(C) ≤ c(T ) + c(M) ≤ OPT(G) + 1

2OPT(G) = 3
2OPT(G).
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Approximation Schemes

Def.: Polynomial Time Approximation Schemes (PTAS):
Family of algorithms {Aε}, ε > 0, for a problem such that Aε is a

(1 + ε)-approximation for minimization problem,
(1− ε)-approximation for maximization problem.

Example of complexity times: O(n
1
ε ), O(n25

1
ε ) e O(1

εn
3).

Def.: Fully Polynomial Time Approximation Scheme (FPTAS):
PTAS {Aε} such that Aε is polynomial time in 1

ε .

Examples: O(1
εn

2) e O( 1
ε2

n5).
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Knapsack Problem

Knapsack Problem: Given items S = {1, . . . ,n}, each item i
with integer value vi and integer weight si , for i = 1, . . . ,n, and
integer B, find S′ ⊆ S that maximizes

∑
i∈S′ vi such that∑

i∈S′ si ≤ B.

Idea:
Change the scaling of the values, round down considering
some discretization, and apply exact algorithm.

Def.: Let A(i , v) ≡ be the minimum weight of a set of {1, . . . , i}
with value exactly v (∞ if such set does not exist).

We consider that si ≤ B and vi > 0 for any i ∈ S.
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V

V ′ = bn
ε
c

vi

v ′i

Changing the scale and rounding

Value loss for each item: V
n/ε .

In the worst case: n V
n/ε = εV ≤ εOPT
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Exact algorithm for integer values

ALGORITHM EXACT-KNAPSACK(B,n, s, v)
1 V ← maxi vi
2 for i ← 0 to n do A(i ,0)← 0
3 for w ← 1 to nV do A(0,w)←∞
4 for i ← 1 to n do
5 for w ← 1 até nV do
6 if vi ≤ w then
7 A(i ,w)← min(A(i − 1,w), si + A(i − 1,w − vi))
8 else
9 A(i ,w)← A(i − 1,w)

Time complexity: O(n2 · V ).

Solution in cell (n,w): w = max{w ′ : A(n,w ′) ≤ B}.
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Items
∖

Val. 0 1 2 . . . w−vi . . . w . . . nV

∅ 0 ∞ ∞ . . . ∞ . . . ∞ . . . ∞
1. . .1 0 . . . . . . . . .

1. . .2 0 . . . . . . . . .
...

... . . . . . . . . .

1. . .i−1 0 . . . A(i−1,w−vi) . . . A(i−1,w) . . .

1. . .i 0 . . . A(i ,w) . . .
...

... . . . . . . . . .

1. . .n 0 . . . . . . . . .

where A(i ,w) ≡ is the minimum weight of a subset of {1, . . . , i}
with value exactly w (∞ if such set does not exist).

A(i ,w) =

{
min((A(i−1,w) , si +A(i − 1,w−vi)) se vi ≤ w
A(i − 1,w) C. c.
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ALGORITHM KNAPSACK-IKε(B,n, s, v)
1 V ← maxi vi
2 K ← εV

n
3 v ′i ←

⌊ vi
K

⌋
∀i % I.e., v ′i =

⌊n
ε

vi
V

⌋
4 Run Exact-Knapsack(B,n, s, v ′)

Theorem: Knapsack-IKε is an FPTAS.
Prova. Let

S be a solution found by Knapsack-IKε,
O∗ be an optimum solution of I and
OPT be the value of O∗.

Kv ′i ≤ vi < K (v ′i + 1)

vi ≤ K (v ′i + 1) =⇒ Kv ′i ≥ vi − K
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Therefore, ∑
i∈S

vi ≥
∑
i∈S

K · v ′i

≥
∑
i∈O∗

K · v ′i

≥
∑
i∈O∗

(vi − K ) =
∑
i∈O∗

vi − |O∗|K

≥
∑
i∈O∗

vi − nK =
∑
i∈O∗

vi − εV

≥ OPT− ε · OPT = (1− ε) · OPT.

Time Complexity: O(n2V ′)=O(n2
⌊

V
K

⌋
)=O(n3 1

ε ).
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PTAS for the Task Scheduling Problem

Problem SCHEDULING: Given a list of tasks L = (J1, . . . , Jn),
each task with time t(Ji) and m identical machines, find a
partition of L, (M1, . . . ,Mm), such that maxi t(Mi) is minimum.

Theorem: Problem SCHEDULING is strongly NP-complete.

Corollary: There is no FPTAS to SCHEDULING, unless
P = NP.

There is a PTAS for the SCHEDULING
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Def.: A polynomial time algorithm Rε is said to be
(1 + ε)-restricted for the problem SCHEDULING if given ε, time T
and an instance (L, t ,m) it returns:
I ∅ - if there is no scheduling within time T or
I S - where S is a scheduling with val(S) ≤ (1 + ε)T .

Lemma: Let L := max{maxj t(Jj) ,
∑

j t(Ji )

m }, then

OPT(L) ∈ [L,2L]

Proof. Note that algorithm SCHEDULING-GRAHAM returns a
scheduling bounded by maxj t(Jj) +

∑
j t(Ji )

m ≤ 2L
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Algorithm of Hochbaum and Shmoys’88
Idea: Build algorithm (1 + ε)-restricted and use binary search.
This algorithm uses a (1 + ε)-restricted subroutine Rε.

SCHEDULING-HSε (L,m, t)
1 S← SCHEDULING-GRAHAM(L,m, t)
2 T ′ ← max{maxj t(Jj) ,

∑
j t(Ji )

m }
3 T ′′ ← 2T ′

4 ε′ ← ε
3

4 while T ′′ − T ′ > ε′T ′ do
5 let T ← T ′+T ′′

2
6 S′ ← Rε′(L,m, t ,T )
7 if S′ 6= ∅ then
8 T ′′ ← T ;
9 S← S′;

10 else
11 T ′ ← T
12 return S
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Theorem: (Hochbaum & Shmoys’88) SCHEDULING-HS is a
PTAS for the Scheduling problem.
Proof.
In each iteration, we have a scheduling S′ and interval [T ′,T ′′] that:
• val(S′) ∈ [T ′,T ′′(1 + ε′)],
• T ′ ≤ OPT.
The binary search stops with a scheduling S such that
T ′′
T ′ ≤ 1 + ε′. So,

val(S) ≤ (1 + ε′)T ′′

≤ (1 + ε′)(T ′ + ε′T ′)
= (1 + ε′)2T ′

≤ (1 + 2ε′ + ε′2)OPT

≤ (1 + ε)OPT

Time complexity: polynomial in the instance size and in 1
ε .
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A (1 + ε)-restricted algorithm

Subroutine: algorithm (1+ε)-restricted, RGε, for tasks with time
larger than εT .

Rε(L,m, t ,T )
1 G← {j ∈ L : t(j) > εT}
2 P ← L \G
3 SG ← RGε(G,m, t ,T )
4 if SG = ∅ then return ∅
5 else
6 schedule the items of P into SG using algorithm GRAHAM

7 if val(S) > (1 + ε)T then return ∅
8 else return S

Lema: Rε is a (1 + ε)-restricted algorithm.

Proof. Exercise.
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A (1 + ε)-restricted algorithm for large items

Subrotine: algorithm, Exactε,k , obtains a scheduling in time T ,
when there is up to k different times.
If there is no such scheduling, return ∅.

Idea: Define fixed times and round down processing times.

RGε(G,m, t ,T )
1 for each j ∈ G do
2 let i be such that t(j) ∈ [ εT + iε2T , εT + (i + 1)ε2T )
3 t ′(j)← εT + iε2T
4 k ← b1/εc
5 S← Exactε,k (G,m, t ′,T )
6 return a partition S

PTAS para Escalonamento de Tarefas 78



Lema: RGε is a (1 + ε)-restricted algorithm.
Proof.
Note that t ′(j) ∈ {εT , εT +ε2T , . . . , εT +k2 ε2T}.

Let S 6= ∅ a scheduling produced by RGε(G,m, t ′,T ).

Note that
I there are at most k = 1

ε tasks in each machine;
I there are at most k2 = 1

ε2
different task sizes;

I the loss due to the rounding is at most ε2T for each task.
I the total loss due to the rounding is at most εT .

Therefore, the total processing time in each machine in S is at
most (1 + ε)T .
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Exact algorithm for big tasks and restricted times

Given instance (G,m, t ′,T ) and integer k , where t ′(j) ≥ εT and
there are at most k2 different times in t ′, find a scheduling S

with makespan at most T , if one exists.
We give a decision version of this algorithm:
Decide if a set L of tasks can be scheduled with makespan T
using at most m machines

Approach: Dinamic Programming.

I Number of possibilities to assign jobs in one machine is
polynomial.

I For m machines, test all possibilities in one machine and
verify each possibility if the remaing can be executed in
m − 1 machines.
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DecisionExactε,l(G,m, t ′,T )
1 for i = 1 to k2 do
2 si ← εT + (i − 1)ε2T
3 ni ← |{j ∈ G : t ′(j) = si}|

4 let Q ← {(a1, . . . ,ak2) :
∑k2

i=1 aisi ≤ T e 0 ≤ ai ≤ ni}
5 M(0, . . . ,0)← 0
6 for each (a1, . . . ,ak2) ∈ Q do M(a1, . . . ,ak2)← 1

7 for a1 ← 0 to n1 do
8 for a2 ← 0 to n2 do
9 . . .

10 for ak2 ← 0 to nk2 do
11 if (a1, . . . ,ak2) /∈ Q then
12 let (b1,. . .,bk2)∈Q s.t. M(a1−b1,. . ., ak2−bk2) is minimum
13 M(a1, . . . ,ak2)← 1 + M(a1 − b1, . . . ,ak2 − bk2)

14 if M(n1, . . . ,nk2) ≤ m return YES

15 else return NO
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Lema: Given instance (G,m, t ′) and time T , where G has at
most k2 distinct processing times in t ′, algorithm
DecisionExactε,k2 decide if G can be scheduled into m
machines within time T in polynomial time.
Proof. As ni ≤ n, i = 1, . . . , k2, we have
I |Q| = O((k + 1)k2

)

I Steps 4 and 6: time O(k (k + 1)k2
)

I Steps 7–13: time O(nk2
k (k + 1)k2

)

For constant value of k , the algorithm has polynomial time
complexity.

PTAS para Escalonamento de Tarefas 82



Integer Linear Programming

LP Problem: Given matrix A = (aij) ∈ Qm×n, vectors
c = (ci) ∈ Qn and b = (bi) ∈ Qm, find a vector x = (xi) ∈ Qn (if
exists) that

minimize c1x1 + c2x2 + · · ·+ cnxn

subject to



a11x1 + a12x2 + · · ·+ a1nxn ≤ b1
a21x1 + a22x2 + · · ·+ a2nxn ≥ b2

...
...

...
am1x1 + am2x2 + · · ·+ amnxn = bm
xi ∈ Q

Theorem: LP can be solved in polynomial time.
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ILP Problem: Given matrix A = (aij) ∈ Qm×n, vectors
c = (ci) ∈ Qn and b = (bi) ∈ Qm, find vector x = (xi) ∈ Zn (if
exists) that

minimize c1x1 + c2x2 + · · ·+ cnxn

subject to



a11x1 + a12x2 + · · ·+ a1nxn ≤ b1
a21x1 + a22x2 + · · ·+ a2nxn ≥ b2

...
...

...
am1x1 + am2x2 + · · ·+ amnxn = bm
xi ∈ Z

Theorem: ILP is an NP-hard problem.
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Def.: We say that a set of points P,

P :=

x ∈ Qn :

a11x1 + a12x2 + · · ·+ a1nxn ≤ b1
...

...
...

am1x1 + am2x2 + · · ·+ amnxn ≥ bm


as a polyhedron.
Def.: If yi ∈ P and αi ∈ Q, i = 1, . . . ,n we say that
y = α1y1 + α2y2 + · · ·+ αnyn is a convex combination of points y ′i s
if αi ≥ 0 and α1 + · · ·+ αn = 1
Def.: The vertices of P are the points of P that cannot be written by
convex combination of other points of P

v
2

v
5

v
1

v
3

v
4
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Theorem: A solution that is a vertex of a LP can be found in
polynomial time.

Polynomial time algorithms to solve LP:
I Ellipsoid algorithm and
I Interior Point Method.

Exponential time method to solve LP:
I Simplex Method (polynomial time on the average).

Formulation using binary variables
Consider an event e and variables xe formulated as:

xe =

{
1 if event e occurs,
0 if event e does not occur.
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Matching in bipartite graphs

Def.: Given a graph G = (V ,E), we say that M ⊆ E is a matching
of G if M does not have edges with vertices in common.

Bipartite matching problem: Given a bipartite graph
G = (V ,E), and costs in the edges c : E → Z, find a matching
M ⊆ E that maximizes c(M).
Application: Find assignment of candidates to vacancies,
maximizing global score.
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Formulation to bipartite matching problem

Integer programming formulation

maximize
∑
e∈E

cexe

subject to


∑

e∈δ(v)

xe ≤ 1 ∀v ∈ V

xe ∈ {0,1} ∀e ∈ E

Linear Relaxation

maximize
∑
e∈E

cexe

subject to


∑

e∈δ(v)

xe ≤ 1 ∀e ∈ E

0 ≤ xe ≤ 1 ∀e ∈ E

Theorem: The vertices of the relaxed polyhedron are integers.
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Example:

Consider the following bipartite graph with unit costs:

e1

e2
e4

e3

Linear Programming
maximize xe1 + xe2 + xe3 + xe4

subject to



xe1 + xe2 ≤ 1,
xe3 + xe4 ≤ 1,
xe1 + xe3 ≤ 1,
xe2 + xe4 ≤ 1,
0 ≤ xe1 ≤ 1,
0 ≤ xe2 ≤ 1,
0 ≤ xe3 ≤ 1,
0 ≤ xe4 ≤ 1
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We have 4 binary variables in the corresponding LP:

X = (xe1 , xe2 , xe3 , xe4)
The following vectors are optimum solutions:

X ′ = (1,0,0,1) X ′′ = (0,1,1,0) X ′′′ = (
1
2
,
1
2
,
1
2
,
1
2

)

X’’X’ X’’’

I X ′ and X ′′ are vertices of the matching polyhedron
I X ′′′ is optimum solution, but is convex combination of X ′

and X ′′ (X ′′′ = 1
2X ′ + 1

2X ′′).
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Maximum Flow and Minimum Cut
Def.: Given an oriented graph G = (V ,E), capacities c : E → Q+

and nodes s and t , a flow from s to t is a vector f ∈ QE , such that∑
u

f (u, v)−
∑

w

f (v ,w) = 0 ∀v ∈ V − {s, t},

0 ≤ f (e) ≤ c(e) ∀e ∈ E ,

The value of flow f is equal to
∑

v f (s, v)
Maximum Flow Problem: Given a oriented graph G = (V ,E),
capacities c : E → Q+ and vertices s and t , find a flow of
maximum value from s to t .
Theorem: If the capacities ce are integers, then the vertices of
the flow polyhedron are integers.
Def.: Given S ⊆ V , s ∈ S and t /∈ S, the capacity of the cut (S,S)
is equal to

∑
(u,v)∈(S,S) c(v ,w).

Theorem: (Menger) If ce = 1, ∀e, then the maximum number of
edge disjoint paths is equal to the minimum number of edge removal
to disconnect s and t .
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Theorem: The value of the maximum flow from s to t is equal
to the capacity of the minimum cut separating s and t.

3

6

5

1

1

4
2

3

11

6
1

3

6

5

1

1

4
2

3

11

6
1

s t

G(V,E,c)

s t

Corte de capacidade 5
1

1

2
1

1
2

2

1

0

1

1

4

s t

fluxo de valor 5

Corolário: The maximum number of edge disjoint paths from s
to t is equal to the minimum number of edge removal to
disconnect s and t.
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Knapsack problem
Knapsack problem: Given items S = {1, . . . ,n} with value vi
and integer size si , i = 1, . . . ,n, and integer B, find S′ ⊆ S that
maximizes

∑
i∈S′ vi such that

∑
i∈S′ si ≤ B.

maximize
∑
i∈[n]

vixi

subject to


∑
i∈[n]

sixi ≤ B

xi ∈ {0,1} ∀i ∈ [n]

where [n] = {1, . . . ,n}.
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Covering, Packing and Partitions

Let E be a set and C a collection of subsets of E .

Let Ce := {C ∈ C : e ∈ C} and S ⊆ C such that
xC = 1⇔ C ∈ S.

• S is a covering if ∑
C∈Ce

xC ≥ 1 ∀e ∈ E ,

• S is a packing if ∑
C∈Ce

xC ≤ 1 ∀e ∈ E ,

• S is a partition if ∑
C∈Ce

xC = 1 ∀e ∈ E .
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Set covering problem
Set covering problem: Given set E , subsets S of E , costs
c(S), S ∈ S, find covering S′ ⊆ S that minimizes c(S′).

minimize
∑
S∈S

cSxS

subject to


∑
S∈Se

xS ≥ 1 ∀e ∈ E

xS ∈ {0,1} ∀S ∈ S
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Facility Location Problem
Facility Location Problem: Given potential facilities
F = {1, . . . ,n}, clients C = {1, . . . ,m}, costs fi to “open” a
facility i and costs cij ∈ Z for each client j attended by facility i .
Find facilities A ⊆ F such that, the cost to open facilities in A
and the cost to attend all clients
Application: Install distribution outlets.

minimize
∑
i∈F

fiyi +
∑
ij∈E

cijxij

subject to



∑
ij∈E

xij = 1 ∀j ∈ C,

xij ≤ yi ∀ij ∈ E ,
yi ∈ {0,1} ∀i ∈ F
xij ∈ {0,1} ∀i ∈ F e j ∈ C.
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Optimization × Separation
Def.: Separation Problem: Let P ⊆ Rn a convex set and y ∈ Rn,
determine if y ∈ P, otherwise, find constraint ax ≤ b such that
P ⊆ {x : ax ≤ b} and ay > b.

y

ax b
P

Theorem: The optimization of a linear program can be solved
in polynomial time if and only if the separation problem can be
solved in polynomial time.
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CUTTING PLANE ALGORITHM(P, c)
P polyhedron (non necessarily in explicit way),
c objective function

1 Q ← {Initial Polyhedron}
2 y ←OPT-LP(Q, c)

3 while y can be separated from Q do
4 let ax ≤ b be a valid inequality that separate y
5 Q ← Q ∩ {x : ax ≤ b}
6 y ←OPT-LP(Q, c)

7 if Q = ∅ return ∅
8 else return y .

y
0

P

objetivo
função

Q
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Q
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P

y
1

y
2

Q

y
3

y
4
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P
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Matching problem
Def.: Given a graph G = (V ,E), we say that M ⊆ E is a matching
of G if M does not have edges with common vertices.

maximize
∑
e∈E

cexe

subject to



∑
e∈δ(v)

xe ≤ 1 ∀v ∈ V ,

∑
e∈E [S]

xe ≤ |S| − 1
2

∀S ⊆ V , |S| odd,

xe ∈ {0,1} ∀e ∈ E .

,

where E [S] := {e ∈ E : e have both vertices in S}.
Theorem: The vertices of the relaxed matching polytope are
integers (Edmonds’65).
Theorem: The separation for the relaxed matching polytope
constraints can be solved in polynomial time (Padberg &
Rao’82).
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Traveling Salesman Problem
Problema TSP: Given a graph G = (V ,E) and cost ce in Q≥ for
each edge e, find a hamiltonian circuit C that minimizes c(C).
minimize

∑
e∈E

cexe

subject to



∑
e∈δ(v)

xe = 2 ∀v ∈ V∑
e∈δ(S)

xe ≥ 2 ∀S ⊂ V , S 6= ∅

(subtour elimination constraints)
xe ∈ {0,1} ∀e ∈ E

onde E [S] := {e ∈ E : e has both vertices in S}.
Theorem: The separation of the subtour elimination constraints
can be solved in polynomial time.
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Steiner Forest Problem

Let G be a graph and R a collection of subsets of VG.
Def.: A R-forest of G is any spanning forest F of G such that
for any R ∈ R, the elements of R belongs to some component
of F .

Steiner Forest Problem: Given a graph G, cost ce in Q≥ for
each edge e and a collection R of sets of VG, find a R-forest F
that minimizes c(F ).
Applications:
I VLSI circuit routing.
I Network design problems.
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Formulation:

minimize
∑
e∈E

cexe

subject to


∑

e∈δ(S)

xe ≥ 1 ∀S ⊂ V : ∃R ∈ R, ∅ 6= S ∩ R 6= R

(connectivity constraints)
xe ∈ {0,1} ∀e ∈ E

Theorem: The separation problem of the connectivity
constraints can be solved in polynomial time.
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LP Rounding Method
Vertex Cover Problem: Given graph G = (V ,E) and costs
c : V → Q≥, find S ⊆ V such that {u, v} ∩ S 6= ∅ ∀{u, v} ∈ E
and c(S) is minimum.

(P)
minimize c x

subject to xi + xj ≥ 1 for each ij in E ,
xi ≥ 0 for each i in V .

MINCV-NT (G = (V ,E), c)

1 let x̂ be an optimum solution of (P)

2 S ← {v ∈ V : x̂v ≥ 1/2}
3 return S
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Theorem: MINCV-NT is a 2-approximation
(Nemhauser,Trotter’75; Hochbaum’83).
Proof. MINCV-NT produces a vertex cover:

(S := {v ∈ V : x̂v ≥ 1/2} and xi + xj ≥ 1 ∀ij ∈ E) =⇒ S is a covering.

c(S) =
∑
i∈S

ci

≤
∑
i∈S

ci2 x̂i

= 2
∑
i∈S

ci x̂i

≤ 2
∑
i∈V

ci x̂i

= 2 c x̂
≤ 2 OPT
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Generalization to the Set Covering Problem
Set Covering Problem: Given set E , family of subsets S of E ,
costs c(S) ∈ Q≥, S ∈ S, find covering S′ ⊆ S that minimizes∑

S∈S′ c(S).

(P)

minimize c x

subject to
∑
S∈Se

xS ≥ 1 for each e in E ,

xS ≥ 0 for each S in S .

where Se = {S ∈ S : e ∈ S}

MINCC-HOCHBAUM (E , S, c)

1 let x̂ an optimal solution of (P)

2 for each e in E do fe ← |{S ∈ S : e ∈ S}|
3 β ← maxe∈E fe
4 T ← {S ∈ S : x̂S ≥ 1/β}
5 return T
Primal Method 106



Theorem: The algorithm MINCC-HOCHBAUM is a
β-approximation for MINCC (E , S, c), where β is the maximum
number of times an element of E appear in subsets of S.
Proof. The cost of the covering T produced by the algorithm is

c(T ) =
∑
S∈T

cS

≤
∑
S∈T

cSβ x̂S

= β
∑
S∈T

cS x̂S

≤ β c x̂
≤ β OPT(E , S, c) ,

where the first inequality is valid because β x̂S ≥ 1 for each S in
T .
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Unrelated Machine Scheduling

Unrelated Machine Scheduling problem: Given a list of tasks
J = (1, . . . ,n), and machines M = (1, . . . ,m), times pij ≥ 0 for
each ij ∈ M × J, find a partition of J, (M1, . . . ,Mm), such that
max

{∑
j∈Mi

pij : i ∈ M
}

is minimum.

Theorem: UNRELATED MACHINE SCHEDULING is NP-hard.

Here is an Integer Linear Programming (ILP) formulation:

minimize T
such that

∑
i∈M

xij = 1, for any j ∈ J,∑
j∈J

pijxij ≤ T , for any i ∈ M,

xij ∈ {0,1}, for any i ∈ M and j ∈ J.
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Unrelated Machine Scheduling

Linear Relaxation:

minimize T
such that

∑
i∈M

xij = 1, for any j ∈ J,∑
j∈J

pijxij ≤ T , for any i ∈ M,

xij ≥ 0, for any i ∈ M and j ∈ J.

Fact: The integrality gap of the relaxation is unbounded.
Proof. Consider J = {1}, M = {1, . . . ,m}, and pi1 = m.
The optimum solution value of the relaxed formulation has
value 1, while the optimum integer solution has value m, which
leads to an integrality ratio of m.
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Unrelated Machine Scheduling
Consider a time T ≥ 0 and an ILP to decide if there exists a
scheduling of J into M in time at most T .

If this ILP is feasible, xij = 0 whenever pij > T .

Let E(T ) = {(i , j) ∈ M × J : pij ≤ T}.

Consider the relaxed parameterized formulation P(T )∑
i: (i,j)∈E(T )

xij = 1, para todo j ∈ J,

P(T )
∑

j: (i,j)∈E(T )

pijxij ≤ T , para todo i ∈ M,

xij ≥ 0, para todo (i , j) ∈ E(T ).

Let T ∗ be the smallest value such that P(T ∗) is feasible and

let x∗ be a corresponding optimum solution for P(T ∗) that is an
extremal point.
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Unrelated Machine Scheduling

Algorithm AUMS: (J,M,p)

1 Let T ∗ be the smallest value such that P(T ∗) is feasible.

2 Let x∗ be an extremal point solution to P(T ∗).

3 Let Ni ← {j ∈ J : x∗ij = 1} for i = 1, . . . ,m.

4 Let G the graph with vertices set V (G) = M ∪ J and
edges E(G) = {(i , j) ∈ M × J : 0 < x∗ij < 1}.

5 Let A ⊆ E(G) a maximum matching in G.

6 Let Mi ← Ni ∪ {j ∈ J : (i , j) ∈ A}, for i = 1, . . . ,m.

7 Return (M1, . . . ,Mm).
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Unrelated Machine Scheduling

Lemma: x∗ has at most n + m non-null variables.

Proof.
I Let v be the number of variables in P(T ).

I There exists a total of n + m + v constraints

I and v constraints are in the form x∗ij ≥ 0.

I x∗ must satisfy v linear independent constraints with equality

I Therefore, at least v − (n + m) constraints of type x∗ij ≥ 0
are satisfied with equality.

So, at most v − [v − (n + m)] = n + m entries in x∗ can be
non-zero.

Unrelated Task scheduling 112



Unrelated Machine Scheduling

Def.: A connected graph is a pseudotree if it contains at most
one cycle.

A graph is a pseudoforest if each one of its components is a
pseudotree.

Given time T and an extremal point x of P(T ), let Gx the graph
with vertices V (Gx ) = M ∪ J and edges
E(Gx ) = {(i , j) ∈ E(T ) : 0 < xij < 1}.
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Unrelated Machine Scheduling

Lemma: Let T ≥ 0 and an extremal point x of P(T ), then Gx is
a pseudoforest.

Proof. Let C be a conected component Gx and M ′ and J ′ the
sets of machines and tasks obtained in the edges of C.

Let PC(T ) and xC the constraints of the linear program P(T )
and the vector x for the connected component C and the sets
of machines and tasks M ′ and J ′.

Let xC the vector of the other variables in x that are not in xC .

For simplicity, reorder the coordinates so that x can be written
as the concatenation of xC and xC , i.e., x = xC | xC .
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Cont.
Fact: xC is an extremal point of PC(T ).

Proof. Suppose by contradiction that xC is not extremal point.
I.e., existem solutions distintas x ′C and x ′′C such that xC is
convex combination of x ′C and x ′′C .

Let x ′ = x ′C |xC the vector obtained by concatenating the vectors
x ′C and xC and x ′′ = x ′′C |xC the vector obtained by
concatenation of the vectors x ′′C and xC .
Note that x ′ and x ′′ are distinct solutions from P(T ).

It follows that

x = xC | xC

= (αx ′C + βx ′′C) | (αxC + βxC)

= α(x ′C | xC) + β(x ′′C | xC)

= αx ′ + βx ′′.

That is, x is convex combination of x ′ and x ′′, contradicting the
fact that x is extremal point of P(T ).
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Cont.

Analogously to the formulation P(T ), the linear program PC(T )
has n′ + m′ + v ′ constraints, where n′ = |J ′|, m′ = |M ′| and v ′ is
the number of variables in PC(T ).

From these contraints, v ′ of them are of type xij ≥ 0. As xC is
extremal point of PC(T ), it follows from Lemma 112 that xC has
at most n′ + m′ non-null variables.

As C is a connected graph with n′ + m′ vertices, there is
n′ + m′ − 1 variables of xC that produces a tree of C and
therefore C has at most one cycle, and therefore, a pseudotree
of X .
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Lemma: Let T ≥ 0 and a extremal point x of P(T ), then Gx
has a perfect matching.
Proof.
I Gx is bipartite (machines × tasks) and pseudoforest.

I All leaves of Gx are machines (cannot be tasks with only
one fractional edge)

I Start with an empty matching M.

I Whenever there is an edge (i , j), where i is a leaf
include (i , j) into M and remove i and j .
Repeat this process while there are leaves.

I The residual graph is a set of cycles, each one of even
size.

I For each cycle, include half of its edges to M alternating
positions.
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Teorema: The algorithm AUMS is a 2-approximation.

Proof.
Let
I T ∗ e x∗ obtained in steps 1 and 2. Clearly T ∗ ≤ OPT
I N the assignment made in step 3 (with integer variables).
I A the assignment made via maximum matching in step 5.

The final scheduling is N ∪ A.
I The makespan of N is at most T ∗. That is

makespan(N) ≤ OPT

I The makespan of A is at most the size of the largest task.

makespan(A) ≤ OPT

Therefore,

AUMS(I) ≤ makespan(N) + makespan(A) ≤ 2OPT
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Unrelated Machine Scheduling
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Unrelated Machine Scheduling
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Asympotic approximation factor
Adequate when the approximation factor is only attended
for “small” instances
Given an algorithm A for a minimization problem and instance I,

I OPT(I) is the value of an optimum solution
I A(I) is the value of a solution produced by algorithm A
I A has asymptotic approximation factor α if

R∞A := inf

{
r ≥ 1 : ∃N > 0,

A(I)
OPT(I)

≤ r ,OPT(I) > N
}
≤ α

Analogous definitions can be done for maximization
problems.
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Notation: Given set B ⊆ {1, . . . ,n} and a function s : N→ R,
we denote by s(B) the value

∑
i∈B

si .

Bin Packing Problem (n, s) Given positive integer n and, for
each i in {1, . . . ,n}, a rational number si in the interval [0,1],
find a partition B of {1, . . . ,n} such that s(B) ≤ 1 for any B in B
and |B| is minimum.

Theorem: There is no α-approximation for the BIN PACKING

problem with α < 3/2, unless P = NP.
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Theorem: (Fernandez de la Vega and Lucker’81) There exists
a polynomial time algorithm Aε, ε > 0, for the BIN PACKING

problem such that
Aε(L) ≤ (1 + ε)OPT(L) + 1,

for any instance L.

We will prove the following result:

Theorem: (Fernandez de la Vega and Lucker’81) There exists a
linear time algorithm Aε, ε > 0, for the bin packing problem,
such that

Aε(L) ≤ (1 + ε)OPT(L) + βε,
for any instance L, where βε only depends on ε.
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NF (n, c)

1 k ← 1
2 Bk ← ∅
3 for i from 1 to n do
4 if si ≤ 1− s(Bk )

5 then Bk ← Bk ∪ {i}
6 else k ← k + 1
7 Bk ← {i}
8 return {B1, . . . ,Bk}

Theorem: NF is a 2-approximation for the bin packing problem.
Proof. Exercise.

Lemma: If B = {B1, . . . ,Bk} is a packing of L such that
s(Bi) ≥ 1− ε

2 , for i = 1, . . . , k − 1 and ε ∈ (0,1) then
k ≤ (1 + ε) · OPT(L) + 1

Proof. Exercise.
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Restricting itens in the number of types and size

L has at most k different item types, each with size at least ε
where k and ε are constants.

0

2

1

0

3

4

i

3i

1

i2

i3

i4

5ii1 i1i1 i4 i

P

Representation of a pattern in a vector

k different types in L, each item with size at least ε
⇓

number of different patterns is bounded by constant.
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Algorithm RSTk ,ε(L)

1. Produce all possible patterns P1,P2, . . . ,Pw of packing
items of L into one unit bin.

2. Let x∗ be an optimum solution of the following LP with at
most k non-null variables:

minimize
∑

xi
s.t. P1 ·x1+P2 ·x2+· · ·+Pw ·xw = M,

xi ∈ Q∗

where M is the vector of multiplicities of the items in L.

3. Get a packing P of L rounding up the variables x∗

4. Return P
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Lemma: RSTk ,ε(L) ≤ OPT(L) + k
Proof. As we have at most k diffent item types in L, the LP

minimize
w∑

i=1

xi

s.a. P1 ·x1+P2 ·x2+· · ·+Pw ·xw = M,

xi ∈ Q∗

has k lines and therefore, there exists a solution that is an
extremal point with at most k non-null variables.
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Restricting the items in the size

L has items with size at least ε.

Idéia: Linear Rounding
Group items by size in k sublists and round up the size of the
items of each sublist to the largest size in the sublist.

Def.: We have A�B (B�A) if ∃ injective function
f :A→ B such that s(i) ≤ s(f (i)).

Fact: If A�B then OPT(A)≤OPT(B)

Def.: Let A a list with items of A rounded up to the largest item
in A.
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Linear Rounding: Supose all items in L are big (si > ε)
Partition the list into groups of same size and
round up the items in each group, except for the largest group

List

Rounding
LR 

Linear

L

Original

G0 G1 G2 Gk. . .

. . .G0 GkG2G1

εOPT

Idea: OPT(LR) ≤ (1 + ε)OPT(L)
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Let L sorted in non-increasing order and partitioned into groups
L = (G0‖G1‖ . . . ‖Gk )
where k and Gi are such that |Gi |=q, i =0,. . ., k−1 and
|Gk |≤q.

Fact: Gi � Gi−1.

Fact: OPT(G1‖G2‖ . . . ‖Gk ) ≤ OPT(L)
Proof. Note that

(G1‖G2‖ . . . ‖Gk ) � (G0‖G1‖ . . . ‖Gk−1)

� (G0‖G1‖ . . . ‖Gk−1‖Gk )

= L
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Algorithm RSε(L)
1. Sort L in non-increasing order of size.

2. Given q = dn · ε2e, partition L into groups
L = (G0‖G1‖ . . . ‖Gk ) where k and Gi are such that

|Gi |=q, i =0,. . ., k−1 and |Gk |≤q

3. Let J ← (G1‖G2‖ . . . ‖Gk ).

4. P1..k ← RSTk ,ε(J)

5. P0 ← NF(G0)

6. Return P0‖P1..k
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Lemma: RSε(L) ≤ (1 + ε) · OPT(L) + βε
Proof. As J � L

RSTk ,ε(J) ≤ OPT(J) + kε
≤ OPT(L) + kε

NF(G0) ≤ q = dn · ε2e
≤ n · ε2 + 1
≤ ε · s(L) + 1
≤ ε · OPT(L) + 1

Therefore

RS(L) = RSTk ,ε(J)+NF(G0)

≤ (OPT(L)+kε)+ (ε · OPT(L)+1)

= (1+ε) · OPT(L)+βε
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Algorithm Aε(L)

1. Partition the list L into L′ and L′′:
L′ := {i ∈ L : s(i) > ε/2} e L′′ := L \ L′.

2. P ′1 ←RSε/2(L′)

3. Pack the items of L′′ using NF strategy to pack into each
bin of P ′1 (if necessary, use new bins).

4. Return the packing generated in the previous step.
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Theorem: Aε(L)≤ (1 + ε)OPT(L)+βε
Proof. Let B1, . . . ,Bk be the set of bins generated by Aε. We
have two cases:

Caso 1: NF generated new bins to pack L′′.
Then

s(Bi) ≥ (1− ε/2), for each i = 1, . . . , k − 1.

Therefore Aε(L) ≤ (1 + ε)OPT + 1.

Caso 2: NF did not generate new bins to pack L′′.
Therefore

Aε(L) = RS(L′) ≤ (1 + ε)OPT + βε
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PROBABILITY AXIOMS

Def.: A probability space has 3 components:
I A sample space Ω

I A family F of events, each E ∈ F is such that E ⊆ Ω.
I A probability function Pr : F → R+

E ∈ F is said to be simple or elementar if |E | = 1

We will consider only discrete probability spaces.
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Def.: A probability function is any function Pr : F → R+ such
that
I ∀E ∈ F we have 0 ≤ Pr(E) ≤ 1
I Pr(Ω) = 1
I For any finite or enumerable sequence of mutually disjoint

events E1,E2, . . . , we have

Pr(E1 ∪ E2 . . .) = Pr(E1) + Pr(E2) + . . .
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Example
Consider we roll a six-sided die.

I Ω = {1, . . . ,6}

Example of events we can consider, based on the number it
shows
I E ′ = the number is even.
I E ′′ = the number is at most 3.
I E ′′′ = the number is a prime number.
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Def.: Two events E and F are said to be independent iff

Pr(E ∩ F ) = Pr(E) · Pr(F )

and events E1, . . . ,Ek are mutually independent iff
∀I ⊆ {1, . . . , k} we have

Pr(
⋂
i∈I

Ei) = Πi∈IPr(Ei).

Lemma: (Union bound) Given events E1,E2, . . . we have

Pr(
⋃
i≥1

Ei) ≤
∑
i≥1

Pr(Ei)
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Def.: A discrete random variable (r.v.) over Ω is a function

X : Ω→ {λ1, . . . , λn}, where each λi is a real number.

Def.: An event (X ∈ S) is a set X−1(S) for S ⊆ {λ1, . . . , λn}.

Notation: Given random variable X and real value a, the event
“X = a” represents a set {e ∈ Ω : X (e) = a}.
Analogously for (X 6= x), (X < x), (X ≤ x), (X > x) and
(X ≥ x).

Def.: The probability of event (X ∈ S) is the number
Pr(X−1(S)), denoted by Pr(X∈S).

So,
Pr(X = a) =

∑
e∈Ω: X(e)=a

Pr(e).
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Def.: The expectation of a random variable X is the number

E[X ] :=
∑n

i=1 λi Pr(X=λi) .

Example
Consider the roll of two dice and let Xi the value of the i-th die,
i = 1,2. Let X = X1 + X2. Then

E [X ] = 2
1
36

+ 3 · 2
36

+ · · ·+ 12 · 1
36

= 7
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LINEARITY OF EXPECTATION

Theorem: For any finite set of discrete random variables
X1, . . . ,Xn with finite expectations

E

[
n∑

i=1

Xi

]
=

n∑
i=1

E [Xi ]

Observation: Note that there is no restrictions on the
independence of the random variables X1, . . . ,Xn.

Lemma: Given a random variable X and constant c, we have
E [c · X ] = c · E [X ].
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Example
Consider the example of the two dice.
Let X1 the value of the first die and let X2 the value of the
second die.
Let X the r.v. of the sum of two dice.
Note that X = X1 + X2. So,

E [X ] = E [X1 + X2]

= E [X1] + E [X2]

= 2 ·
6∑

i=1

i · 1
6

= 7
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BERNOULLI AND BINOMIAL RANDOM VARIABLES

Consider the experiment that has success with probability p
and fail with probability 1− p.
Let Y be a random variable such that

Y =

{
1 the experiment has success
0 otherwise

Then, Y is said to be a Bernoulli random variable.

Lemma: If Y is a Bernoulli random variable with
Pr(Y = 1) = p, then E [Y ] = p.
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Consider a sequence of n independent experiments, each one
with probability of success equal to p.
If X is the number of successes in the n experiments, we say
that X is a binomial r.v. and has binomial distribution.

Def.: A binomial r.v. (b.r.v.) X with parameters n and p,
denoted by B(n,p) is defined by the following probability
distribution with j = 0,1, . . . ,n:

Pr(X = j) =

(
n
j

)
pj(1− p)n−j

Exercise
Prove that

∑n
j=0 Pr(X = j) = 1.
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Lemma: If X is a binomial r.v. B(n,p), then E [X ] = n · p.
Proof. Let Xi a bernoulli r.v. of the i-th experiment.
Then, X =

∑n
i=1 Xi and therefore

E [X ] =
n∑

i=1

E [Xi ]

= n · p
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GEOMETRIC DISTRIBUTION

Def.: A r.v. X is said to be geometric (g.r.v.) with parameter p if
it has distribution

Pr(X = n) = (1− p)n−1 · p.

I.e., the probability to flip a coin n − 1 times with tail (or fail) and
in the n-th we obtain head (success).

Lemma: If X is a geometric r.v. with parameter p, then

E [X ] =
1
p
.

Proof. Exercise.
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Lemma: (Markov inequality) If (Ω,Pr) is a discrete probability
space and X is a random variable over Ω with non-negative
values, then

Pr(X≥λ) ≤ 1
λ

E[X ]

for any positive number λ.
Proof. If {λ1, . . . , λn} is the set of all possible values of X , then

E[X ] =
∑

i

λi Pr(X=λi)

≥
∑
λi≥λ

λPr(X=λi)

= λPr(X≥λ) .

Sometimes it is better to write the Markov inequality as:

Pr(X≥λE[X ]) ≤ 1
λ
.

Some results in probability 147



Useful inequalities
Fact: If m ≥ 1 and |t | ≤ m then(

1 +
t
m

)m

≤ et .

Example: If n ≥ 1 then(
1 +

1
n

)n

≤ e and
(

1− 1
n

)n

≤ 1
e
.

See more in
http://dl.acm.org/citation.cfm?doid=242581.242585
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Randomized Approximation Algorithms

Def.: Randomized algorithms: Algorithms that have access to
random number generators.

Consider the existence of a function RAND. Given ρ ∈ [0,1]
RAND(ρ): return 1 with probability ρ and 0 with probability 1− ρ.

Def.: A randomized algorithm has polynomial time if the
number of calls to RAND and the consumption of the other
operations is bounded by a polynomial in the input size.

Def.: Given an instance I and randomized algorithm A, let XI
be the random variable representing the value of the solution
produced by A over I.
We say that A is a randomized α-approximation if

E[XI ] ≥ αOPT(I) for maximization problems and
E[XI ] ≤ αOPT(I) for minimization problems.
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Approximate Solutions with High Probability

Let XI ≥ 0 be a random variable representing the value of the
solution produced by algorithm A over I for a minimization
problem.
By the Markov inequality, we have

Pr(XI ≥ (α + ε)OPT(I)) ≤ E[XI ]

(α+ε)OPT(I)

≤ αOPT(I)
(α+ε)OPT(I)

=
α

α+ε
.

Given λ ∈ (0,1), let k := dlog α
α+ε

λe and YI be the best result
obtained applying A k times over I. Then

Pr(YI ≥ (α + ε)OPT(I)) ≤ λ.

λ small⇒ solutions within the approximation with good
probability.
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Probabilistic Rounding

Set Cover Problem: Given set E , subsets S of E , costs
c : S→ Q≥, find covering S′ ⊆ S that minimizes

∑
S∈S′ c(S).

Relaxation:

min
∑
S∈S

cSxS

(P)
∑
S∈Se

xS ≥ 1 ∀e ∈ E

xS ≥ 0 ∀S ∈ S,

where Se := {S ∈ S : e ∈ S}

Idea: Solve (P) and consider each xS as a probability to obtain
S.
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MINCC-AP1 (S,E , c)

1 let x̂ (fractional) optimum solution for (P)

2 let T ← ∅
3 for each S ∈ S do
4 include S in T with probability x̂S

5 return T

Lemma: If T is produced by MINCC-AP1, then E [
∑
S∈T

cS] ≤ OPT

Proof.

E [
∑
S∈T

cS] =
∑
S∈S

cS · Pr(S belongs to T )

=
∑
S∈S

cS x̂S ≤ OPT
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Lemma: If T is produced by MINCC-AP1 and f is an element
of E, then Pr(f is not covered by T ) ≤ 1

e ≈ 0,37.

Proof. Let f ∈ E and w.l.o.g. consider Sf = {S1, . . . ,St} the
sets that contain f .

Pr(f is not covered by T )

= Pr(S1 /∈ T ) · Pr(S2 /∈ T ) · . . . · Pr(St /∈ T )

= (1− x̂S1) · (1− x̂S2) · . . . · (1− x̂St )

≤ (1− 1
t

) · (1− 1
t

) · . . . · (1− 1
t

)

= (1− 1
t

)t

≤ 1
e
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Increasing the probability to obtain a covering

Monte Carlo Version

MINCC-AP (S,E , c)

1 let S′ ← ∅ and k = 2 log |E |
2 for i ← 1 to k do
3 Ti ← MINCC-AP1 (S,E , c).
4 S′ ← S′ ∪ Ti

5 return S′

Lemma: If S′ is produced by MINCC-AP then
E [c(S′)] ≤ 2 log |E |OPT
Proof. Exercise.
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Lemma: If S′ is produced by MINCC-AP then
Pr(S′ is a covering of E) ≥ 1− 1

|E | .

Proof. Given f ∈ E , we have that Pr(f is not covered by Ti) ≤ 1
e .

So, Pr(f is not covered by S′) ≤
(1

e

)2 log |E |
= 1
|E |2 .

Given e ∈ E , let Ee the event the element e is not covered by S′.

Pr(S′ is not a covering)

= Pr(
⋃
e∈E

Ee)

≤
∑
e∈E

Pr(Ee)

≤
∑
e∈E

1
|E |2

=
1
|E |

Randomized Approximation Algorithms 155



Las Vegas Version

MINCC-AP-LAS-VEGAS (S,E , c)

1 let S′ ← ∅ and i ← 1
2 while S′ is not a covering, do
3 Ti ← MINCC-AP1 (S,E , c).
4 S′ ← S′ ∪ Ti

5 i ← i + 1
6 return S′

Theorem: Show that the expected number of steps of
algorithm MINCC-AP-LAS-VEGAS is O(log |E |).
Proof. Exercise. Idea: Divide the sequence of iterations into
subsequences of 2 log |E | iterations: S1,S2, . . .. Consider the
possibility to stop in the sequence Si as a geometric random
variable.
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Maximum Satisfiability - MaxSat
Def.: A literal is a variable or its negation.

Def.: A clause C over boolean variables V , is a disjunction of
literals, all associated to different variables.

Given clause C over variables of V , we denote by
C0 ⊆ V : the set of variables “negated”
C1 ⊆ V : the set of variables “non-negated”.

Example: If C ia a clause (a ∨ b ∨ c) then,
C1 = {a} and C0 = {b, c}.

Def.: An assignment of V ia a vector x indexed by V with
values in {0,1} (or false/true).

Def.: An assignment x satisfies clause C if xv = 1 for some
v ∈ C1 or xv = 0 for some v ∈ C0.
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Def.: A boolean formula is in Conjunctive Normal Form (CNF)
if the formula is a conjunction of clauses.

Example of boolean formula in CNF

φ = (a ∨ b ∨ c) ∧ (a ∨ c) ∧ (a ∨ b ∨ d) ∧ (d ∨ c) ∧ (d ∨ a)

Problem MAXSAT (V , C) Given a colection C of clauses over
set of variables V , find an assignment x of V that satisfies the
maximum number of clauses of C.

Theorem: The MAXSAT problem is NP-hard.
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Johnson’s Algorithm
Assign 0 or 1 to the variables with probability 1

2

MAXSAT-JOHNSON (V , C)

1 for each v in V do
2 ẋv ← RAND (1

2)

3 return ẋ

where RAND (p), for p ∈ [0,1], return 1 with probability p and 0
with probability 1− p.

Theorem: If X is a random variable with value equal to the
number of satisfied clauses by the assignment produced by
MAXSAT-JOHNSON and each clause has at least k variables,
then

E[X ] ≥
(

1− 1
2k

)
OPT(V , C) .
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Proof. For each clause C, define a random variable ZC as :
ZC := 1 if the assignment produced satisfy C and
ZC := 0 otherwise.

Pr(ZC=0) ≤ 1/2k ⇒ Pr(ZC=1) ≥ 1− 1/2k .

So,

E[X ] = E[
∑
C∈C

ZC ]

=
∑
C∈C

E[ZC ]

≥ (1− 1
2k )|C|

≥ (1− 1
2k ) OPT(V , C)
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Theorem: The algorithm MAXSAT-JOHNSON is a randomized
0.5-approximation for MAXSAT.

Proof. Straightforward from previous theorem, using k = 1.
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Randomized Rounding Algorithm
Given value ρ ∈ (0,1), round ρ with probabilityρ

(P)

max
∑
C∈C

zC∑
v∈C0

(1− xv ) +
∑
v∈C1

xv ≥ zC ∀ C ∈ C ,

0 ≤ zC ≤ 1 ∀ C ∈ C ,
0 ≤ xv ≤ 1 ∀ v ∈ V .

MAXSAT-GW (V , C)

1 let (x̂ , ẑ) be an optimum (possible rational) solution of (P)
2 for each v in V do
3 ẋv ← RAND (x̂v )
4 return ẋ
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Theorem: If (V , C) is the instance of MAXSAT, each clause with
at most k variables and XC is a random variable which value is
the number of satisfied clauses by an assignment produced by
MAXSAT-GW (V , C), then

E[XC] ≥
(

1−
(
1− 1

k
)k
)

OPT(V , C) .

Proof. Let C ∈ C and ZC be a variable with value 1 if
assignment satisfy C and 0 otherwise. If t is the number of
literals in C then

Pr(ZC=1) = 1−
∏

v∈C0

x̂v
∏

v∈C1

(1− x̂v )

≥ 1−
(∑

v∈C0
x̂v +

∑
v∈C1

(1− x̂v )

t

)t

= 1−
( t −

∑
v∈C0

(1− x̂v )−
∑

v∈C1
x̂v

t

)t

Maximum Satisfiability 163



Troca por função linear
0

1

f (z) ≥ g(z)

f (z) = 1− (1− z/t)t

g(z) = zf (1)

≥ 1−
(

t − ẑC

t

)t

= 1−
(

1− ẑC

t

)t

≥
(

1−
(

1− 1
t

)t)
ẑC

≥
(

1−
(

1− 1
k

)k)
ẑC .

Theorem: The algorithm MAXSAT-GW is a randomized
0.63-approximation for the MAXSAT.
Proof. Follows from the previous theorem together with the
following inequality (

1− 1
k

)k

≤ 1
e
∀k ≥ 1
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Combined Algorithm

MAXSAT-JOHNSON: Better performance when clauses are
large

MAXSAT-GW: Better performance when clauses are
small

Idea: Take the best solution between MAXSAT-JOHNSON and
MAXSAT-GW

MAXSAT-COMBINED-GW (V , C)

1 ẋ ← MAXSAT-JOHNSON (V )

2 ẍ ← MAXSAT-GW (V , C)

3 let ṡ be the number of clauses of C satisfied by ẋ
4 let s̈ be the number of clauses of C satisfied by ẍ
5 if ṡ ≥ s̈
6 then return ẋ
7 else return ẍ
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Theorem: The algorithm MAXSAT-COMBINED-GW is a
randomized 0.75-approximation for MAXSAT.
Proof. Let Ck := {C ∈ C : |C| = k} (clauses with k variables),
Let XC r.v. of solution produced by MAXSAT-COMBINED-GW.
Let ẊC r.v. of solution produced by MAXSAT-JOHNSON.
Let ẌC r.v. of solution produced by MAXSAT-GW.

E[XC] ≥ E[
1
2
(
ẊC + ẌC

)
] =

1
2
(
E[ẊC] + E[ẌC]

)
≥ 1

2

∑
k

∑
C∈Ck

(
(1− 2−k ) + (1− (1− k−1)k )ẑC

)
≥ 1

2

∑
k

∑
C∈Ck

(
1− 2−k + 1− (1− k−1)k)ẑC

≥ 1
2

∑
k

∑
C∈Ck

3
2

ẑC

≥ 3
4

OPT(V , C) .
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Derandomization

Method of conditional expectations (Erdős & Selfridge’ 74):
Idea:
I Compute conditional expectations efficiently
I Iteratively do the next choice without worsening the

expectation.
I After all choices, we have a deterministic algorithm without

worsening the expected value.

Example: Derandomization of the Johnson’s Algorithm

MAXSAT-JOHNSON (V )

1 for each v in V do
2 ẋv ← RAND (1

2)

3 return ẋ
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E [X |x1 = 1]

E [X |x1 = 0]

E [X |x1 = 0, x2 = 0, x3 = 0]

E [X |x1 = 0, x2 = 0, x3 = 1]

E [X |x1 = 0, x2 = 1, x3 = 0]

E [X |x1 = 0, x2 = 1, x3 = 1]

E [X |x1 = 1, x2 = 0, x3 = 0]

E [X |x1 = 1, x2 = 0, x3 = 1]

E [X |x1 = 1, x2 = 1, x3 = 0]

E [X |x1 = 1, x2 = 1, x3 = 1]

E [X ]

E [X |x1 = 0, x2 = 0]

E [X |x1 = 0, x2 = 1]

E [X |x1 = 1, x2 = 0]

E [X |x1 = 1, x2 = 1]

Chose x1, x2 and x3 such that

E [X ] ≤ E [X |x1] ≤ E [X |x1, x2] ≤ E [X |x1, x2, x3]
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MAXSAT-JOHNSON-DERANDOMIZED (V , C)

1 D ← C
2 for each v in V do
3 if ESPCOND (v ,1,D) ≥ ESPCOND (v ,0,D)
4 then ẋv ← 1
5 for each C in D do
6 if v ∈ C1
7 then D ← D \ {C}
8 else C0 ← C0 \ {v}
9 else ẋv ← 0

10 for each C in C do
11 if v ∈ C0
12 then D ← D \ {C}
13 else C1 ← C1 \ {v}
14 return ẋ
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Procedure to compute conditional expectation:
v : boolean variable
i : value assigned to variable v
D: set of clauses

Procedure ESPCOND (v , i ,D)

1 esp ← 0
2 for each C in D do
3 k ← |C1|+ |C0|
4 if v ∈ Ci
5 then esp ← esp + 1
6 else if v ∈ C1−i
7 then esp ← esp + (1− 2−k+1)
8 else esp ← esp + (1− 2−k )
9 return esp
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Theorem: The algorithm MAXSAT-JOHNSON-DERANDOMIZED

is a 0.5-approximation for MAXSAT.
Proof. Let X be a random variable of the number of clauses in
C satisfied by an assignment produced by MAXSAT-JOHNSON(V ).
As the probability of ẋv =1 is 1

2 and the probability of ẋv =0 is
1
2 , we have

E[X ] =
1
2

E[X |ẋv =1] +
1
2

E[X |ẋv =0]

≤ 1
2

E[X |ẋv =i] +
1
2

E[X |ẋv =i]

= E[X |ẋv =i] = E[X |ẋv ]

where i is the value chosen by the algorithm for variable ẋv .
The same reasoning follows for other variables. I.e.,

E[X ] ≤ E[X |ẋv1 ] ≤ E[X |ẋv1 , ẋv2 ] ≤ . . . ≤ E[X |ẋv1 , . . . , ẋvn ] .

As 0.5 OPT(V , C) ≤ E[X ] and the last term is a deterministic
value, the theorem follows.
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Duality in Linear Programming
Consider the following LP:

minimize c1x1 + c2x2 + c3x3

sujeito a


a11x1 + a12x2 + a13x3 ≥ b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 ≤ b3

x1 ≥ 0, x3 ≤ 0

Let us delimit the optimum value of the LP:
Multiply the constraints by y1 ≥ 0, y2 and y3 ≤ 0:

y1(a11x1 + a12x2 + a13x3) ≥ y1b1

y2(a21x1 + a22x2 + a23x3) = y2b2

y3(a31x1 + a32x2 + a33x3) ≥ y3b3

Summing these constraints, we obtain:
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y1(a11x1 + a12x2 + a13x3) ≥ y1b1
y2(a21x1 + a22x2 + a23x3) = y2b2
y3(a31x1 + a32x2 + a33x3) ≥ y3b3

(y1a11 + y2a21 + y3a31)x1 +
(y1a12 + y2a22 + y3a32)x2 +
(y1a13 + y2a23 + y3a33)x3 ≥ (y1b1 + y2b2 + y3b3) = yb

Comparing with the objective function cx = c1x1 + c2x2 + c3x3,
if

c1x1 ≥ (y1a11 + y2a21 + y3a31)x1

c2x2 = (y1a12 + y2a22 + y3a32)x2

c3x3 ≥ (y1a13 + y2a23 + y3a33)x3

In these conditions, we have cx ≥ yb and therefore yb bound
cx from below
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As x1 ≥ 0 and x3 ≤ 0, we can simplify the conditions to have
cx ≥ yb as:

c1 ≥ y1a11 + y2a21 + y3a31

c2 = y1a12 + y2a22 + y3a32

c3 ≤ y1a13 + y2a23 + y3a33

Clearly, between all values of y , we want the largest bound yb,
i.e., with yb maximum. Therefore, we have the following dual
program:

maximize y1b1 + y2b2 + y3b3

subject to


y1a11 + y2a21 + y3a31 ≤ c1
y1a12 + y2a22 + y3a32 = c2
y1a13 + y2a23 + y3a33 ≥ c3
y1 ≥ 0, y3 ≤ 0
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Convention to name these systems:
Primal Program

minimize c1x1 + c2x2 + c3x3

subject to


a11x1 + a12x2 + a13x3 ≥ b1
a21x1 + a22x2 + a23x3 = b2
a31x1 + a32x2 + a33x3 ≤ b3
x1 ≥ 0, x3 ≤ 0

Dual Program

maximize y1b1 + y2b2 + y3b3

subject to


y1a11 + y2a21 + y3a31 ≤ c1
y1a12 + y2a22 + y3a32 = c2
y1a13 + y2a23 + y3a33 ≥ c3
y1 ≥ 0, y3 ≤ 0
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Exercise
Perform the same analysis as before to obtain a dual program
(as a bound to a linear program), but instead to start with a
minimization program, start with a maximization program, and
obtain a dual that is a minimization program.

Exercise
Obtain the dual formulation of the relaxed formulation of the
following problems:
I Vertex Cover Problem
I Set Cover Problem
I Facility Location Problem
I Steiner Tree Problem
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Primal and Dual Programs
Primal Program

(P)

minimize c x
subject to (Ax)i ≥ bi for each i in M1 ,

(Ax)i = bi for each i in M2 ,
(Ax)i ≤ bi for each i in M3 ,

xj ≥ 0 for each j in N1 ,
xj ≤ 0 for each j in N3 .

Dual Program

(D)

maximize y b
subject to (yA)j ≤ cj for each j in N1 ,

(yA)j = cj for each j in N2 ,
(yA)j ≥ cj for each j in N3 ,

yi ≥ 0 for each i in M1 ,
yi ≤ 0 for each i in M3 .
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Lemma: Let (P) be a primal minimization program and (D) its
dual maximization program, then cx ≥ yb for any x ∈ P and
y ∈ D.

Complementary Slackness Conditions
Vectors x and y , indexed by N and M resp., have
complementary slackness condition if,

xj = 0 or (yA)j = cj ∀j ∈ N1 ∪ N3
(primal complementary slackness)
and
yi = 0 or (Ax)i = bi ∀i ∈ M1 ∪M3 (dual complementary
slackness).

Lemma: (complementary slackness) If x and y are feasible
solutions of a linear program (P) and its dual (D), resp., then

(c x = y b) ⇔ (x and y satisfy complementary slackness conditions)
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Theorem: [of duality] If (P) is a minimization linear program and
(D) its dual (of maximization), then exactly one of the
possibilities is valid:

1. (P) and (D) are feasible and OPT-LP(P)=OPT-LP(D).
2. (P) is feasible and (D) is unfeasible and

OPT-LP(P) = −∞.
3. (P) is unfeasible and (D) is feasible and

OPT-LP(D) =∞.
4. (P) and (D) are unfeasibles.
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Dual method: Rounding

“Rounding” a dual solution

If x̂ and ŷ are optimum solutions of (P) and (D), then

x̂j > 0 ⇒ (ŷA)j = cj (primal complementary slackness condition)

Strategy:

Solve the dual program and select j where (ŷA)j = cj .
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Vertex Cover Problem: Given a graph G = (V ,E) and costs
c : V → Q≥, find S ⊆ V such that {u, v} ∩ S 6= ∅ ∀{u, v} ∈ E
and c(S) is minimum.

Primal and Dual Formulations

(P)

min
∑
i∈V

cixi

xi + xj ≥ 1 ∀ij ∈ E ,
xi ≥ 0 ∀i ∈ V .

(D)

max
∑
e∈E

ye∑
e∈δ(v)

ye ≤ cv ∀v ∈ V ,

ye ≥ 0 ∀e ∈ E .

MINCV-HOCHBAUM (G, c)

1 let ŷ be an optimum solution of (D)

2 C ← {v ∈ VG :
∑

e∈δ(v)

ŷe = cv}

3 return C
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Example:

e1 e2

1v v4

v32v
e3

min xv1+xv2+xv3+xv4

xv1+xv2 ≥ 1
(P) xv2 +xv4≥ 1

xv2+xv3 ≥ 1
xv ≥ 0

max ye1+ye2+ye3

ye1 ≤ 1 (Dv1)
ye1+ye2+ye3≤ 1 (Dv2)

(D) ye3≤ 1 (Dv3)
ye2 ≤ 1 (Dv4)

ye ≥ 0
Optimum solution value of (D)⇒ ŷ(E) = 1

ŷ = (ŷe1 = 1, ŷe2 = 0, ŷe3 = 0)

Tight constraints of (D): (Dv1) e (Dv2)

Approximate solution: {v1, v2}
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Theorem: The algorithm MINCV-HOCHBAUM produces a
vertex covering.
Proof. If uv ∈ E then (

∑
e∈δ(u)

ŷe = cu or
∑

e∈δ(v)

ŷe = cv ) because ŷ

is optimum.

Theorem: Algorithm MINCV-HOCHBAUM is a polynomial time
2-approximation for MINCV.
Proof. The covering C is such that

c(C) =
∑
v∈C

cv =
∑
v∈C

∑
e∈δ(v)

ŷe

≤ 2
∑
e∈E

ŷe (∗)

≤ 2 OPT(G, c) .

(*) is valid because, ŷe appear at most twice in the summation,
for each edge e.
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Dual method: “Rounding” a dual maximal solution

Def.: If ỹ is a feasible solution for the dual program, ỹ is
maximal if there is no feasible solution y, with yi ≥ ỹi and

n∑
i=1

yi >

n∑
i=1

ỹi .

Strategy: “Rounding” a dual maximal solution
1. Find a dual maximal solution
2. Select the objects satisfied with equality in the dual
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Set covering problem: Given set E , family S of E , costs
c : S→ Q≥, find covering S′ ⊆ S that minimizes

∑
S∈S′ c(S).

min
∑
S∈S

cSxS

(P)
∑
S∈Se

xS ≥ 1 ∀e ∈ E

xS ≥ 0 ∀S ∈ S,

where Se := {S ∈ S : e ∈ S}

max
∑
e∈E

ye

(D)
∑
e∈S

ye ≤ cS ∀S ∈ S

ye ≥ 0 ∀e ∈ E

MINCC-HOCHBAUM (S,E , c)

1 let ỹ be a maximal dual solution of (D)

2 S′ ← {S ∈ S :
∑
e∈S

ỹe = cS}

3 return S′
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Let ỹ be a maximal vector of (D) and S′ obtained from ỹ by
algorithm MINCC-HOCHBAUM.

Lemma: S′ is a set covering.
Proof. If S′ is not a covering, then there exists a non-covered
element e ∈ E . Thus, we can “increase ỹe until some dual
constraint become tight. Contradicting the maximality of ỹ .
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Let β := max{|Se| : e ∈ E}, where Se = {S ∈ S : e ∈ S}.

Theorem: MINCC-HOCHBAUM is a β-approximation for the set
covering problem.
Proof. Let S′ be the set returned by the algorithm and ỹ the
vector used in step 1 to produce S′.

c(S′) =
∑
S∈S′

c(S) =
∑
S∈S′

∑
e∈S

ỹe

≤
∑
e∈E

|Se|ỹe

≤
∑
e∈E

βỹe = β
∑
e∈E

ỹe

≤ β
∑
e∈E

ŷe = β OPT-LP

≤ β OPT
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Primal Dual Method

I Based on the complementary slackness conditions and
feasibility problems

I Many times, leads to combinatorial algorithms
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Classic primal dual method

(P)
min c x

(Ax)i ≥ bi ∀i ∈ M ,
xi ≥ 0 ∀j ∈ N .

(D)
max yb

(yA)j ≤ cj ∀j ∈ N ,
yi ≥ 0 ∀i ∈ M .

Complementary Slackness
If x̂ and ŷ are optimum solutions of (P) and (D), then
x̂j = 0 or (ŷA)j = cj (primal complementary slackness conditions)
ŷi = 0 or (Ax̂)i = bi (dual complementary slackness conditions)

Strategy:
Given vector y feasible for (D),
I find feasible x for (P) satisfying complementary slackness

with y
or

I find y ′ such that y ′′←y +y ′ is feasible with (D) and
y ′′b>yb;
repeat the process with y ′′
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Lemma: [of Farkas] Exactly one of the restricted programs is
feasible:

(RP)
∃ x ∈ QN

(Ax)i ≥ bi ∀i ∈ M ,
xi ≥ 0 ∀j ∈ N .

(RD)

∃ y ∈ QM

yb > 0
(yA)j ≤ 0 ∀j ∈ N ,

yi ≥ 0 ∀i ∈ M .

Proof.
Consider the linear program (P) and its dual (D):

(P)
min 0x

(Ax)i ≥ bi ∀i ∈ M ,
xi ≥ 0 ∀j ∈ N .

(D)
max yb

(yA)j ≤ 0 ∀j ∈ N ,
yi ≥ 0 ∀i ∈ M .

Note that (P) is feasible if and only if (RP) is feasible and
program (D) is always feasible, as y = 0 is a feasible solution.
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As (D) is feasible, only alternatives 1. or 3. of the Duality
Lemma can occur.

Case 1: (P) is feasible and OPT-LP(P)=OPT-LP(D).

(P) is feasible⇒ (RP) is feasible.(
∀y ∈ (D), yb ≤ OPT-LP(D)= OPT-LP(P)=0

)
⇒ (RD) is

unfeasible.

Case 3: OPT-LP(D) =∞ and (P) is unfeasible.

(P) unfeasible⇒ (RP) is unfeasible.(
OPT-LP(D) =∞

)
⇒
(
∃y ∈ (D) : yb > 0

)
⇒ (RD) is

feasible.
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Complementary Slackness Conditions
If x̂ and ŷ are optimum solutions of (P) and (D), then
x̂j = 0 or (ŷA)j = cj (primal complementary slackness conditions)
ŷi = 0 or (Ax)i = bi (dual complementary slackness conditions)

Given vector y feasible for (D),
I(y) := {i ∈ M : yi = 0} and J(y) := {j ∈ N : (yA)j = cj} .

(Feasib.) (Ax)i ≥ bi ∀i ∈ M ,
xi ≥ 0 ∀j ∈ N .

+ (C.S.) (Ax)i = bi ∀i ∈ M \ I(y) ,
xj = 0 ∀j ∈ N \ J(y) .

Restricted Primal Problem

(RP)

(Ax)i ≥ bi ∀i ∈ I(y) ,
(Ax)i = bi ∀i ∈ M \ I(y) ,

xj ≥ 0 ∀j ∈ J(y) ,
xj = 0 ∀j ∈ N \ J(y) .

Introduction to the Primal Dual Method 192



From the Farkas Lemma, (RP) is feasilbe or (RD) is feasilbe,
not both (exercise).

(RP)

(Ax)i ≥ bi ∀i ∈ I(y) ,
(Ax)i = bi ∀i ∈ M \ I(y) ,

xj ≥ 0 ∀j ∈ J(y) ,
xj = 0 ∀j ∈ N \ J(y) .

⊕ (RD)
y ′b > 0

(y ′A)j ≤ 0 ∀j ∈ J(y) ,
y ′i ≥ 0 ∀i ∈ I(y) .
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I(y) := {i ∈ M : yi = 0} and J(y) := {j ∈ N : (yA)j = cj} .

(D)
max yb

(yA)j ≤ cj ∀j ∈ N ,
yi ≥ 0 ∀i ∈ M .

(RD)
y ′b > 0

(y ′A)j ≤ 0 ∀j ∈ J(y) ,
y ′i ≥ 0 ∀i ∈ I(y) .

Lema: If y is feasible for (D) and y ′ is feasible for (RD), then
there exists θ > 0 such that y ′′ ← y + θ y ′ is also feasible for
(D).

Prova. Exercise.
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Method PRIMAL-DUAL (A,b, c)

1 let y be a feasible vector of (D)
2 while RP(A,b, y) has no solution, do
3 let y ′ be a solution of RD(A,b, y)
4 if y + θy ′ is solution of (D) for any positive θ
5 then return y ′

6 else let θ maximum such that y + θy ′ is feasible in
(D)
7 y ← y + θy ′

8 let x be a solution of RP(A,b, y)
9 return x and y

Introduction to the Primal Dual Method 195



Maximum Flow Problem

Maximum Flow Problem: Given a directed graph G = (N,A),
capacities c : A→ N and nodes s and t , find a flow of maximum
value from s to t .

Simplification: add arc (t , s) with unbounded capacity.

s t

Objective: Find flow that respects flow conservation in all
nodes and maximize the edge flow in (t , s).
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For convenience, we will denote the formulation by Dual

(D)

max yts∑
e∈δ+(i)

ye −
∑

e∈δ−(i)

ye = 0 ∀i ∈ N,

yij ≤ cij ∀ij ∈ A,
yij ≥ 0 ∀ij ∈ A.

Primal: find x = x ′‖x ′′, x ′ indexed by N and x ′′ indexed by A
such that

(P)

min
∑
ij∈A

cij x ′′ij

x ′t − x ′s ≥ 1 ,
x ′i − x ′j + x ′′ij ≥ 0 ∀ij ∈ A,

x ′′ij ≥ 0 ∀ij ∈ A.
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About program (P)

(P)

min
∑
ij∈A

cij x ′′ij

x ′t − x ′s ≥ 1 ,
x ′i − x ′j + x ′′ij ≥ 0 ∀ij ∈ A,

x ′′ij ≥ 0 ∀ij ∈ A.
Given a cut S ⊂ N that separates s from t (i.e. s ∈ S and
t /∈ S), define

x ′i =

{
0 ∀i ∈ S
1 ∀i ∈ N \ S

x ′′ij =

{
1 ∀ij ∈ δ+(S)
0 ∀ij ∈ A \ δ+(S)

SS

s t
1 1

0

0
0

0

0

0

1

1

1

1

10

00

0

0

1

We have x = x ′‖x ′′ feasible
to (P) that define a cut with
capacity equal to the capacity
given by the objective func-
tion.
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Restricted problems
Given feasible flow y , let

I := {ij ∈ A : yij = 0} e J := {ij ∈ A : yij = cij} .
Restricted Primal: find x = x ′‖x ′′ feasible in (P) satisfying C.S.

(RP)

x ′t − x ′s ≥ 1 ,
x ′i − x ′j + x ′′ij = 0 ∀ij ∈ A \ I,
x ′i − x ′j + x ′′ij ≥ 0 ∀ij ∈ I,

x ′′ij ≥ 0 ∀ij ∈ J,
x ′′ij = 0 ∀ij ∈ A \ J.

Restricted Dual: If (RP) is unfeasible, by Farkas Lemma, (RD)
is feasible

(RD)

yts > 0 ,∑
e∈δ+(i)

ye −
∑

e∈δ−(i)

ye = 0 ∀i ∈ N,

yij ≤ 0 ∀ij ∈ J,
yij ≥ 0 ∀ij ∈ I.
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(RD) feasilbe⇒ ∃ augmenting path P = (y ′) from s to t ,
representing an additional flow.

(2,1)

(2,2)

s t

0 1

01

−1

(3,2)

(1,1)

(2,1)

Augmenting path

(c,y)=(capacity,flow)
Value of initial flow = 3

Flow in the path = 1

s t
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s t

(3,2)

(c,y)=(capacity,flow)

(2,2)

(1,0)

(2,2)

Value of the resulting flow = 4

(2,2)

(RD) unfeasible⇒ (RP) is feasilbe
Let S := {v ∈ N : there exists augmenting path from s to v}
and

x ′i =

{
0 ∀i ∈ S
1 ∀i ∈ N \ S

x ′′ij =

{
1 ∀ij ∈ δ+(S)
0 ∀ij ∈ A \ δ+(S)

We have that x = x ′‖x ′′ is feasible in (RP)
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Primal-Dual Approximation Method

Generalization of the Primal-Dual Method by Approximate
Complementary Slackness Conditions

(P)
min c x

(Ax)i ≥ bi ∀i ∈ M ,
xj ≥ 0 ∀j ∈ N .

(D)
max yb

(yA)j ≤ cj ∀j ∈ N ,
yi ≥ 0 ∀i ∈ M .

Approximate Complementary Slackness Conditions
Given 0 < α ≤ 1 ≤ β, x and y feasible solutions of (P)
and (D)

x and y have primal α-Approximate Slackness conditions
if

xj = 0 ou α cj ≤ (yA)j [ ≤ cj ]

x and y have dual β-Approximate Slackness conditions if
yi = 0 ou β bi ≥ (Ax)i [ ≥ bi ]
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Lemma: If x and y are non-negative and satisfy primal
α-approximate slackness conditions and dual β-approximate
slackness conditions, then α c x ≤ β y b.
Proof.

α c x =
∑
j∈N

α cj xj

≤
∑
j∈N

(y A)j xj

=
∑
i∈M

yi (A x)i

≤
∑
i∈M

yi β bi

= β y b
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Lemma: (of Approximate Slacks) If x and y are feasible
solutions of (P) and (D) satisfying α and β approximated slacks
then

x is a β
α -approximation in (P) and

y is a α
β -approximation in (D).

Idea:
Given vector y feasible for (D), values α and β, where
0 < α ≤ 1 ≤ β
I find feasible x for (P) satisfying α and β approximated

slackness conditions with y
or

I find y ′ st. y ′′←y +y ′ is feasible in (D) and y ′′b>yb;
repeat the process with y ′′
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Approximate Slackness Conditions
xj = 0 or (yA)j ≥ α cj (primal approx. slack. conditions)

yi = 0 or (Ax)i ≤ β bi (dual approx. slack. conditions)

Given vector y feasible for (D),
I(y) := {i ∈ M : yi = 0} e J(y , α) := {j ∈ N : (yA)j ≥ α cj} .

(Feas.) (Ax)i ≥ bi ∀i ∈ M
xj ≥ 0 ∀j ∈ N

+(A.S.C.) (Ax)i ≤ β bi ∀i ∈ M \ I(y)
xj = 0 ∀j ∈ N \ J(y , α)

Approximate Restricted Primal

(ARP)

(Ax)i ≥ bi ∀i ∈ M ,
(Ax)i ≤ β bi ∀i ∈ M \ I(y) ,

xj ≥ 0 ∀j ∈ J(y , α) ,
xj = 0 ∀j ∈ N \ J(y , α) .
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(ARP) is unfeasible⇒ (RP) is unfeasible⇒ (RD) is feasible⇒
(ARD) is feasible.

(ARP)

(Ax)i ≥ bi ∀i ∈ M ,
(Ax)i ≤ β bi ∀i ∈ M \ I(y) ,

xj ≥ 0 ∀j ∈ J(y , α) ,
xj = 0 ∀j ∈ N \ J(y , α) .

~⊕ (ARD)
y ′b > 0

(y ′A)j ≤ 0 ∀j ∈ J(y , α) ,
y ′i ≥ 0 ∀i ∈ I(y) .

Method PRIMAL-DUAL (A,b, c)

1 let y be a feasible solution for (D)
2 while RAP(A,b, y , α, β) has no solution, do
3 let y ′ be a solution for RAD(A,b, y , α)
4 if y + θy ′ is feasible for (D) for any positive θ
5 then return y ′

6 else let θ be maximum such that y + θy ′ is feasilbe
for (D)
7 y ← y + θy ′

8 let x be a solution for RAP(A,b, y , α, β)
9 return x and y
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Hitting Set Problem

Def.: Given set E and finite collection S of subsets of E, a set
T ⊆ E is a hitting set (or transversal) of S if T ∩ S 6= ∅, ∀S ∈ S.

Problema MINTC: Given set E , finite collection S of subsets of
E and costs c : E → Q≥, find hitting set T of S such that∑

e∈T ce is minimum.
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Primal and Dual Formulations:

(P)

min
∑
e∈E

cexe

∑
e∈S

xe ≥ 1 ∀S ∈ S,

xe ≥ 0 ∀e ∈ E .

(D)

max
∑
S∈S

yS∑
S∈Se

yS ≤ ce ∀e ∈ E ,

yS ≥ 0 ∀S ∈ S,

where Se = {S ∈ S : e ∈ S}.

Idea: Obtain x and y feasible, with binary x , satisfying:

Primal Approximate Slackness Conditions:
xe = 1⇒ αce ≤

∑
S∈Se

yS ≤ ce for any e ∈ E

Dual Approximate Slackness Conditions:
yS > 0⇒ β ≥

∑
e∈S

xe ≥ 1 for any S ∈ S
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Approximate Restricted Primal
Consider α := 1 and β := max{|S| : S ∈ S}. Let y , dual feasible
and

I(y) := {S ∈ S : yS = 0} and J(y) := {e ∈ E :
∑
S∈Se

yS ≥ α ce}

Approximate Restricted Primal: find x feasible in (P) satisfying Ap.Sl.C.

(ARP)

∑
e∈E

xe ≥ 1 ∀S ∈ S,∑
e∈S

xe ≤ β ∀S ∈ S \ I(y),

xe ≥ 0 ∀e ∈ J(y),
xe = 0 ∀e ∈ E \ J(y).

(ARD)

∑
S∈S

y ′S > 0 ,∑
S∈S

y ′S ≤ 0 ∀e ∈ J(y),

y ′S ≥ 0 ∀S ∈ I(y).

Approximate Restricted Dual: If (ARP) is unfeasible then (RP)
is unfeasible and from Farkas Lemma, (ARD) is feasible
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Algorithm of Bar-Yehuda and Even

MINTC-BE (E , S, c)

1 J ← {e ∈ E : ce = 0}

2 yS ← 0, ∀S ∈ S

3 while there exists R ∈ S such that J ∩ R = ∅ do

4 increase yR at the maximum, maintaining feasibility

5
∑
S∈Se

yS ≤ ce, ∀e ∈ R

6 let f be an element of R such that
∑
S∈Sf

yS = cf

7 J ← J ∪ {f}

8 return J
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Lemma: Let J be the set returned by MINTC-BE, x the
characteristic vector of J and y the dual vector generated by
the algorithm. Then,

1. J is a hitting set,
2. x satisfy primal app. sl. conditions with α = 1

xe = 0 or 1 · ce ≤
∑
S∈Se

yS ≤ ce

3. y satisfy dual app. sl. conditions with β = max{|S| : S ∈ S}:

ye = 0 or β ·1 ≥
∑
e∈S

xe ≥ 1

Proof.
To verify (1), note that if R ∈ S and J ∩ R = ∅ then, there is a
gap to increase yR.
To verify (2), note that an element e ∈ J was chosen to satisfy∑
S∈Se

yS = ce

To verify (3), note that
∑
e∈S

xe ≤ |S| ≤ β.
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Theorem: The algorithm MINTC-BE is a β-approximation for
MINTC (E , S, c), where β := maxS∈S |S|.

Proof. Follows from the Approximate Slackness Conditions.

Exercise
Using the same approach of the algorithm for the Hitting Set,
present a 2-approximation for the vertex cover problem.
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Facility Location Problem
FACILITY LOCATION PROBLEM: Given potential facilities
F = {1, . . . ,n}, clients C = {1, . . . ,m}, costs fi to “open” facility
i and costs cij ∈ Z to connect client j to facility i . Find set of
facilities A ⊆ F minimizing the cost to open facilities in A and
attend all clients

Applications: Install distribution warehouses,
telecommunication network.

Teorema: Problem MINCC is a particular case of the Facility
Location.

Corolário: (Raz & Safra’97) The Facility Location Problem
cannot be approximated in ε log |E |, for some constant ε > 0,
unless P = NP.
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Metric Facility Location Problem

Costs satisfy triangular inequality:

cij ≤ cij ′ + ci ′j ′ + ci ′j i , i ′ ∈ F e j , j ′ ∈ C

j j ′

ii ′
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We will se a 3-approximation from Jain and Vazirani’01
using primal dual technique:

Integer Program:

minimize
∑
i∈F

fiyi +
∑
ij∈E

cijxij

subject to



∑
ij∈E

xij ≥ 1 ∀j ∈ C,

yi − xij ≥ 0 ∀ij ∈ E ,
xij ∈ {0,1} ∀i ∈ F and j ∈ C,
yi ∈ {0,1} ∀i ∈ F .
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Relaxed Primal:

(P) tal que

min
∑
i∈F

fiyi +
∑
ij∈E

cijxij∑
ij∈E

xij ≥ 1 ∀j ∈ C ,

yi − xij ≥ 0 ∀i ∈ F , j ∈ C ,
xij ≥ 0 ∀i ∈ F , j ∈ C ,
yi ≥ 0 ∀i ∈ F .

Dual Program:

(D) tal que

max
∑
j∈C

αj

αj − βij ≤ cij ∀i ∈ F , j ∈ C ,∑
j∈C

βij ≤ fi ∀i ∈ F ,

αj ≥ 0 ∀j ∈ C ,
βij ≥ 0 ∀i ∈ F , j ∈ C .
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Primal-Dual method with
primal approximate complementary slackness conditions:

xij = 1 ⇒ 1
3cij ≤ αj − βij ≤ cij

yi = 1 ⇒ 1
3 fi ≤

∑
j∈C βij ≤ fi

dual complementary slackness conditions:

αj > 0 ⇒
∑

i∈F xij = 1

βij > 0 ⇒ yi = xij

This give us a 3-approximation for the FACILITY LOCATION. We
will prove a stronger result to also obtain an approximation
algorithm for the k -MEDIAN problem.
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Idea of the algorithm:
I Initially, start the dual variables with zero.

I Uniformly increase variables α’s (maintaining feasibility)
until a variable αj is bounded by the condition of some
edge ij (αj − βij ≤ cij ). In this case, the variable βij must
also increase together.

I A facility i is tight when the sum of the values β incident to i
is equal to its cost. At this point, associated dual variables
stop increasing.

I The set of open facilities is a subset of the tight facilities.
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FACILITY-JV (F,C,C)
Initialization

1 A← C % Set of active clients

2 S ← ∅ % Set of special edges

3 R ← ∅ % Set of inactive special edges

4 Ft ← ∅ % Temporary open facilities

5 for each j in C do αj ← 0

6 for each i ∈ F and j ∈ C do βij ← 0
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Phase 1
7 while A 6= ∅ do
8 increase uniformly αj and βij for j ∈ A and ij ∈ S \ R until
9 (a) αj = cij for some ij ∈ (F \Ft × A) \ S or

10 (b) αj = cij for some ij ∈ (Ft × A) \ S or
11 (c)

∑
j∈C βij = fi for some i ∈ F \ Ft .

12 if (a) is satisfied for some ij then
13 S ← S ∪ {ij}
14 else if (b) is satisfied for some ij then
15 τ(j)← i % witness of j
16 A← A \ {j}
17 else if (c) was satisfied for some i then
18 for each j such that ij ∈ S do τ(j)← i
19 A← A \ {j : ij ∈ S}
20 R ← R ∪ {ij : ij ∈ S}
21 Ft ← Ft ∪ {i}
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Phase 2
22 H ← (VH ,EH) where

23 VH := Ft
24 EH := {i ′i ′′ : i ′, i ′′ ∈ VH and ∃ j ∈ C, with i ′j ∈ S

and i ′′j ∈ S}

25 I ← (Maximal Independent Set of H)

26 for each j ∈ C do

27 if τ(j) ∈ I then

28 φ(j)← τ(j) ( (φ(j), j) is direct connection)

29 else

30 let i ∈ I such that (i , τ(j)) ∈ H

31 φ(j)← i ( ij is undirected connection)

32 return (I, φ)
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Increasing αj and βij with one client

i

j

i

j

i

j

i

j

i

j

(1) (2) (3)

(5)(4)

αj = 0
βj = 0

fi = 3
cij = 4

βj = 0

fi = 3
cij = 4
αj = 4

βj = 0

fi = 3
cij = 4
αj = 3

βj = 3

fi = 3
cij = 4
αj = 7

βj = 1

fi = 3
cij = 4
αj = 5
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Increasing αj and βij with two clients

cij′′ = 4

i

j ′

j ′′

i

j ′

j ′′

i

j ′

j ′′

i

j ′

j ′′

(1) (2)

(4)(3)

fi = 3
cij′ = 3

βij′ = 0
βij′′ = 0

βij′ = 0
βij′′ = 0

αj′ = 5
αj′′ = 5
βij′ = 2
βij′′ = 1βij′′ = 0

αj′ = 4
αj′′ = 4
βij′ = 1

αj′ = 0
αj′′ = 0

αj′ = 3
αj′′ = 3
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To prove that FACILITY-JV is a 3-approximation, we use the
Approximate Complementary Slackness Condition Theorem
with the following conditions:

primal approximate complementary slackness condition:

xij = 1, ij undirected ⇒ 1
3cij ≤ αj − βij ≤ cij

xij = 1, ij direct ⇒ αj − βij = cij

yi = 1 ⇒
∑

j∈C βij = fi

e dual complementary slackness condition:

αj > 0 ⇒
∑

i∈F xij = 1

βij > 0 ⇒ yi = xij

Note that the only gap is due to the undirected edges.
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Lemma: (Primal approx. compl. slack. cond. 1)

xij = 1 and ij is direct⇒ αj − βij =cij

Proof.
Case 1: βij = 0

In this case, αj increased only to cover the cost cij
as i was already opened.

Case 2: βij > 0

In this case, αj may be larger than cij , and when
this occur, ij becomes special and βij increase
together with αj maintaining the equality
αj − βij =cij .
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Lemma: (Primal approx. compl. slack. cond. 2)

xij = 1 and ij is undirected⇒ 1
3

cij≤αj − βij≤cij

Proof. In this case, note that βij = 0 and αj ≤ cij .
Now, we show that cij ≤ 3αj .
Let i ′ := τ(j). There must exist i ′ ∈ I and j ′ ∈ C such that

I
i ′i ∈ Hi ′ i

j ′

j

cij ≤ ci ′j + ci ′j ′ + cij ′

≤ αj + αj ′ + αj ′

≤ αj + αj + αj (as radius of j stoped increasing before of j ′)
= 3αj
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Lemma: (Primal approx. compl. slack. cond. 3)

yi = 1 ⇒
∑
j∈C

βij = fi

Proof. Each temporary open facility (in Ft ) must satisfy the
condition (c) (line 11) by the command of line 21:∑

j∈C

βij = fi

The result follows, as the set I of open facilities (yi = 1) is a
subset of Ft .

Facility Location Problem 227



Lemma: (Dual approx. compl. slack. cond. 1)

αj > 0⇒
∑
i∈F

xij =1.

Proof. Exercise.

Lemma: (Dual approx. compl. slack. cond. 2)

βij > 0⇒ yi =xij

Proof. Exercise (it is sufficient to consider the cases when
yi = 0 and yi = 1).

Theorem: (Jain e Vazirani’01) FACILITY-JV is a
3-approximation for the Facility Location Problem.

Proof. Follows from the Approximate Complemantary
Slackness Condition Lemma and the 5 previous lemmas.
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Steiner Forest Problem

Given a G, let R a collection of subsets of VG.

Def.: A R-forest of G is any spanning forest F of G such that
for each R ∈ R, the elements of R are contained in some
component of F .

Steiner Forest Problem: Given a graph G, costs ce in Q≥ for
each edge e and a collection R of subsets of VG, find a
R-forest F that minimize c(F ).
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Def.: A set S ⊂ V is said active if there exits R ∈ R such that

R ∩ S 6= ∅ e R \ S 6= ∅

S := {S ⊂ V : S is an active set} and
Se := {S ∈ S : e ∈ δ(S)}

Primal and dual programs:

(P)

min
∑
e∈E

cexe∑
e∈δ(S)

xe ≥ 1 ∀S ∈ S ,

xe ≥ 0 ∀e ∈ E .

(D)

max
∑
S∈S

yS∑
S∈Se

yS ≤ ce ∀e ∈ E ,

yS ≥ 0 ∀S ∈ S .
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If there exists x and y feasible to (P) and (D), x integer,
satisfying α and β approximate conditions, with α = 1 and
β = 2, then
xe = 1 ⇒

∑
S∈Se

yS = ce (primal approximate conditions)

yS > 0 ⇒
∑

e∈δ(S)

xe ≤ 2 (dual approximate conditions)

From Approx. Compl. Slack. Cond., x is a 2-approximation. But
I Primal approximate conditions are easy to obtain.
I Dual approximate conditions are very restrictive.

Idea: Use a more flexible dual approximate condition
Change yS > 0 ⇒

∑
e∈δ(S)

xe ≤ 2

by yS > 0 ⇒

∑
S∈SF

∑
e∈δ(S)

xe

|SF |
≤ 2

where SF is the set of active components of the forest being
built, in each iteration of the algorithm.
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Active components in each iteration
Observations about the algorithm:
I Build a dual feasible solution starting from 0.
I Use limited number of active sets.
I Active sets have laminar property.
I Primal approximate conditions are valid in each iteration.
I “Flexible” dual approximate conditions valid in each iteration.
I At the end of the algorithm, unnecessary edges are

pruned.
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F : Forest being constructed.
SF : Active components of F
External edge: exactly one of the extremes in a component of SF

F0: Forest F before pruning step.
F1: Final forest after pruning.

MINFS-GW (G, c,R)

1 F ← (V , ∅)
2 for each S in S do yS ← 0
3 while SF 6= ∅ do
4 increase yS uniformly to the maximum, ∀S ∈ SF , restricted to
5

∑
S∈Se

yS ≤ ce for each edge e

6 let f be an external edge such that
∑

S∈Sf
yS = cf

7 F ← F + f
8 F0 ← F
9 let F1 be a minimal R-forest of F0

10 return F1
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Circles represent the increasing of dual variables.
Points are Steiner nodes (do not have connectivity
requirements).
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Inactive components do not have dual variables to increase.
At last, algorithm perform the pruning step (remove
unnecessary edges).
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Lemma: In the beginning of each iteration we have∑
S∈SF

|δF1(S)|

|SF |
≤ 2 .

Proof. Let C be the set of components of F in the beginning of
an iteration. Let H = (C,EH) such that

{U,W}∈EH ⇔ ∃{u,w}∈F1 : u∈U,w ∈W .

A

A

I

I

AA

As F1 is minimal, all leaves of H are active.
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Let
SF the active components of F and
ZF the inactive components of F with non-null degree.

As H is a forest, we have∑
S∈SF

|δF1(S)|+
∑

S∈ZF

|δF1(S)| =
∑

S∈VH

|δH(S)|

= 2|EH |
≤ 2(|SF |+ |ZF | − 1)

< 2|SF |+ 2|ZF |

Therefore∑
S∈SF

|δF1(S)| ≤ 2|SF |+ 2|ZF | −
∑

S∈ZF

|δF1(S)|

≤ 2|SF | .
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Lemma: In the beginning of each iteration, we have∑
S∈S

|δF1(S)| yS ≤ 2
∑
S∈S

yS ,

Proof. By induction in the number of iterations:
Initially y = 0 and the inequality is valid.
Suppose the inequality is valid in the beginning of a iteration.
During the iteration, yS is increased by θ if and only if S ∈ SF .
So, the left hand side of the inequality is increased by∑

S∈SF

|δF1(S)|θ

while the right hand side is increased by

2|SF |θ.

The inequality follows from the previous lemma.
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Theorem: The algorithm MINFS-GW is a 2-approximation for
MINFS.
Proof.

c(F1) =
∑
e∈F1

ce

=
∑
e∈F1

∑
S∈Se

yS (1-primal app. cond.)

=
∑
S∈S

|δF1(S)| yS (inverting sums)

≤ 2
∑
S∈S

yS (from previous lemma)

≤ 2 OPT(G, c,R) .

Exercise
Show that it is possible to improve the analysis of the theorem
and obtain an approximation factor of

(
2− 1

n

)
, instead of 2.
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Dual Fitting

Suppose (P) is a problem of type
(

min cx subject to x ∈ P
)
,

and (D) is its dual
(

max yb subject to y ∈ D
)
.

Idea:
I Obtain an integer solution x to (P) and a vector ỹ (related

to the dual) but ỹ is not necessary feasible for (D).

I Although ỹ is not feasible, ỹb “pay” the value of the primal
solution.

I Obtain factor f such that y ← ỹ
f

is feasible for (D).

I So, cx ≤ ỹ b = f
ỹ b
f

= f y b ≤ f OPT.
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Set Cover Problem: Given set E , subsets S of E , costs
c : S→ Q≥, find cover S′ ⊆ S that minimizes

∑
S∈S′ c(S).

Relaxation and dual:

min
∑
S∈S

cSxS

(P)
∑
S∈Se

xS ≥ 1 ∀e ∈ E

xS ≥ 0 ∀S ∈ S,

where Se := {S ∈ S : e ∈ S}

max
∑
e∈E

ye

(D)
∑
e∈S

ye ≤ cS ∀S ∈ S

ye ≥ 0 ∀e ∈ E

Idea: Increase (from 0) the variable ỹ in such a way to pay for
an integer solution. Then, obtain a factor f that transform ỹ/f in
a dual feasible vector.
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Increase ỹe uniformly, for each active element e ∈ A

t = 0

9

12

20

t = 3

9

12

20

t = 6

12

20

t = 10

20
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MINCC-DUAL-FITTING (S,E , c)

1 let S′ ← ∅
2 let A← E (set of active elements)
3 let ỹe ← 0 para todo e ∈ E
4 while A 6= ∅ do
5 increase ỹe uniformly for each e ∈ A until∑

e∈R∩A

ỹe = cR for some R ∈ S \ S′

6 S′ ← S′ ∪ {R}
7 A← A \ R
8 return (S′, ỹ)

Dual Fitting 243



Lemma: Let (S′, ỹ) the solution returned by
MINCC-DUAL-FITTING. Then,∑

S∈S′
cS =

∑
e∈E

ỹe

Proof. Exercise.

Fact: Note that ỹ can be unfeasible for (D).
Proof. exercise
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Lemma: Let (S′, ỹ) the pair returned by MINCC-DUAL-FITTING

and S = {e1, . . . ,ek} ∈ S′, w.l.o.g. with ỹe1 ≤ ỹe2 ≤ . . . ≤ ỹek .
Then

k∑
i=l

ỹel = (k − l + 1)ỹel ≤ c(S)

Proof. Note that if ỹel increased until a value t , all the other
values ỹej for j = l , . . . , k also reached t , without violating the
cost of S.

1 kl...
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Lemma: If ỹ is returned by MINCC-DUAL-FITTING then
ỹ

Hn
is

dual feasible for (D), where Hn = 1 + 1
2 + 1

3 + · · ·+ 1
n

Proof. Let R = {e1, . . . ,ek} ∈ S′ and w.l.o.g.
ỹe1 ≤ ỹe2 ≤ . . . ≤ ỹek . Applying the previous lemma for
l = 1, . . . , k we have

l = 1, k ỹe1 ≤ c(R) ⇒ ỹe1
c(R) ≤ 1

k

l = 2, (k − 1) ỹe2 ≤ c(R) ⇒ ỹe2
c(R) ≤ 1

k−1
...

l = k , ỹek ≤ c(R) ⇒ ỹek
c(R) ≤ 1

Summing the above inequalities
k∑

i=1

ỹei

c(R)
≤ Hk

So,
∑
e∈R

ỹe

Hn
≤ c(R).
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Theorem: The algorithm MINCC-DUAL-FITTING is a
Hn-approximation for the Set Cover problem.

Exercise
Rewrite the algorithm MINCC-DUAL-FITTING as a greedy
algorithm.

Dual Fitting 247



Semidefinite Programming
MaxCut Problem: Given a graph G = (V ,E) and weight we in
Q≥ for each edge e, find a cut R that maximize w(R).

Exemplo:

1

2

1

1

2

3

4

3

Theorem: MAXCUT is NP-hard.
Theorem: If P6=NP then MAXCUT is not approximable within
16/17− ε in polynomial time (Håstad’97).
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Application: Partition by similarity

maximize differences

Minimize differences

i j
wij = difference between i and j.
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Quadratic Formulation: Find x that

Max 1
2

∑
ij∈E

wij(1− xi xj)

xi xi = 1 ∀i ∈ V

1

2

1

1

2

3

4

3
+1

−1

−1

−1

+1

If xixj = −1
wij(1− xixj) = wij(1− (−1)) = 2wij

If xixj = +1
wij(1− xixj) = wij(1− (+1)) = 0
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Vector Program Relaxation
I Replace (relax) xi by vector Yi? (n-dimensional)

xi =⇒ Yi?

I I.e., replace x by matrix Y .
x
x1
x2
...

xn

=⇒

Y
Y1?
Y2?

...
Yn?

I Yi? · Yi? = 1 ⇒ Yi? is a vector in the unit sphere
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xi · xj ⇒ Yi? · Yj? = (YY>)ij

(YY>)ij =


...

Yi?
...

• . . . Yj? . . .


ij

(Q)

Quadratic Formulation:
Max 1

2
∑

ij∈E wij(1− xi xj)

xi xi = 1 ∀i ∈ V
⇓

(R)

Relaxation:
Max 1

2
∑

ij∈E wij(1− (Y Y>)ij)

(Y Y>)ii = 1 ∀i ∈ V
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Interpretation
Let yi = Yi?

(R)

Relaxation:

Max 1
2
∑

ij∈E wij(1− yi · yj)

yi · yi = 1 ∀i ∈ V

yi ∈ Rn ∀i ∈ V

j

w

iy

y

ij

wij is the repulsion force between yi and yj
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Vectorial Relaxation

1

2

3

4

−1

−1

+1

0

+1

0 0

000

0 0

00 0

0
Y = 

−1

000

0 0

00 0

0

1 2 3 4

−1

0

0

0

+1 +1

Y = 
T

x = −1 +1 +1−1

1 2 3 4

+12

1 3

4

+1−1

−1

xixj = (YY T )ij and (YY T )ii = 1
I.e.,

Max
1
2

∑
ij∈E

wij(1− (Y Y>)ij) ≥ OPT(G,w)
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Goemans and Williamson Algorithm
Idea: Distribute vectors in the unit sphere, considering
repulsion forces

MAXCUT-GW (G,w)

1 Ŷ ← optimum solution of (R)
2 s ← RANDSPHERE(V )
3 S ← { i ∈ V : sŶi? > 0 }
4 return δ(S)

S

S

s

Semidefinite Programming and MaxCut Problem 255



Lemma: Pr( ij ∈ δ(S) ) ≥ 1
π arccos ((Ŷ Ŷ>)ij) .

Proof.
Pr( ij ∈ δ(S) ) = Pr( syi > 0 and syj ≤ 0 ) + Pr( syi ≤ 0 and syj > 0 ) ,

where yi = Ŷi? and yj = Ŷj?.

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

yj yj

yi

yj Sε yj Sεyi ε S

yj

yi yi

yi ε S yj Sεyi ε S

yi

yj

yj Sε

yi ε S

θ
θ

e

θ

θ

e
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Example in R3 (slice).

Pr( ij ∈ δ(S) ) =
θ

2π
+

θ

2π
=
θ

π

=
arccos(yiyj)

π

=
1
π

arccos ((Ŷ Ŷ>)ij)
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Theorem: E[w(δ(S))] ≥ 0.878 OPT(G,w) .
Proof.

E[w(δ(S))] =
∑
ij∈E

wij Pr( ij ∈ δ(S) )

≥
∑
ij∈E

wij
1
π

arccos ((Ŷ Ŷ>)ij)

≥ 0.878
1
2

∑
ij∈E

wij(1− (Ŷ Ŷ>)ij) Replace by linear function

≥ 0.878 OPT(G,w) .

Theorem: MAXCUT-GW is a randomized 0.878-approximation.
Theorem: Algorithm MAXCUT-GW can be derandomized
(Mahajan and Ramesh’ 95).
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1
π arccos(x) ≥ 0,878 1

2(1− x) .

0,878
1

2
(1− x)

1

π
arccos(x)

0

0,2

0,8

1

−1 −0,5 0 0,5 1

0,6

0,4

Replace by linear function
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Vector Programs × Semidefinite Programs

Def.: A square matrix X is positive semidefinite (X � 0),
iff ∃ square matrix Y such that X = Y Y>.

Vector Program:
Max 1

2
∑

ij∈E wij(1− (Y Y>)ij)

(Y Y>)ii = 1 ∀i ∈ V
⇓

Semidefinite Program:
Max 1

2
∑

ij∈E wij(1− Xij)

Xii = 1 ∀i ∈ V
X � 0
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Semidefinite Programming

Semidefinite Program: Find square matrix X such that

Min
∑

ij∈V×V wij(Xij)

AkijXij = bk ∀k ∈ M
X � 0

I Given positive semidefinite matrix X , it is possible to obtain
matrix Y in polynomial time such that X = YY T (model
with real numbers).

I Solutions of semidefinite program may be irrational.
I We can find solutions arbitrary close to the optimum using

the Ellipsoid and interior point methods.
I Optimum solutions or close to optimum (some solutions

may be irrational) [Goemans & Williamson, Homer &
Peinado, Poljak & Rendl]

I RANDSPHERE can be implemented using random number
generators in [0,1] (Knuth’98)
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Inapproximability
Optimization Problems
I I: Set of Instances.
I Sol(I): Set of solutions for each I ∈ I.
I val(I,S): Value of solution S ∈ Sol(I).

Minimization Problem
Find S ∈ Sol(I) such that val(I,S) is minimum.

Maximization Problem
Find S ∈ Sol(I) such that val(I,S) is maximum.

Optimum solution
Solution with minimum (maximum) value for minimization

(maximization) problem.
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Approximability Classes
NPO - Extension of NP to optimization problems
I ∃ polynomial function p such that 〈S〉 ≤ p(〈I〉), ∀I ∈ I,
∀S ∈ Sol(I).

I Given word X , ∃ polynomial time algorithm that decides if
X ∈ I.

I Given object Y and I ∈ I, ∃ polynomial time algorithm that
decides Y ∈ Sol(I).

I Given I ∈ I and S ∈ Sol(I), ∃ polynomial time algorithm
that computes val(I,S).

PO - Problems of NPO that has polynomial time algorithm

APX - Problems in NPO that has α-approximations, for some
constant α.
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Fato: PO ⊆ FPTAS ⊆ PTAS ⊆ APX ⊆ NPO

Possible configuration for these classes:

APXFPTAS PTAS NPOPO
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Theorem: MOCHILA ∈ FPTAS.

Theorem: ESCALONAMENTO ∈ PTAS.

Theorem: The following optimization problems for planar
graphs are NP-hard and admit PTAS (Baker’94): Independent
set, minimum cover, minimum dominant set, packing of
triangles.

Theorem: The problems BIN PACKING, MAXCUT, MAXSAT,
MINCV, MINFS, TSPM belongs to APX.

Theorem: MINCC, MINMCUT, MINTC, TSP belongs to NPO.
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NP-complete in strong sense

Max(I): largest integer in absolute sense that appear in I ∈ I;
Max(I) := 0 if no integer number occur in I.

Ip:= {I ∈ I : Max(I) ≤ p(〈I〉)} for a polynomial time function p.

Π is NP-complete in the strong sense or strongly NP-complete
if there exists polynomial time function p such that Πp is

NP-complete.

Theorem: The Knapsack problem is not strongly NP-complete.
Proof. Exercise.

Theorem: The following problems for planar graphs are
strongly NP-complete: Independent set, vertex cover,
dominating set, packing of triangles.
Proof. Exercise.

Theorem: The problem SCHEDULING is strongly NP-complete.
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Theorem: (Garey & Johnson’78) Let Π ∈NPO be strongly
NP-complete such that val(I,S) is non-negative integer ∀I ∈ I
and ∀S ∈ Sol(I). If p(n,m) is a polynomial function such that

OPT(I) ≤ p(〈I〉,Max(I)), ∀I ∈ I

and Π ∈ FPTAS, then P = NP.
Proof. Let Π be a minimization problem (analogous to
maximization).
Let A be a FPTAS for Π.
Let ε :=

1
p(〈I〉,Max(I)) + 1

. In polynomial time, we have

val(I,A(ε, I))− OPT(I) ≤ εOPT(I)

=
OPT(I)

p(〈I〉,Max(I)) + 1

< 1 ,

for each instance I. I.e., val(I,A(ε, I)) = OPT(I).
This theorem is valid only for rational numbers.
Inapproximability, Complexity Classes and PCP 267



Theorem: If PO = FPTAS, then P = NP.
Proof. Exercise.

Theorem: If FPTAS = PTAS, then P = NP.
Proof. Exercise.

Theorem: If PTAS=APX, then P=NP.
Proof. Exercise.

Theorem: If APX=NPO, then P=NP.
Proof. Exercise.

Theorem: If P = NP, then PO = NPO.
Proof. See Ausiello, Crescenzi, Gambosi, Kann,
Marchetti-Spaccamela and Protasi’99.
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Completeness for optimization problems

An AP-reduction of an optimization problem Π to an
optimization problem Π′ (Π ≤AP Π′) is a tuple (f ,g, β) where f
and g are algorithms and β is a positive rational such that:

(AP1) f receives positive rational δ and instance I of Π, and
returns an instance f (δ, I) of Π′;

(AP2) g receives positive rational δ, instance I of Π and
element S′ in Sol(f (δ, I)), and returns g(δ, I,S′) in
Sol(I);

(AP3) for each positive rational δ, the algorithms f (δ, ·) and
g(δ, ·, ·) are polynomial time; and

(AP4) for each instance I of Π, any positive rational δ, and
any S′ in Sol(f (δ, I)), it is valid that if
(1− δ) OPT(f (δ, I)) ≤ val(f (δ, I),S′) ≤
(1 + δ) OPT(f (δ, I)) ,
then
(1− βδ) OPT(I) ≤ val(I,g(δ, I,S′)) ≤ (1 + βδ) OPT(I) .
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Instância

Solução

I

S′ := A′(I′)

S′

I′

S
(1± δ)-aproximação(1± βδ)-aproximação

Π Π′

S := g(δ, I,S′)

I′ := f (δ, I)

Theorem: If Π1 ≤AP Π2 and Π2 ≤AP Π3, then Π1 ≤AP Π3.
Proof. Exercise.

Theorem: If Π is in NPO, Π′ is in APX and Π ≤AP Π′, then Π is
in APX.
Proof. Exercise.
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Theorem: If Π ∈ NPO, Π′ ∈ PTAS and Π ≤AP Π′, then
Π ∈ PTAS.
Proof. Let A′ a PTAS for Π′ and (f ,g, β) an AP-reduction from
Π to Π′. We can do an approximation scheme A for Π.

A (ε, I)
1 ε′ ← ε/β

2 I′ ← f (ε′, I)
3 S′ ← A′(ε′, I′)
4 S ← g(ε′, I,S′)
5 return S

Instance

Solution

I′ := f (ε′, I)
I

S′ := A′(I′)

S′

I′

S
(1± ε′)-approximation(1± ε)-approximation

Π Π′

S := g(ε′, I,S′)
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Def.: A problem Π in APX is APX-complete if each problem in
APX can be AP-reduced to Π.

Theorem: (Papadimitriou & Yannakakis’91 and Khanna,
Motwani, Sudan & Vazirani’99) The problem MAXSAT is
APX-complete.

Def.: A problem Π, non-necessarily in APX, is APX-hard if the
existence of a PTAS for Π implies P = NP.

Theorem: The problems BIN PACKING, MAXCUT, MAXSAT,
MINCC, MINCV, MINFS, MINMCUT, MINTC, TSPM and TSP
are APX-hard.

Def.: A problem Π in NPO is NPO-complete if each problem in
NPO can be AP-reduced to Π.

Theorem: (Orponen and Mannila’87) The problem TSP is
NPO-complete.
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Limits of approximability

Def.: O limits of approximability (approximation threshold) of a
minimization (maximization) problem is the largest (smallest)
lower (upper) bound of a possible value α for which there exists
a polynomial time α-approximation for the problem.

Lemma: If P = NP then the approximation threshold for a
problem in NPO is 1.
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Table with some results on approximation threshold for several
problem, considering P 6= NP.

problem approximation threshold

KNAPSACK = 1 (Ibarra & Kim’75) (problem in FPTAS)
SCHEDULING = 1 (Hochbaum & Shmoys’88) (problem in PTAS)
BIN PACKING = 3/2 (Garey & Johnson’79 / Simchi-Levi’94)
MAXCUT ≤ 16/17 (Håstad’97)
MAXSAT ≤ 7/8 (Håstad’97)
MINCV ≥ 7/6 (Håstad’97)
TSPM ≥ 131/130 (Engebretsen & Karpinski’00)
MINCC (E , S, c) > ε log |E |, for some constant ε > 0 (Raz & Safra’97)
MINTC (E , S, c) > ε log |E |, for some constant ε > 0

(equivalente ao MINCC (Ausiello, D’Atri & Protasi’80)
TSP (G, c) > f (〈G, c〉), for any function f computable

in polynomial time (Sahni & Gonzalez’76)
CLIQUE(V ,E) < 1/|V |1−ε (Zuckerman’07) for any ε > 0
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Probabilistic Checkable Proofs

NP Class
I Alphabet Σ = {0,1}
I Language L ⊆ Σ∗

I L ∈ NP⇔ ∀I ∈ L there exists a “short” certificate CI and
polynomial time algorithm V that verifies that I ∈ L.

PCP Proof systems (Probabilistically Checkable Proofs)
Def.: Given instance I, 〈I〉 = n, functions r(n) and q(n), is a
sequence τ of random bits, we say that V is a
(r(n),q(n))-restricted verifier if there exists integer function
r̂(n) = O(r(n)) and q̂(n) = O(q(n)) such that
I V, access I and r̂(n) first bits of τ and
I determine q̂(n) positions of Π, i1, i2, . . . , iq̂(n)
I access Πi1 ,Πi2 , . . . ,Πiq̂(n)

and answer ACCEPT or REJECT

deterministically.
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I : 〈I〉 = n

i1 i2 i3 iq̂(n)

V (I, τ,Π)

τ : |τ | = r̂(n) random bits

ACCEPT/REJECT

Verifier (r(n),q(n))-restrict

Πi1 Πi2 Πi3 Πq̂(n)

Proof Π

Generation of q̂(n) positions independent of Π
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Def.: A language L ∈ Σ∗ is in PCP(r(n),q(n)) if and only if
there exists a (r(n),q(n))-restricted verifier such that
I For any I ∈ L, ∃ ΠI ∈ Σ∗ :

Prτ (V (I, τ,ΠI) = ACCEPT) = 1
I For any I /∈ L, ∀ Π ∈ Σ∗

Prτ (V (I, τ,Π) = ACCEPT) < 1
4

We can replace 1
4 by any constant value β, such that 0 < β < 1.

New characterization of NP

Theorem: (Arora, Lund, Motwani, Sudan & Szegedy’92)
PCP(log n,1) = NP.
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Inapproximability of MAX3SAT

Max3Sat Problem (V , C) Given collection C of clauses over a
set V of variables, each clause with exactly 3 literals (of
different variables), find an attribution x of V that satisfy the
largest possible of clauses of C.

Theorem: If P 6= NP then MAX3SAT /∈ PTAS.
Proof.
We show that
MAX3SAT ∈ PTAS⇒ ∃ polynomial time algorithm that decides L,
for any L ∈ NP.
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Let L ∈ NP and I ∈ Σ∗. We can consider if I ∈ L.

As L ∈ PCP(log n,1) there exists verifier V , (log n,1)-restricted
for L.

Given I we can show how to build in polynomial time an
instance SI for MAX3SAT such that

I ∈ L ⇒ SI is satisfiable
I /∈ L ⇒ at most 1

4 of clauses of SI can be satisfied
(the fraction is independent of I)
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Given sequence τ of random bits, where |τ | = r̂(n) = O(log n),
verifier V obtain addresses i1, i2, . . . , ik in Π, where k is
constant.

V returns ACCEPT or REJECT considering the k values
Πi1 ,Πi2 , . . . ,Πik of proof Π.

Consider all assignments of k bits for these addresses for
which V answer ACCEPT.

Let Sτ a formula in 3-Sat that represents these assignments,
Sτ with at most K clauses of 3 variables.
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# clauses of Sτ ≤ K = f (k) = O(1)

V (I, τ,Π)

I : 〈I〉 = n τ : |τ |= r̂(n)=O(log n) bits aleatórios

i1 i2 i3 ik

Sτ :=Formula in 3-Sat for answers ACCEPT
of attributions of (bi1 , . . . ,bik )

bi2 bi3 bik

Generation of k = O(1) positions independent of Π AC/RE

Verifier (log n,1)-restrict

bi1
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Now, consider all m := 2r̂(n) possible values of bits
τ1, τ2, . . . , τm.

Consider the formula S := Sτ1

∧
Sτ2

∧
. . .
∧

Sτm

I ∈ L ⇒ ∃ΠI such that SI is satisfiable

I /∈ L ⇒ ∀Π at most 1
4 of the formulas Sτi

can be satisfied simultaneously
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For Sτi to be unsatisfiable, it is sufficient that one of the clauses
(of at most K ) is not satisfied.

We can compute the maximum fraction of satisfied clauses

S := Sτ1

∧
Sτ2

∧
. . .
∧

Sτm/4︸ ︷︷ ︸
satisfied

∧
Sτm/4+1

∧
. . .
∧

Sτm︸ ︷︷ ︸
unsatisfied

So, if I /∈ L at most
K · m

4 + (K − 1) · 3m
4

K ·m
= 1− 3

4K
of the

clauses can be satisfied.
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So,
• or all clauses of S can be satisfied,

• or at most
(

1− 3
4K

)
of the clauses of S can be satisfied.

Therefore, if we have an α-approximation for the MAX3SAT,
with α >

(
1− 3

4K

)
, we can decide the existence of a proof Π for

I.

Theorem: If P 6= NP, then MAXSAT /∈ PTAS.
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Inapproximability of CLIQUE

Theorem: (Zuckerman’07) If there exists a polynomial time
n1−ε-approximation for problem CLIQUE, for any ε > 0, then
P = NP.

This result uses the PCP system. We will prove a weaker result.
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Theorem: If there exists a polynomial time α-approximation for
problem CLIQUE, for any constant α > 0, then P = NP.

Proof.
We show that
CLIQUE ∈ APX⇒ ∃ polynomial time algorithm to decide L,
where L ∈ NP.

Let L ∈ NP and I ∈ Σ∗. We can consider if I ∈ L.

As L ∈ PCP(log n,1) there exists (log n,1)-restricted verifier V
for L.
Given I we can construct a graph GI for problem CLIQUE such
that

I ∈ L ⇒ ω(GI) = f (n)

I /∈ L ⇒ ω(GI) <
1
4 f (n)
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Each query of random bits τ , |τ | = r̂(n) = O(log n), V we obtain
k addresses i1, i2, . . . , ik

V verify Πi1 ,Πi2 , . . . ,Πik and return ACCEPT or REJECT.

Let GI = (VI ,EI) a graph such that
I VI are all sequences of r̂(n) + k bits (τ,bi1 ,bi2 , . . . ,bik ) and

addresses verified by V , say i1, i2, . . . , ik , such that values
(bi1 ,bi2 , . . . ,bik ) for these positions makes V return
ACCEPT.

I Given nodes v ′ and v ′′,

v ′ = (τ ′,bi ′1
, . . . ,bi ′k

) e v ′′ = (τ ′′,bi ′′1
, . . . ,bi ′′k

)

{v ′, v ′′} ∈ EI if there is no conflict in the value of two bits in
the same position.

Note that GI can be constructed in polynomial time.

Inapproximability, Complexity Classes and PCP 287



Given any proof Π,

ω(GI) ≥ |{τ : V (I, τ,Π) = ACCEPT}|
= 2r̂(n)Prτ (V (I, τ,Π) = ACCEPT)

Given a clique C in GI , |C| = ω(GI), there exists proof ΠC ,
consisting of all nodes in C

ω(GI) ≤ |{τ : V (I, τ,ΠC) = ACCEPT}|
= 2r̂(n)Prτ (V (I, τ,ΠC) = ACCEPT)

Therefore

ω(GI) = 2r̂(n) max
Π

Prτ (V (I, τ,Π) = ACCEPT)
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By definition of PCP,

max
Π

Prτ (V (I, τ,Π) = ACCEPT)

{
= 1 if I ∈ L
< 1

4 if I /∈ L

So,
• or exists a clique of size f (n),
• or the maximum clique has size at most 1

4 f (n),
where f (n) = 2r̂(n).

Therefore, if we have an 4-approximation for the CLIQUE we
can decide the existence of a proof Π for I.

We can improve the verifier with probability 1/α, in the place of
1/4, proving that there is no α-approximation for CLIQUE.
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Técnica Métrica
Def.: Dados grafo G e conjunto K de pares de vértices, um
caminho de s a t é um K -caminho se {s, t} ∈ K .

Def.: Um conjunto M de arestas é um K -multicorte se não
existe K -caminho no grafo G −M.

Problema MINMCUT (G,K , c) Dados grafo G, conjunto K de
pares de vértices e custo ce ∈ Q≥ para cada e ∈ EG, encontrar
um K -multicorte M que minimize c(M) =

∑
e∈M ce.

Teorema: O problema MINMCUT (G,K , c) é polinomial quando
|K | = 1 ou |K | = 2 e NP-difı́cil quando |K | ≥ 3.
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Seja P o conjunto de todos os K -caminhos. O seguinte
programa linear é uma relaxação para MINMCUT.

Encontrar um vetor x indexado por EG que

(P)

minimize
∑
e∈E

ce xe∑
e∈EP

xe ≥ 1 para cada P em P ,

xe ≥ 0 para cada e em EG .

Algoritmo de Garg, Vazirani e Yannakakis:

MINMCUT-GVY (G,K , c), K 6= ∅.
1 seja x̂ uma solução ótima racional de (P).
2 k ← |K |
3 M ← CENTRAL (G, k ,K , c, x̂)

4 devolva M
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Apresentaremos o algoritmo CENTRAL e a prova do seguinte
lema posteriormente.

Lema: O algoritmo CENTRAL produz um K -multicorte M em
tempo polinomial tal que

∑
e∈M ce ≤ (4 ln 2k) c x .

Teorema: (Garg, Vazirani, Yannakakis’96) O algoritmo
MINMCUT-GVY é uma (4 ln 2k)-aproximação polinomial para o
MINMCUT (G,K , c), sendo k := |K | > 0.
Prova.

c(M) =
∑
e∈M

ce ≤ (4 ln 2k) c x̂ ≤ (4 ln 2k) OPT(G,K , c) .

A linha 1 de MINMCUT-GVY pode ser executada em tempo
polinomial, pois temos algoritmo de separação para as
desigualdades de (P).

Técnica Métrica e Problema do K-Multicorte 292



Algoritmo Central
O algoritmo CENTRAL separa pelo menos um par de {s, t} ∈ K
em cada chamada recursiva.

Para isto, o algoritmo encontra um corte (S,T ) tal que

1. nenhum par em K está em S,

2. algum par em K tem extamente um vértice em S

3. c(δ(S)) é razoavelmente pequeno.
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Seja
x(s,u) := min{

∑
e∈EP

xe : P é um caminho de s a u}.

V (s, ρ) := {v ∈ VG : x(s, v) ≤ ρ} .

Idéia: Imagine que as arestas do grafo são tubos, sendo xe o
comprimento e ce a área da secção transversal do tubo e.

Denote por ϑ(s, ρ) o volume da parte da tubulação que dista no
máximo ρ de s:

ϑ(s, ρ) := cA xA +
∑

uv∈δ(S), u∈S cuv (ρ− x(s,u)) ,

onde S := V (s, ρ) e cA e xA são as restrições de c e x , ao
conjunto A :=EG[S].
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s

S

c(δ(S))

S := ϑ(s, ρ)

ce = seção transversal do tubo
xe = comprimento do tubo
c(δ(S)) = custo do corte

ρ

0

ϑ(s, ρ)

ρ1
2

Descontinuidades podem ocorrer pela inclusão de toda uma
aresta.
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CENTRAL (G, k ,K , c, x), |K | ≤ k
1 se K = ∅
2 então devolva ∅
3 senão se c x = 0
4 então devolva {e ∈ EG : xe > 0}
5 senão sejam {s, t} ∈ K
6 seja v1, . . . , vn tal que x(s, v1) ≤ · · · ≤ x(s, vn)
7 para i de 1 a n faça pi ← x(s, vi)

8 j ← 1 + max{i : pi = 0}
9 enquanto ϑ(s,pj) > ((2k)2pj − 1) 1

k c x faça j ← j +1
10 S ← V (s,pj−1)

11 T ← VG \ S
12 B ← EG[T ]

13 GB ← (VG,B)

14 KB ← K \ {{s′, t ′} : S separa s′ de t ′}
15 MB ← CENTRAL (GB, k ,KB, cB, xB)

16 devolva δ(S) ∪MB
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Lema: Ao fim da linha 10, temos pj−1 <
1
2 , e portanto

x(s,u) < 1
2 para todo u ∈ S.

Prova.
Seja h o menor natural tal que ph ≥ 1

2 .
Temos que 2 ≤ h ≤ n já que pn ≥ x(s, t) ≥ 1 e p1 = 0.

Como ϑ(s,ph) ≤ c x e k ≥ 1 temos

ϑ(s,ph) ≤ c x

≤
(
(2k)2ph − 1

)1
k

c x

assim, h não satisfaz condição da linha 9 e portanto j ≤ h.

Corolário: Em uma chamada, para um par {s, t}, temos s ∈ S
e t /∈ S. Além disso, se {si , ti} ∈ K − {s, t}, então si /∈ S ou
ti /∈ S.
Prova. Exercı́cio.
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Lema: Ao fim da linha 10 do algoritmo CENTRAL, temos que

c(δ(S)) ≤ (2 ln 2k)
(

cA xA + cδ(S)xδ(S) + 1
k c x

)
,

onde A := EG[S].
Prova. Note que após a linha 9, temos

pj−1 < pj , (1)

ϑ(s,pj) ≤ ((2k)2pj − 1) 1
k c x . (2)

ϑ(s,pj−1) ≥ ((2k)2pj−1 − 1) 1
k c x e (3)

De (3) e (2) temos que

ϑ(s,pj) + 1
k c x

ϑ(s,pj−1) + 1
k c x

≤ (2k)2(pj−pj−1) . (4)
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Tomando-se o logaritmo natural do lado esquerdo de

ϑ(s,pj) + 1
k c x

ϑ(s,pj−1) + 1
k c x

≤ (2k)2(pj−pj−1) . (5)

obtemos

ln
(
ϑ(s,pj) + 1

k c x
)
− ln

(
ϑ(s,pj−1) + 1

k c x
)

=

=

∫ pj

pj−1

d
dρ

ln
(
ϑ(s, ρ) + 1

k c x
)

dρ

=

∫ pj

pj−1

c(δ(S))

ϑ(s, ρ) + 1
k c x

dρ ,

(note que ϑ(s, ρ) é uma função linear com coeficiente c(δ(S))).
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Tomando-se o logaritmo natural do lado direito de

ϑ(s,pj) + 1
k c x

ϑ(s,pj−1) + 1
k c x

≤ (2k)2(pj−pj−1) . (6)

obtemos

2(pj − pj−1) ln 2k =

∫ pj

pj−1

(2 ln 2k) dρ .

Como o logaritmo é uma função crescente, concluı́mos de (6)
que ∫ pj

pj−1

c(δ(S))

ϑ(s, ρ) + 1
k c x

dρ ≤
∫ pj

pj−1

(2 ln 2k) dρ .

Então, para algum ρ no intervalo (pj−1,pj) temos que

c(δ(S))

ϑ(s, ρ) + 1
k c x

≤ (2 ln 2k).
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Assim,

c(δ(S)) ≤ (2 ln 2k)(ϑ(s, ρ) +
1
k

c x)

≤ (2 ln 2k)(cA xA +
∑

uv∈δ(S), u∈S

cuv (ρ− x(s,u)) +
1
k

c x)

≤ (2 ln 2k)(cA xA +
∑

uv∈δ(S)

cuv xuv +
1
k

c x)

= (2 ln 2k)(cA xA + cδ(S)xδ(S) +
1
k

c x)
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Teorema: O algoritmo CENTRAL (G, k ,K , c, x) produz um
K -multicorte M em tempo polinomial tal que

c(M) ≤ (2 ln 2k)(1 + 1
k |K |)c x . (7)

Prova. Por indução em |K |.

Se K = ∅ ou c x = 0, claramente (7) vale.
Suponha que K 6= ∅ e c x > 0.
Neste caso, o algoritmo devolve M := δ(S) ∪MB. Assim,

c(δ(S) ∪MB) = c(δ(S)) + cB(MB)

≤ (2 ln 2k)
(
cA xA + cδ(S)xδ(S) +

1
k

c x + (1 +
1
k
|KB|)cB xB

)
= (2 ln 2k)

(
c x +

1
k

c x +
1
k
|KB|cB xB

)
≤ (2 ln 2k)

(
c x +

1
k

c x +
1
k

(|K | − 1)c x
)

≤ (2 ln 2k)(1 +
1
k
|K |)c x .
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Equilı́brio de Nash e Busca Local

I Internet: Rede gigantesca com grande quantidade de
usuários e complexa estrutura sócio-econômica

I Usuários podem ser competitivos, cooperativos,...

I Situações envolvendo Teoria dos Jogos e Computação

Ref.: Cap. 12 - Local Search do livro Algorithm Design de
Kleinberg e Tardos
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Um jogo Multicast

I Jogadores podem construir links entre nós

I Há um nó origem

I Cada jogador representa um nó destino

I Cada jogador quer conectar o nó origem até seu nó
destino

I Há cooperação na construção da rede. Isto é, o custo de
um link é dividido igualmente entre os usuários que o
utilizam

Equilı́brio de Nash, Busca Local e Jogo Multicast 304



Definição

Dados
I Grafo direcionado G = (V ,E)

I Custo positivo ce para cada aresta e.
I Vértice fonte s
I k vértices destinos t1, . . . , tk

Cada usuário i procura encontrar
I caminho orientado Pi do vértice s até ti pagando menos

Custo para

I usuário i é c(Pi) =
∑
e∈Pi

ce

ke
, onde ke número de caminhos usando e

I sistema é c(P1, . . . ,Pk ) =
∑

i

c(Pi) (custo social)
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Jogo

Regras do Jogo:
I Cada usuário fica estável ou muda sua rota (pagando

menos) baseado apenas na configuração atual

I Em um estado do jogo com caminhos (P1, . . . ,Pk ),
denotamos por E+ ⊆ E as arestas usadas em pelo menos
um caminho.

I O custo social é o custo dos caminhos escolhidos pelos
jogadores:

c(P1, . . . ,Pk ) =
k∑

i=1

c(Pi) =
∑

e∈E+

ce
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Exemplo 1

I Temos dois jogadores: 1 e 2
I Cada um tem duas alternativas: uma rota externa e uma

interna.

t1

1 1

s

t2

4 8

5
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Exemplo 1

I Considere que inicialmente os jogadores usam as rotas
externas.

I O jogador 1 paga 4 e o jogador 2 paga 8
I O custo social é igual a 12.

t2t1

4 8
5

s

1 1
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Exemplo 1

I O jogador 2 muda para a rota interna e seu custo cai para
6

I O custo social cai para 10

t2t1

4 8

5

s

1 1
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Exemplo 1

I O jogador 1 tem incentivo a mudar
I Cada jogador paga 2,5 + 1, e estamos em um equilı́brio
I O custo social cai para 7 (solução final também é ótima)

t2t1

5

4 8

s

1 1
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Definições e Notação
I A Estratégia do jogador i é o conjunto de rotas de s para ti
I O estado do jogo em um momento é dado pelos k

caminhos (P1, . . . ,Pk ) no momento

I O ótimo social é o menor valor possı́vel de uma solução
(dos k caminhos), possivelmente não está em equilı́brio.

I Um usuário i está insatisfeito no estado atual, se ele pode
mudar sua rota por outra de custo melhor

I Estado em Equilı́brio de Nash quando não há usuários
insatisfeitos

I O Preço da Estabilidade razão entre a melhor solução em
equilı́brio com o ótimo social

I O Preço da Anarquia razão entre a pior solução em
equilı́brio com o ótimo social

I Melhor resposta: movimento para estratégia de maior
ganho positivo
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Preços da anarquia e da estabilidade para minimização

Ótimo Social = OPT

Preço da Anarquia =
PE

OPT
Melhor equilı́brio = ME

Preço da Estabilidade =
ME
OPT

Pior equilı́brio = PE
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Exemplo 2
I Na rede abaixo há k jogadores todos com mesmo destino

t
I Considere todos usando a aresta da direita
I Estamos em um equilı́brio com custo k (cada jogador

paga 1).

I O ótimo social tem custo 1 (cada jogador paga
1
k

).

k Jogadores

k

s

t

1

Teorema: O preço da anarquia deste jogo Multicast é k.
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Método da Função Potencial e o Preço da Estabilidade

Def.: Uma função potencial exata Φ é uma função que
I mapeia cada vetor de estratégia P para um valor real tal

que
I se P = (P1, . . . ,Pi , . . . ,Pk ) e

P ′i 6= Pi é uma estratégia alternativa para o jogador i,
então

Φ(P)− Φ(P ′) = ci(Pi)− ci(P ′i ),

onde P ′ = (P1, . . . ,P ′i , . . . ,Pk )

Fato: Seja Φ uma função potencial exata para o jogo do
Multicast com dinâmica de melhor resposta. Se jogador i muda
sua estratégia de Pi para P ′i , e o vetor de estratégia muda de P
para P ′, então

Φ(P) > Φ(P ′).

Isto é, Φ é estritamente decrescente após jogadas.
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Função Potencial para Multicast
Dado vetor de estratégias P = (P1, . . . ,Pk ), denote por

Φ(P) =
∑

e

ce · H(ke),

onde
H(t) = 1 +

1
2

+ · · ·+ 1
t

e H(0) = 0

ke é o número de caminhos de P que usam e

Lema: Φ é uma função potencial exata.
Prova. Exercı́cio

Fato: Φ(P) é limitado inferiormente.
Prova. Exercı́cio

Lema: O jogo Multicast com a dinâmica de melhor resposta
converge para um equilı́brio de Nash.
Prova. Exercı́cio
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Preço da Estabilidade
Lema: Se P = (P1, . . . ,Pk ) é um vetor de estratégia, então

c(P) ≤ Φ(P) ≤ H(k)c(P).

Teorema: O preço da estabilidade do jogo Multicast é no
máximo H(k).
Prova. Seja:
OPT um vetor de estratégia ótimo (ótimo social)
O um vetor de estratégia em equilı́brio obtido a partir de OPT
P um vetor de estratégia em Equilı́brio de Nash de menor custo

c(P) ≤ c(O)

≤ Φ(O)

≤ Φ(OPT)

≤ H(k) · c(OPT)
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Lema: O preço da estabilidade H(k) do problema de Multicast
é justo (melhor possı́vel).
Prova.

s

1 + εt1 t2 t3 tk−1 tk

0 0 0

1
2

1
31

0 0

1
k−1

1
k
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Observações

I Tempo de convergência do problema Multicast pode ser
exponencial

I Encontrar ótimo social é um problema NP-difı́cil.

Exercı́cio: Mostre que encontrar o ótimo social do problema
Multicast é um problema NP-difı́cil. Sugestão: por Cobertura
por Conjuntos.
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Complexidade de se encontrar Equilı́brio de Nash em
Jogos Potenciais

O quão difı́cil é encontrar um algoritmo polinomial para
encontrar um equilı́brio de Nash ?
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Classe PLS - Polynomial Local Search Problems

Em um problema de otimização (minimização) temos:
I conjunto de instâncias I
I para entrada x ∈ I, temos um conjunto de soluções viáveis

F (x)

I para toda solução s ∈ F (x) temos um custo cx (s)

I um oráculo que diz se s pertence ou não à F (x) e em
caso positivo, computa cx (s)

O problema consiste em dado x ∈ I, encontrar s ∈ F (x) tal que
cx (s) é mı́nimo.

A versão de maximização é análoga.
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Um problema de otimização local é um problema de otimização
onde
I há uma vizinhança Nx (s) ⊂ F (x) para cada x ∈ I e

s ∈ F (x)

I e uma solução s de F (x) é um mı́nimo local se
cx (s) ≤ cx (s′) para todo s′ ∈ Nx (s).

O objetivo é encontrar uma solução que é mı́nimo local.

Um problema de otimização local pertence à PLS se temos um
oráculo que, para qualquer instância x ∈ I e solução s ∈ F (x),
decide se s é ótimo local, e se não for, devolve s′ ∈ Nx (s) com
cx (s′) < cx (s).
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Def.: (Johnson, Papadimitriou, Yannakakis’88) Um problema P
é PLS-completo se está em PLS e se para todo problema Q de
PLS, há uma redução polinomial de Q para P, tal que qualquer
ótimo local de P corresponde a um ótimo local de Q.

Há vários problemas em PLS-completo (Circuit-SAT com
pesos, busca de ótimos locais relativos ao TSP, MAXCUT, SAT,
etc)
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Problema da Satisfatibilidade com Pesos (LSAT -
Local SAT):

I Seja φ uma fórmula em Forma Normal Conjuntiva (FNC)
C1 ∧ . . . ∧ Cm

I cada cláusula Cj com peso wj .
I Uma atribuição lógica qualquer das variáveis é uma

solução de φ.
I O valor de uma solução s é o peso total das cláusulas

satisfeitas por s.
I A vizinhança de s são as atribuições obtidas trocando o

valor de apenas uma variável de s.
I O objetivo é encontrar uma solução que é mı́nimo local.
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Teorema: (Krentel’89) O problema LSAT é um problema
PLS-completo.

Teorema: (Fabrikant, Papadimitriou, Talwar’04) O problema de
se encontrar um equilı́brio puro de Nash em jogos potenciais,
onde a melhor resposta é computada em tempo polinomial, é
PLS-completo.
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