4. AVR CPU Core

4.1 Introduction

This section discusses the AVR core architecture in general. The main function of the CPU core is to ensure correct program execution. The CPU must therefore be able to access memories, perform calculations, control peripherals, and handle interrupts.

4.2 Architectural Overview

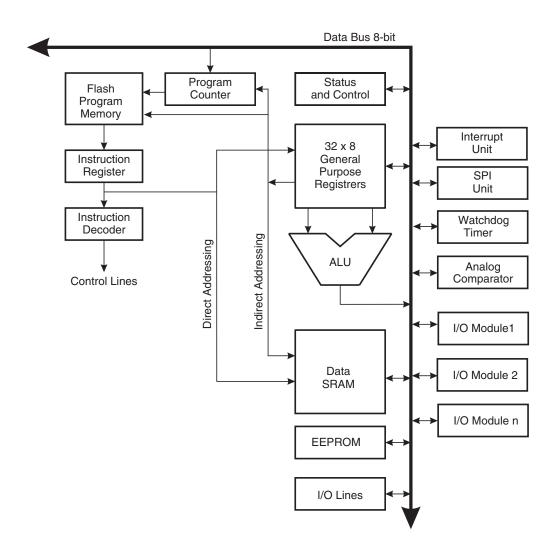
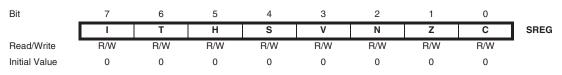


Figure 4-1. Block Diagram of the AVR Architecture

In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with separate memories and buses for program and data. Instructions in the program memory are executed with a single level pipelining. While one instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions to be executed in every clock cycle. The program memory is In-System Reprogrammable Flash memory.



4.4 Status Register

The Status Register contains information about the result of the most recently executed arithmetic instruction. This information can be used for altering program flow in order to perform conditional operations. Note that the Status Register is updated after all ALU operations, as specified in the Instruction Set Reference. This will in many cases remove the need for using the dedicated compare instructions, resulting in faster and more compact code.

The Status Register is not automatically stored when entering an interrupt routine and restored when returning from an interrupt. This must be handled by software.

The AVR Status Register - SREG - is defined as:

• Bit 7 – I: Global Interrupt Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt enable control is then performed in separate control registers. If the Global Interrupt Enable Register is cleared, none of the interrupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by the application with the SEI and CLI instructions, as described in the instruction set reference.

• Bit 6 – T: Bit Copy Storage

The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the operated bit. A bit from a register in the Register File can be copied into T by the BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the BLD instruction.

• Bit 5 – H: Half Carry Flag

The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful in BCD arithmetic. See the "Instruction Set Description" for detailed information.

Bit 4 – S: Sign Bit, S = N ⊕ V

The S-bit is always an exclusive or between the Negative Flag N and the Two's Complement Overflow Flag V. See the "Instruction Set Description" for detailed information.

• Bit 3 – V: Two's Complement Overflow Flag

The Two's Complement Overflow Flag V supports two's complement arithmetics. See the "Instruction Set Description" for detailed information.

• Bit 2 – N: Negative Flag

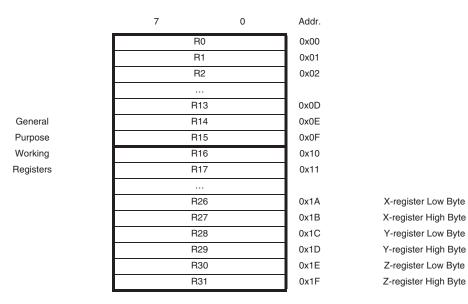
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the "Instruction Set Description" for detailed information.

• Bit 1 – Z: Zero Flag

The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the "Instruction Set Description" for detailed information.

• Bit 0 – C: Carry Flag

The Carry Flag C indicates a carry in an arithmetic or logic operation. See the "Instruction Set Description" for detailed information.

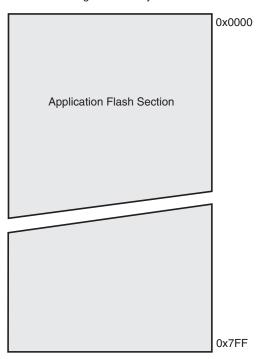

4.5 General Purpose Register File

The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve the required performance and flexibility, the following input/output schemes are supported by the Register File:

- One 8-bit output operand and one 8-bit result input
- Two 8-bit output operands and one 8-bit result input
- Two 8-bit output operands and one 16-bit result input
- One 16-bit output operand and one 16-bit result input

Figure 4-2 shows the structure of the 32 general purpose working registers in the CPU.

Figure 4-2. AVR CPU General Purpose Working Registers


Most of the instructions operating on the Register File have direct access to all registers, and most of them are single cycle instructions.

As shown in Figure 4-2, each register is also assigned a data memory address, mapping them directly into the first 32 locations of the user Data Space. Although not being physically implemented as SRAM locations, this memory organization provides great flexibility in access of the registers, as the X-, Y- and Z-pointer registers can be set to index any register in the file.

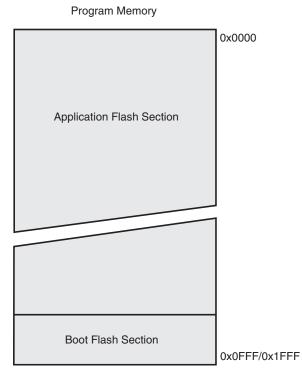


Figure 5-1. Program Memory Map, ATmega48

Program Memory

Figure 5-2.Program Memory Map, ATmega88 and ATmega168

5.2 SRAM Data Memory

Figure 5-3 shows how the ATmega48/88/168 SRAM Memory is organized.

The ATmega48/88/168 is a complex microcontroller with more peripheral units than can be supported within the 64 locations reserved in the Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

The lower 768/1280/1280 data memory locations address both the Register File, the I/O memory, Extended I/O memory, and the internal data SRAM. The first 32 locations address the Register File, the next 64 location the standard I/O memory, then 160 locations of Extended I/O memory, and the next 512/1024/1024 locations address the internal data SRAM.

The five different addressing modes for the data memory cover: Direct, Indirect with Displacement, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In the Register File, registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base address given by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-increment, the address registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 I/O Registers, 160 Extended I/O Registers, and the 512/1024/1024 bytes of internal data SRAM in the ATmega48/88/168 are all accessible through all these addressing modes. The Register File is described in "General Purpose Register File" on page 10.

Figure 5-3. Data Memory Map

Data Memory

32 Registers 64 I/O Registers	0x0000 - 0x001F 0x0020 - 0x005F
160 Ext I/O Reg.	0x0060 - 0x00FF
	0x0100
Internal SRAM (512/1024/1024 x 8)	
	0x02FF/0x04FF/0x04FF

5.2.1 Data Memory Access Times

This section describes the general access timing concepts for internal memory access. The internal data SRAM access is performed in two clk_{CPU} cycles as described in Figure 5-4.

9.2 Interrupt Vectors in ATmega88

Table 9-2.	Reset and Interrupt Vectors in ATmega8	88
		0

Vector No.	Program Address ⁽²⁾	Source	Interrupt Definition
1	0x000 ⁽¹⁾	RESET	External Pin, Power-on Reset, Brown-out Reset and Watchdog System Reset
2	0x001	INTO	External Interrupt Request 0
3	0x002	INT1	External Interrupt Request 1
4	0x003	PCINT0	Pin Change Interrupt Request 0
5	0x004	PCINT1	Pin Change Interrupt Request 1
6	0x005	PCINT2	Pin Change Interrupt Request 2
7	0x006	WDT	Watchdog Time-out Interrupt
8	0x007	TIMER2 COMPA	Timer/Counter2 Compare Match A
9	0x008	TIMER2 COMPB	Timer/Counter2 Compare Match B
10	0x009	TIMER2 OVF	Timer/Counter2 Overflow
11	0x00A	TIMER1 CAPT	Timer/Counter1 Capture Event
12	0x00B	TIMER1 COMPA	Timer/Counter1 Compare Match A
13	0x00C	TIMER1 COMPB	Timer/Coutner1 Compare Match B
14	0x00D	TIMER1 OVF	Timer/Counter1 Overflow
15	0x00E	TIMER0 COMPA	Timer/Counter0 Compare Match A
16	0x00F	TIMER0 COMPB	Timer/Counter0 Compare Match B
17	0x010	TIMER0 OVF	Timer/Counter0 Overflow
18	0x011	SPI, STC	SPI Serial Transfer Complete
19	0x012	USART, RX	USART Rx Complete
20	0x013	USART, UDRE	USART, Data Register Empty
21	0x014	USART, TX	USART, Tx Complete
22	0x015	ADC	ADC Conversion Complete
23	0x016	EE READY	EEPROM Ready
24	0x017	ANALOG COMP	Analog Comparator
25	0x018	TWI	2-wire Serial Interface
26	0x019	SPM READY	Store Program Memory Ready

Notes: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader address at

reset, see "Boot Loader Support – Read-While-Write Self-Programming, ATmega88 and ATmega168" on page 264.

2. When the IVSEL bit in MCUCR is set, Interrupt Vectors will be moved to the start of the Boot Flash Section. The address of each Interrupt Vector will then be the address in this table added to the start address of the Boot Flash Section.

Table 9-3 shows reset and Interrupt Vectors placement for the various combinations of BOOTRST and IVSEL settings. If the program never enables an interrupt source, the Interrupt Vectors are not used, and regular program code can be placed at these locations. This is also the case if the Reset Vector is in the Application section while the Interrupt Vectors are in the Boot section or vice versa.

		1	5
BOOTRST	IVSEL	Reset Address	Interrupt Vectors Start Address
1	0	0x000	0x001
1	1	0x000	Boot Reset Address + 0x001
0	0	Boot Reset Address	0x001
0	1	Boot Reset Address	Boot Reset Address + 0x001

 Table 9-3.
 Reset and Interrupt Vectors Placement in ATmega88⁽¹⁾

Note: 1. The Boot Reset Address is shown in Table 24-6 on page 276. For the BOOTRST Fuse "1" means unprogrammed while "0" means programmed.

The most typical and general program setup for the Reset and Interrupt Vector Addresses in ATmega88 is:

Address Label	s Code		С	omments
0x000	rjmp	RESET	;	Reset Handler
0x001	rjmp	EXT_INT0	;	IRQ0 Handler
0x002	rjmp	EXT_INT1	;	IRQ1 Handler
0x003	rjmp	PCINT0	;	PCINTO Handler
0x004	rjmp	PCINT1	;	PCINT1 Handler
0x005	rjmp	PCINT2	;	PCINT2 Handler
0x006	rjmp	WDT	;	Watchdog Timer Handler
0x007	rjmp	TIM2_COMPA	;	Timer2 Compare A Handler
0X008	rjmp	TIM2_COMPB	;	Timer2 Compare B Handler
0x009	rjmp	TIM2_OVF	;	Timer2 Overflow Handler
0x00A	rjmp	TIM1_CAPT	;	Timer1 Capture Handler
0x00B	rjmp	TIM1_COMPA	;	Timer1 Compare A Handler
0x00C	rjmp	TIM1_COMPB	;	Timer1 Compare B Handler
0x00D	rjmp	TIM1_OVF	;	Timer1 Overflow Handler
0x00E	rjmp	TIM0_COMPA	;	Timer0 Compare A Handler
0x00F	rjmp	TIM0_COMPB	;	Timer0 Compare B Handler
0x010	rjmp	TIM0_OVF	;	Timer0 Overflow Handler
0x011	rjmp	SPI_STC	;	SPI Transfer Complete Handler
0x012	rjmp	USART_RXC	;	USART, RX Complete Handler
0x013	rjmp	USART_UDRE	;	USART, UDR Empty Handler
0x014	rjmp	USART_TXC	;	USART, TX Complete Handler
0x015	rjmp	ADC	;	ADC Conversion Complete Handler
0x016	rjmp	EE_RDY	;	EEPROM Ready Handler
0x017	rjmp	ANA_COMP	;	Analog Comparator Handler
0x018	rjmp	TWI	;	2-wire Serial Interface Handler
0x019	rjmp	SPM_RDY	;	Store Program Memory Ready Handler
;				
0x01ARESET:	ldi	r16, high(RAME	IND); Main program start
0x01B	out	SPH,r16	;	Set Stack Pointer to top of RAM
0x01C	ldi	r16, low(RAMEN	ID)	
0x01D	out	SPL,r16		
0x01E	sei		;	Enable interrupts
0x01F	<inst< td=""><td>r> xxx</td><td></td><td></td></inst<>	r> xxx		

10.4 Register Description for I/O Ports

10.4.1 The Port B Data Register – PORTB

10.4.1	The Port B Da	ta Register -	- PORTB								
		Bit	7	6	5	4	3	2	1	0	
			PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	PORTB
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
		Initial Value	0	0	0	0	0	0	0	0	
10.4.2	The Port B Da	ta Direction	Register	– DDRB							
		Bit	7	6	5	4	3	2	1	0	
			DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	DDRB
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
		Initial Value	0	0	0	0	0	0	0	0	
10.4.3	The Port B Inp	out Pins Add	ress – Pl	NB							
		Bit	7	6	5	4	3	2	1	0	
			PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	PINB
		Read/Write	R	R	R	R	R	R	R	R	
		Initial Value	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
10.4.4	The Port C Da	ta Register -	- PORTC								
		Bit	7	6	5	4	3	2	1	0	
			-	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	PORTC
		Read/Write	R	R/W							
		Initial Value	0	0	0	0	0	0	0	0	
10.4.5	The Port C Da	ta Direction	Register	– DDRC							
		Bit	7	6	5	4	3	2	1	0	
			-	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	DDRC
		Read/Write	R	R/W							
		Initial Value	0	0	0	0	0	0	0	0	
10.4.6	The Port C Inp	out Pins Add	ress – Pl	NC							
		Bit	7	6	5	4	3	2	1	0	
			-	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	PINC
		Read/Write	R	R	R	R	R	R	R	R	
		Initial Value	0	N/A							
10.4.7		to Deviator									
10.4.7	The Port D Da	ta Register -	- PORID								
		Bit	7	6	5	4	3	2	1	0	
			PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	PORTD
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
		Initial Value	0	0	0	0	0	0	0	0	
10 4 9	The Deut D De	to Direction	Dogister	0000							
10.4.8	The Port D Da		-								
		Bit	7	6	5	4	3	2	1	0	
			DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	DDRD
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Initial Value

336 ATmega48/88/168

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page				
(0x7D)	Reserved	-	-	-	-	-	-	-	-					
(0x7C)	ADMUX	REFS1	REFS0	ADLAR	-	MUX3	MUX2	MUX1	MUX0	250				
(0x7B)	ADCSRB	-	ACME	-	-	-	ADTS2	ADTS1	ADTS0	253				
(0x7A)	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	251				
(0x79)	ADCH				ADC Data Reg	gister High byte				253				
(0x78)	ADCL				ADC Data Reg	gister Low byte				253				
(0x77)	Reserved	-	-	-	-	-	-	-	-					
(0x76)	Reserved	-	-	-	-	-	-	-	-					
(0x75)	Reserved	-	-	-	-	-	-	-	-					
(0x74)	Reserved	-	-	-	-	-	-	-	-					
(0x73)	Reserved	-	-	-	-	-	-	-	-					
(0x72)	Reserved	-	-	-	-	-	-	-	-					
(0x71)	Reserved	-	-	-	-	-	-	-	-					
(0x70)	TIMSK2	-	-	-	-	-	OCIE2B	OCIE2A	TOIE2	154				
(0x6F)	TIMSK1	-	-	ICIE1	-	-	OCIE1B	OCIE1A	TOIE1	133				
(0x6E)	TIMSK0	-	-	-	-	-	OCIE0B	OCIE0A	TOIE0	104				
(0x6D)	PCMSK2	PCINT23	PCINT22	PCINT21	PCINT20	PCINT19	PCINT18	PCINT17	PCINT16	87				
(0x6C)	PCMSK1	-	PCINT14	PCINT13	PCINT12	PCINT11	PCINT10	PCINT9	PCINT8	87				
(0x6B)	PCMSK0	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINT0	87				
(0x6A)	Reserved	-	-	-	-	-	-	-	-					
(0x69)	EICRA	-	-	-	-	ISC11	ISC10	ISC01	ISC00	84				
(0x68)	PCICR	-	-	-	-	-	PCIE2	PCIE1	PCIE0					
(0x67)	Reserved	-	-	-	-	-	-	-	-					
(0x66)	OSCCAL				Oscillator Calib	pration Register				32				
(0x65)	Reserved	-	-	-	-	-	-	-	-					
(0x64)	PRR	PRTWI	PRTIM2	PRTIM0	_	PRTIM1	PRSPI	PRUSART0	PRADC	40				
(0x63)	Reserved	-	-	-	_	_	-	-	-					
(0x62)	Reserved	-	-	-	-	-	-	-	-					
(0x61)	CLKPR	CLKPCE	-	-	-	CLKPS3	CLKPS2	CLKPS1	CLKPS0	35				
(0x60)	WDTCSR	WDIF	WDIE	WDP3	WDCE	WDE	WDP2	WDP1	WDP0	52				
0x3F (0x5F)	SREG	1	Т	н	S	V	N	Z	С	9				
0x3E (0x5E)	SPH	-	-	-	-	-	(SP10) ^{5.}	SP9	SP8	11				
0x3D (0x5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	11				
0x3C (0x5C)	Reserved	-	-	-	-	-	-	-	-					
0x3B (0x5B)	Reserved	-	-	-	-	-	-	-	-					
0x3A (0x5A)	Reserved	-	-	-	-	-	-	-	-					
0x39 (0x59)	Reserved	-	-	-	-	-	-	-	-					
0x38 (0x58)	Reserved	-	-	-	-	-	-	-	-					
0x37 (0x57)	SPMCSR	SPMIE	(RWWSB) ^{5.}	-	(RWWSRE) ^{5.}	BLBSET	PGWRT	PGERS	SELFPRGEN	269				
0x36 (0x56)	Reserved	-	-	-	-	-	-	-	-					
0x35 (0x55)	MCUCR	-	-	-	PUD	-	-	IVSEL	IVCE					
0x34 (0x54)	MCUSR	-	-	-	-	WDRF	BORF	EXTRF	PORF					
0x33 (0x53)	SMCR	-	-	-	-	SM2	SM1	SM0	SE	37				
0x32 (0x52)	Reserved	-	-	-	-	-	-	-	-					
0x31 (0x51)	Reserved	-	-	-	-	-	-	-	-					
0x30 (0x50)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	236				
0x2F (0x4F)	Reserved	-	-	-	-	-	-	-	-					
0x2E (0x4E)	SPDR					a Register				166				
0x2D (0x4D)	SPSR	SPIF	WCOL	-	-	-	-	-	SPI2X	166				
0x2C (0x4C)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	164				
0x2B (0x4B)	GPIOR2					se I/O Register 2				24				
0x2A (0x4A)	GPIOR1					se I/O Register 1				24				
0x29 (0x49)	Reserved	-	-	-	-	-	-	-	-					
0x28 (0x48)	OCR0B				mer/Counter0 Outp									
0x27 (0x47)	OCR0A	ļ		Tir	mer/Counter0 Outp	, ,	ster A							
0x26 (0x46)	TCNT0					nter0 (8-bit)								
0x25 (0x45)	TCCR0B	FOC0A	FOC0B	-	-	WGM02	CS02	CS01	CS00					
0x24 (0x44)	TCCR0A	COM0A1	COM0A0	COM0B1	COM0B0	-	-	WGM01	WGM00					
0x23 (0x43)	GTCCR	TSM	-	-	-	_	-	PSRASY	PSRSYNC	137/158 19				
	1	(EEPROM Address Register High Byte) 5.												
0x22 (0x42)	EEARH			EEPROM Address Register Low Byte										
0x21 (0x41)	1			```	EEPROM Address	Register Low By	rte			19				
0x21 (0x41) 0x20 (0x40)	EEARH EEARL EEDR				EEPROM D	ata Register				19				
0x21 (0x41) 0x20 (0x40) 0x1F (0x3F)	EEARH EEARL EEDR EECR		-	EEPM1	EEPROM D EEPM0	eata Register EERIE	EEMPE	EEPE	EERE	19 19				
0x21 (0x41) 0x20 (0x40) 0x1F (0x3F) 0x1E (0x3E)	EEARH EEARL EEDR EECR GPIOR0	_	_		EEPROM D EEPM0	ata Register				19 19 24				
0x21 (0x41) 0x20 (0x40) 0x1F (0x3F)	EEARH EEARL EEDR EECR				EEPROM D EEPM0	eata Register EERIE		EEPE INT1 INTF1	EERE INT0 INTF0	19 19				

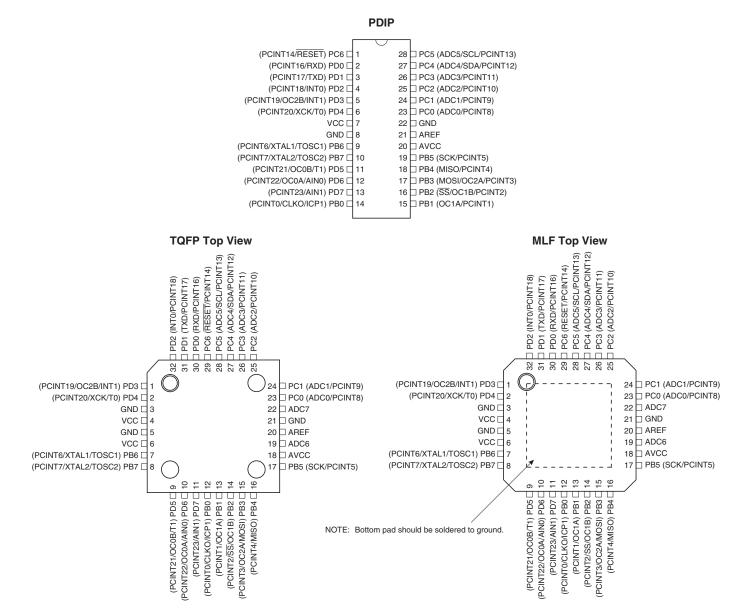
ATmega48/88/168

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x1B (0x3B)	PCIFR	-	-	-	-	-	PCIF2	PCIF1	PCIF0	
0x1A (0x3A)	Reserved	-	-	-	-	-	-	-	-	
0x19 (0x39)	Reserved	-	-	-	-	-	-	-	-	
0x18 (0x38)	Reserved	-	-	-	-	-	-	-	-	
0x17 (0x37)	TIFR2	-	-	-	-	-	OCF2B	OCF2A	TOV2	154
0x16 (0x36)	TIFR1	-	-	ICF1	-	-	OCF1B	OCF1A	TOV1	134
0x15 (0x35)	TIFR0	-	-	-	-	-	OCF0B	OCF0A	TOV0	
0x14 (0x34)	Reserved	-	-	-	-	-	-	-	-	
0x13 (0x33)	Reserved	-	-	-	-	-	-	-	-	
0x12 (0x32)	Reserved	-	-	-	-	-	-	-	-	
0x11 (0x31)	Reserved	-	-	-	-	-	-	-	-	
0x10 (0x30)	Reserved	-	-	-	-	-	-	-	-	
0x0F (0x2F)	Reserved	-	-	-	-	-	-	-	-	
0x0E (0x2E)	Reserved	-	-	-	-	-	-	-	-	
0x0D (0x2D)	Reserved	-	-	-	-	-	-	-	-	
0x0C (0x2C)	Reserved	-	-	-	-	-	-	-	-	
0x0B (0x2B)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	81
0x0A (0x2A)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	81
0x09 (0x29)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	82
0x08 (0x28)	PORTC	-	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	81
0x07 (0x27)	DDRC	-	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	81
0x06 (0x26)	PINC	-	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	81
0x05 (0x25)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	81
0x04 (0x24)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	81
0x03 (0x23)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	81
0x02 (0x22)	Reserved	-	-	-	-	-	-	-	-	
0x01 (0x21)	Reserved	-	-	-	-	-	-	-	-	
0x0 (0x20)	Reserved	-	-	-	-	-	-	-	-	

Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

- Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.
- 4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 0x3F must be used. When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega48/88/168 is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.
- 5. Only valid for ATmega88/168



- Low Power Consumption
 - Active Mode:
 - 1 MHz, 1.8V: 240µA
 - 32 kHz, 1.8V: 15µA (including Oscillator)
 - Power-down Mode:
 - 0.1µA at 1.8V

1. Pin Configurations

Figure 1-1. Pinout ATmega48/88/168

