

Jaca Tool Improvements for
Speeding Up Fault Injection Campaigns

Naaliel Mendes1, Regina Moraes2, Eliane Martins3, Henrique Madeira1

1CISUC, University of Coimbra
3030-290 – Coimbra – Portugal

2CESET, University of Campinas (UNICAMP)
Caixa Postal 456 – 13.484-370 – Limeira, SP – Brazil

3IC, University of Campinas (UNICAMP)
Caixa Postal 6.176 – 13.084-971 – Campinas, SP – Brazil

{naaliel,henrique}@dei.uc.pt, {regina@ceset, eliane@ic}.unicamp.br

Abstract. This paper presents the improvements that were implemented in the
current version of Jaca, a fault injection tools that is used to validate Java
applications. Due to these improvements Jaca reports based on .CVS file
format allow statistical analysis and require less effort to handle the
experiments results. Jaca monitoring abilities provide detailed information to
follow exceptional behavior during the execution of fault injection campaign.
These improvements also provide more robustness, minimize the user
interaction in the fault injection campaign and improve the performance of an
injection execution.

1. Introduction
Dependable systems are currently required in any software development project and
have special emphasis on mission critical and complex systems. In this sense, a system
is dependable if it survives in the presence of failures. In critical and complex systems,
an error means a disaster because human lives or economic resources are in danger.
A real trend in development environment is to construct complex systems by
assembling several components. Custom made components for specific tasks can be
used, however it is common the use of off-the-shelf (OTS) components for general
tasks. Despite the increase in productivity, the use of components still presents some
difficulties, especially concerning validation and maintenance. Unspecified
dependencies and the complexity of the interaction among components can cause
unexpected errors to emerge from component interfaces [Voas, 1997]. Furthermore, the
coupling between components to achieve the system’s goals makes them highly
interdependent. In consequence, a failure in one component can affect the status of
other components [Voas, 1997].

Many researches have been pointed to software engineering validation techniques to
increase the system dependability. Validation is thus, a necessary step to establish
whether a solution achieves the required system’s qualities. Moreover, it is important to
assess the robustness of the interfaces with respect to component failures as well as
problems that enter the system from external sources [Voas, 1998].

An important software engineering validation technique is the use of fault injection
technique that helps the evaluation of system dependability. To make this technical
approach feasible, the use of an injection tool is often necessary. Jaca [Leme, 2001], the
tool presented in this work consists in a software injection tool that inject errors through
the interface by corrupting attribute values, methods parameters and return values.
Since its first version, Jaca has received relevant improvements and has been used in
practical experiences reports in several scientific publications that use fault injection
techniques and software robustness evaluation [Moraes, 2005][Moraes2,
2005][Moraes3, 2005] [Jacques-Silva, 2004][Moraes, 2003].

This paper describes the new features available to Jaca last version. The aim is to give a
picture of the relevant benefits that Jaca improvements bring to the users as these
improvements speed up the time performance of an injection execution and, among
other positive points, generate reports that allow statistical analysis.

The remainder of this paper is organized as follows. Section 2 presents some aspects of
Fault Injection. Section 3 describes the Jaca Fault Injection Tool. Section 4 emphasizes
the improvements done into Jaca. Finally, Section 5 presents our conclusions and future
works.

2. Fault Injection
Fault injection is a technique that corresponds to the artificial insertion of faults into a
computer system aiming at the acceleration of the occurrence of errors and failures in
order to observe the system behavior in the presence of faults in its components or in its
environment [Voas, 1998]. Fault Injection techniques have been widely used to evaluate
a system’s dependability and to validate its error-handling mechanisms. Fault injection
enables accelerated system testing under stressful conditions and forces a fault tolerant
system to deal with faults, enabling the solutions projected for exceptional situations to
be validated and can help the localization of uncover design and implementation faults
in the systems [Arlat, 1990].

Fault Injection approaches may vary according to the system life cycle in which they
are applied and to the type of faults that are injected. Among the various existent
approaches (see [Hsueh, 1997] for an overview), software-implemented fault injection
has been widely used. It has become more popular due to its lower costs (it does not
require special developed circuits, as does hardware fault injection), better versatility (it
is easier to adapt codes to make fault injection in another system than to adapt of
circuits) and better control, which together facilitate the observation of the system
during tests. Software fault injection consists of altering a system’s code or state in
order to emulate software faults as well as faults that occur in external components that
somehow affect the software [Voas, 1998]. The injection of errors through the
interfaces can be useful to evaluate the system robustness and to understand how these
errors propagate among the system components. To inject interface faults and to
evaluate the system robustness Jaca is an important resource.

3. The Jaca Tool
This work presents the last version of Jaca [Leme, 2001], called JacaC3.0, a software
injection tool to inject high level faults in object-oriented systems written in Java
programming language. Jaca uses reflective programming to inject interface faults. The

reflection mechanism introduces a new architectural model by the definition of two
levels: the meta-level (implements fault injection and monitoring features) and the base
level (implements the system’s functionalities) [Maes, 1987]. Computational reflection
allows the target system’s instrumentation to carry out its functions through
introspection (useful for the system’s monitoring) or by altering the system during
runtime (useful for the injection) without changing the system’s structure.

Jaca does not need the application source code to perform fault injection. This occurs
because Jaca was implemented using the Javassist reflection toolkit [Chiba, 1998],
which allows the instrumentation to be introduced at byte code level during load time.
Jaca may seem similar to traditional mutation techniques used in mutation testing.
However, the fact that Jaca can inject faults and can alter parameters that pass through
the interfaces directly at the executable code without requiring the target source code
makes the difference between both technique. Jaca can affect the public interface of an
application by altering the values of attributes, the parameters of methods and return
values.

Jaca was developed based on a fault injection tool architectural pattern. In one
simplified version, the base concepts of this pattern are shown in Figure 1. Each
rectangle represents packages.

Figure 1. Fault Injector architectural pattern structure.

The main elements of the architectural pattern are: i) Activator - activates the target
system, allowing it to be tested in its normal conditions; ii) Injector – injects faults into
the target system; iii) Monitor – monitors the target system in order to verify if it is
operating as expected; iv) Controller - controls the previous subsystems, so they do
their activities coordinately; v) User Interface – receives the specifications from the user
for the execution of the experiment and it gives back the results. A complete Jaca
structure is described in more detail in [Leme, 2001] and [Martins, 2002]. Relevant
improvements were implemented in Jaca new version.

4. Jaca Improvements
Jaca has been developed in an incremental way. Considering several version of the tool,
it is evident the relevant features that have been add throughout the time. Jaca 1.0 had
been developed in 2001 and the second version, called Jaca 2.0, had been released in
2004. JacaC3.0 is the last version and has relevant new features implemented. The last
version of the tool may be downloaded in [Jaca, 2006].

Figure 2 presents the new Jaca graphic user interface with a special emphasis on the
new features. The capital letters are defined in a counter-clockwise direction.

Figure 2. JacaC3.0 Interface in the System Config Tab.

The improvements considered in the JacaC3.0 are:

(A) Golden Run: To allow statistical evaluation Jaca stores the results when no faults
are injected. We call this system execution as “Golden Run”. The results generated in
Golden Run are taken as the system correct behavior and is used to compare the results
generated in a run when faults are injected. This comparison allows us to classify the
results obtained in accordance with a pre-defined scale. In the previous versions this
classification was not automatic and it was not possible to deal with a large number of
injections required for statistical results.

(B) Timeout: The user may define the maximum time that an application will be
executed in each injection campaign. If, after the timeout time, the system continues
running, JacaC3.0 forces the system end.

(C) Report: The reports are divided into three different files. The first one shows the
injected errors. The second file monitors what happened at one specific execution. The
third file, the unique that does not have the name defined via interface, shows the files
exceptions (if it exists). The first and second files are generated to .CVS file format.
This means that the results may be imported to different software like ©Microsoft Excel
and ©OpenOffice Calc. Indeed, the resulted files are much clearer, given the
opportunity to create graphics and summarized results through external software.
Furthermore, the first file shows the fault injection results through following Failure
Mode (the classification of a system failure):

 Correct - if, after the fault injection execution, the system has been finished as
the system specification and the reported results are corrects, e.g., the results are
the same as the Golden Run;

Wrong - if, after the fault injection execution, the system has been finished as
the system specification but the reported results are wrong, e.g., the results do
not match the ones obtained in the Golden Run;

Crash – if, during the fault injection execution, the system is unexpectedly
aborted with reported results unexpected too.

Hang - if, after the fault injection execution, the system does not answer and
finished by timeout.

(D) Start Sequence: It is the command line necessary to execute a Java target system.
In this new version, when a user aims to define a workload different from the standard
workload of the target system, it is necessary to place a special character in this
command line.

(E) Batch Files: In the beginning and in the ending of a fault injection, it is possible to
run a batch file. This feature can be used to start a target system that should be running
before the fault actually is injected.

(F) Injection Run: In the fault injection definitions, the failures values could be: i)
defined by user; ii) have automatic increment; iii) received automatically via XML file
(jacaCampaign.xml).

(G) Campaign: When Jaca detects an exception, it is not necessary to wait for the
target system expiration time (timeout). There is a Jaca internal component that listens
continually whether the target system execution process is done. Using this resource, it
is possible to improve significantly the performance of a fault injection campaign.

5. Conclusion
This paper presented the last improvements to a software fault injection tool, JacaC3.0.
JacaC3.0 is a software injection tool to inject high level faults in object-oriented
systems written in Java language and holds important concepts for the fault injection
techniques as Golden Run and Failure Mode.

JacaC3.0 controls the expiration time of a target system (timeout) and generate reports
in .CVS file format, allowing their manipulation by external software. JacaC3.0 may
define a workload different from the standard workload of the target system and may
execute batch files before and after of each injection execution. JacaC3.0 has the ability
to inject various types of faults with different values, which could be defined
automatically or by the user. JacaC3.0 has an internal component to verify when an
injection execution is done.

Considering Jaca current version and our experience in software injection validation
approach, it is possible to confirm that JacaC3.0 is a very useful tool for robustness
testing. If we compare with its previous versions, JacaC3.0 minimize the time that is
necessary to complete a fault injection campaign.

In future work we intend to develop a new version of Jaca to inject errors in web-based
systems, due to the relevant role that these system have in modern systems.

Acknowledges
The authors thank CAPES (Brazil), GRICES (Portugal) and FCT (Portugal) to partially
support this work.

References
Arlat, J., Aguera, M., Amat, L., Crouzet, Y., Fabre, J., Laprie, J., Martins, E. and

Powell, D. (1990) “Fault Injection for Dependability Validation–A Methodology and
some Applications”, IEEE Transactions on Software Engineering, 16 (2), Feb/1990,
pp. 166-182.

Chiba, S. (1998) “Javassist – A Reflection-based Programming Wizard for Java”,
Proceedings of the ACM OOPSLA’98, October 1998.

Hsueh, M.-C., Tsai, T. and Iyer, R. (1997) “Fault Injection Techniques and Tools”,
IEEE Computer, Volume 30, Número 4, pp. 75-82, April 1997.

Jaca (2006), Jaca – A Fault Injection Tool, http://www.sed.ic.unicamp.br/~jaca/,
Accessed on Apr/06.

Jacques-Silva, G., Moraes, R., Weber, T., Martins, E. (2004) “Validando Sistemas
Distribuídos Desenvolvidos em Java Utilizando Injeção de Falhas de Comunicação
por Software”, Proc. of the V Workshop de Testes e Tolerância a Falhas (WTF),
Simpósio Brasileiro de Redes de Computadores, Gramado.

Leme, N., Martins, E. and Rubira, C. (2001) “A Software Fault Injection Pattern
System”, Proc. of the IX Brazilian Symposium on Fault-Tolerant Computing,
Florianópolis, SC, Brasil, Março, 2001, pp. 99-113.

Maes, P. (1987) “Concepts and Experiments in Computational Reflection”, Proc.
OOPSLA’87, pp. 147-155.

Martins, E., Rubira, C. and Leme, N. (2002) “Jaca: A Reflective Fault Injection Tool
Based on Patterns”, In Proceedings of DSN’2002, Washington, Estados Unidos,
July/ 2002.

Martins, Eliane (1996) “Injection Faults in dependable systems”, I Regional
Symposium of Fault Tolerance Systems, Campinas, (in Portuguese), pages. 181-196.

Moraes, R., Martins, E. (2003) “A Strategy for Validating an ODBMS Component
Using a High-Level Software Fault Injection Tool”, In: Proc. of the First Latin-
American Symposium, LADC 2003, pages 56-68, São Paulo, Brazil.

Moraes, R., Martins, E., Poletti, E., Mendes, N. (2005) “Using Stratified Sampling for
Fault Injection”, In Proceedings of LADC’2005, Salvador, Brazil, October 2005.

Moraes, R., Martins, E., Mendes, N. (2005) “Fault Injection Approach based on
Dependence Analysis”, In Proceedings of TQACBS, Edinburgh, Scotland, July
2005.

Moraes, R., Martins, E. (2005) “Fault Injection Approach based on Architectural
Dependencies”, In Architecting Dependable Systems III – ADSIII, UK (Book
chapter), Rogerio de Lemos, Cristina Gacek, A. Romanovsky Editors, Springer
Verlag, Berlin Heidelberg, UK.

Voas, J. and McGraw, G. (1998) “Software Fault Injection: Inoculating Programs
against Errors”, John Wiley & Sons, New York, EUA.

Voas, J., Charron, F., McGraw, G., Miller, K. and Friedman, M. (1997) “Predicting how
Badly Good Software can Behave”, IEEE Software, pages 73–83, August 1997.

