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An Ultra-Fast User-Steered Image Segmentation
Paradigm: Live Wire on the Fly

Alexandre X. Falcão, Jayaram K. Udupa*, and Flávio K. Miyazawa

Abstract—We have been developing general user steered image segmen-
tation strategies for routine use in applications involving a large number
of data sets. In the past, we have presented three segmentation paradigms:
live wire, live lane, and a three-dimensional (3-D) extension of the live-wire
method. In this paper, we introduce an ultra-fast live-wire method, referred
to as live wire on the fly, for further reducing user’s time compared to
the basic live-wire method. In live wire, 3-D/four-dimensional (4-D) object
boundaries are segmented in a slice-by-slice fashion. To segment a two-di-
mensional (2-D) boundary, the user initially picks a point on the boundary
and all possible minimum-cost paths from this point to all other points in
the image are computed via Dijkstra’s algorithm. Subsequently, a live wire
is displayed in real time from the initial point to any subsequent position
taken by the cursor. If the cursor is close to the desired boundary, the live
wire snaps on to the boundary. The cursor is then deposited and a new
live-wire segment is found next. The entire 2-D boundary is specified via a
set of live-wire segments in this fashion. A drawback of this method is that
the speed of optimal path computation depends on image size. On mod-
estly powered computers, for images of even modest size, some sluggish-
ness appears in user interaction, which reduces the overall segmentation
efficiency. In this work, we solve this problem by exploiting some known
properties of graphs to avoid unnecessary minimum-cost path computa-
tion during segmentation. In live wire on the fly, when the user selects a
point on the boundary the live-wire segment is computed and displayed in
real time from the selected point to any subsequent position of the cursor
in the image, even for large images and even on low-powered computers.
Based on 492 tracing experiments from an actual medical application, we
demonstrate that live wire on the fly is 1.3–31 times faster than live wire
for actual segmentation for varying image sizes, although the pure compu-
tational part alone is found to be about 120 times faster.

Index Terms—Active boundaries, boundary detection, graph algorithms,
image segmentation, shortest-path problem, 3-D imaging.

I. INTRODUCTION

Image segmentation is a hard problem with numerous applica-
tions in the imaging sciences [1]. It consists of two tightly coupled
tasks—recognition and delineation. Recognition is the process of
identifying roughly the whereabouts of a particular object in the
image and delineation is the process of specifying the precise
spatial extent and composition of this object. While computer al-
gorithms are very effective in object delineation, the absence of
relevant global object-related knowledge is the main reason for
their failure in object recognition. On the other hand, a simple
user assistance in object recognition is often sufficient to comple-
ment this deficiency and to complete the segmentation process.
There are many difficult segmentation tasks that require a detailed
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user assistance. To address these problems, a variety of interac-
tive segmentation methods are being developed [2]. These methods
range from totally manual painting of object regions or drawing
of object boundaries, to the detection of object region/boundaries
with minimal user assistance [3]–[7].

In interactive segmentation, deformable boundary approaches
have been actively pursued and numerous publications have
resulted during the past ten years on this topic [5]. The basic
principle underlying these techniques was introduced by Kasset
al. with the concept of active contour models [8]. The idea is
that the users specify an initial contour, which is subsequently
deformed based on image-derived criteria (such as energy),
assuming that the contour at minimum global energy should
match with the desired boundary. The users’ interaction is in
specifying image-independent criteria, such as external forces, in
addition to specifying an initial contour properly. If a method
using this approach provides a solution without requiring the
user to correct the result at the end, that would be ideal.
Unfortunately such is not the case. In many difficult situations,
a more active and tighter control provided to the user on the
process of segmentation would perhaps significantly reduce the
time spent by him/her in the process. In spite of the user time
being one of the most important factors in assessing the goodness
of an interactive segmentation method, careful evaluation of this
factor, especially compared to manual tracing, does not seem
to have been carried out for published deformable boundary
methods. Motivated by this efficiency consideration, we have
been developing and evaluating application-independent interactive
boundary-based segmentation strategies with two specific aims:
1) to provide as complete a control as possible to the user
on the segmentation process while it is being executed and
2) to minimize the user involvement and the total user’s time
required for segmentation, without compromising the precision
and accuracy of segmentation. Our strategy in these methods has
been to actively exploit the superior abilities of human operators
(compared to computer algorithms) in object recognition and the
superior abilities of computer algorithms (compared to human
operators) in object delineation.

In the past, we have presented two user steered segmentation
paradigms, referred to as live wire and live lane [6], [9], to segment
three-dimensional (3-D)/four-dimensional (4-D) object boundaries in
a slice-by-slice fashion. These methods are in routine use in several
applications [10]–[13] with over 15 000 tracings done so far. Although
the live-wire method has its origin in some early joint work between
Barrett and Udupa [14]–[16], this method has been subsequently
developed independently by the two groups [6], [7], [9], [17]–[19].
We have extended the ideas underlying the live-wire method to create
new methods, live lane [6] and the 3-D extension of live wire [17]. In
this paper, we introduce an ultra-fast live-wire method, referred to as
live wire on the fly, with a new algorithm for significantly reducing
the user’s time compared to our previous work on two-dimensional
(2-D) live wire.1

In the live-wire method [6], [7], to segment a 2-D boundary, the user
initially picks a point on the boundary and all possible minimum-cost
paths from this point toall other points in the image are computed
via Dijkstra’s algorithm [20]. Subsequently, a live wire is displayed in
real time from the initial point to any subsequent position taken by the
cursor. If the cursor is close to the desired boundary, the live wire snaps

1Readers can test two different versions of live wire on the fly by downloading
the software available in www.dcc.unicamp.br/˜afalcao/segmentation.html and
www.mipg.upenn.edu/˜Vnews, respectively.
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on to the boundary. The cursor is then deposited and a new live-wire
segment is found next. The entire 2-D boundary is specified via a set
of live-wire segments in this fashion. A drawback of this approach is
the time taken to compute all possible minimum-cost paths from each
selected point on the boundary to other points in the image. This time
increases with the size of the image compromising the interactivity of
the method in some practical situations. For images from 256� 256 to
1024� 1024 pixels, for example, live wire running on a 300-MHz Pen-
tium PC requires about 2–180 s to compute all possible minimum-cost
paths from each selected point.

In the live-wire-on-the-fly method, the user-interaction process
remains the same, but we have devised a linear time complexity
graph-search algorithm to save a considerable amount of user time
by avoiding the computation of all possible minimum-cost paths.
When the user selects a point on the boundary, the live-wire segment
is computed and displayed in real time from the selected point to any
subsequent position of the cursor in the image. To make this feasible,
we exploit the fact that by the time we have found a live-wire segment
with cost valueK, we have actually found all possible live-wire
segments with cost value less thanK in the image. Moreover, any
live-wire segment with a cost value greater than or equal toK

contains one of the previous live-wire segments with cost value less
thanK. Therefore, the computation of the live-wire segment from a
selected point to the current position of the cursor uses the results of
computation from the selected point to the previous position of the
cursor.

The use of graph searching techniques in boundary finding has
been investigated for many years now [21], [22]–[24]. Perhaps due
to the lack of computer power, some of these early techniques
[21] tried to simplify the problem by using heuristics that usu-
ally resulted in a graph that is deficient in some aspects. Other
techniques [22], [23] put severe restrictions on the form of the
contour such as, for example, that any radial line drawn outward
from a point inside the object should not intersect the contour at
more than one point. Several application-specific solutions have
been developed [25], [26]. The work presented here together with
the work reported in [6] not only brings about the use of graph
searching techniques in finding optimum boundary but also demon-
strates that it is possible to solve the problem in real time using a
graph model that 1) does not impose any restrictions on the form,
shape, or size of the objects whose boundaries are to be traced;
2) considers all possible boundaries in the entire image and is
independent of the starting points selected; and 3) considers the
boundary elements to be oriented and the boundaries to be ori-
ented connected Jordan curves so that all boundaries (boundaries
of even line-like structures) have a well defined inside and outside.
These properties set our approach apart from previous optimum
boundary detection techniques including other live-wire methods
[7], [18], [19] and active contour approaches. Particularly in con-
trast to the latter, our aim has been to give a tighter control to
the user on the segmentation process for providing whatever help
is needed by the algorithm. The live-wire methods are designed
for very difficult segmentation tasks. In such situations, we postu-
late that these methods are more efficient than the active contour
approaches for the following reasons. When dealing with mul-
tiple objects with closely situated boundaries, the initial boundary
specification may require careful drawing by a user. When the
optimum boundary found goes astray because of noise, gaps, or
other stronger boundaries nearby, postdetection correction will be
required. Boundary orientedness and shortest path solutions used
in live wire are able to effectively overcome these problems. Fur-
thermore, since the user controls the detection process in live wire,
there is no postdetection correction required.

Fig. 1. A boundary element (bel) is an oriented pixel edge. The four possible
types of bels in a scene are shown. The “inside” of the boundary is to the left of
the bel and the “outside” is to the right.

In Section II, we present the live-wire-on-the-fly method and its al-
gorithms. InSection III, we present the results of a careful comparison
between live wire and live wire on the fly based on efficiency for seg-
mentation in a practical application. Finally, we state our concluding
remarks inSection IV.

II. L IVE-WIRE-ON-THE-FLY

We start with a description of the graph model used in our live-wire
approach [6]. We define a 2-D sceneC as a pair(C; g) consisting of a
finite 2-D rectangular arrayC of pixels and a functiong: C ! [L; H]
that assigns to each pixel inC an intensity value lying in an interval
[L; H]. Each oriented pixel edge inC is a potential boundary element
b, which is called a bel for short. Every belb = (q; r) of C has a lo-
cation and an orientation. The location ofb is that of the unique edge
shared by the two four-adjacent pixelsq andr. We assume, without
loss of generality, that its orientation is such thatq is always inside the
boundary,r is outside the boundary, and the inside is always to the left
of b (seeFig. 1). Clearly, any bel ofC should be in one of four orienta-
tions, as shown inFig. 1. We associate withC a directed graph in which
the vertices of the pixels represent the nodes of the graph and the ori-
ented pixel edges represent the arcs. That is, between any two adjacent
vertices in the scene, there are two arcs going in opposite directions.
A 2-D boundary of interest inC is a closed, oriented, and connected
contour made up of oriented pixel edges. To each belb we assign a
set of features whose values characterize the boundariness ofb. These
values are converted to a single joint cost valuec(b) per belb. Thus,
the problem of finding the best boundary segment (live-wire segment)
between any two points (pixel vertices) specified on the boundary is
translated to finding the global minimum-cost path between the corre-
sponding two vertices of the graph. The methods of selection of features
and how to convert feature values into cost values were previously ad-
dressed in [6] in detail.

Fig. 2 illustrates the power of live wire, stemming from the unique
graph model, in negotiating difficult boundary segments. In our
model, we assume that the boundaries have a clockwise path between
the vertices indicated by the two arrows shown in each case. If the
user forces live wire to trace in the opposite orientation, he/she will
immediately notice that the live-wire segment will not snap onto
the correct boundary, indicating the strong orientation sensitivity of
the method. InFig. 2(a), the boundary of the bone talus in an MR
image of a foot is being detected. In spite of three other boundaries
(of the navicular at the lower left, of the tibia at the top, and of the
calcaneus at the bottom) of identical property coming close to the
boundary of the talus, the attachment of ligaments in the lower part,
and very uneven contrast along the boundary, the detection is not
distracted. This is because in those parts where the three boundaries
come close to the talus boundary, the talus boundary runs opposite
to the other boundaries. The graph models used in other approaches
have considered pixels themselves as the vertices in the graph. These
models run into topological difficulties in imposing orientedness on
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(a) (b) (c)

Fig. 2. Illustration of live-wire tracing in three different situations, all via MRI. (a) Delineating a boundary in the presence of other boundaries with similar
properties. The boundary of interest is that of the bone talus in the foot. Talus is close to three other bones: the navicular at the lower left, the tibiaat the top, and
the calcaneus at the lower right. The boundaries traced here are assumed to have an clockwise orientation. Due to the orientedness property, the boundaries of the
navicular, the tibia and the calcaneus are actually in an opposite direction in the parts where they come close to the talus boundary and therefore repel the talus
boundary. (b) Jumping gaps. An MR image of a wrist, the object of interest being a vessel. (c) Passing through noisy regions. An MR image of a wrist with the
internal boundary of bone being the boundary of interest. Note how the optimum boundary is not deterred by the horizontal noisy streaks present in the image. In
(a)–(c), one oriented boundary segment, found as a globally optimal path between the two points indicated by the arrows, is shown.

the boundary. Consider an object region of one pixel width as an
example. The definition of an oriented boundary that encloses this
region is much more elegant and straightforward using pixel edges
than pixels themselves as bels. Therefore, the use of pixels as bels
in oriented boundary modeling and detection has not been explored.
Fig. 2(b) demonstrates that the presence of a very faint signal is
sufficient to complete the boundary of a vessel in an MR image of a
wrist. In Fig. 2(c), the internal boundary of the cortical part of a bone
in the wrist is being detected. Note that the optimum boundary is not
distracted by the horizontal noisy streak. Live wire guarantees that any
boundary traced by the method is a connected oriented digital Jordan
curve.

The problem we wish to address in this paper is how to reduce both
the time for optimum path computation and, consequently, the total
user’s time required for segmentation. To tackle this problem, we will
exploit some known properties of graphs, particularly for the compu-
tation of shortest paths, as described inSection II-A. This leads to the
algorithms presented inSection II-B.

A. Graph Properties of Shortest Paths

In the literature on shortest path algorithms [27] there are many
efficient solutions for finding minimum cost paths in a weighted
and directed graph. Particularly, we have adopted Dial’s implemen-
tation of the Dijkstra’s algorithm [28]. This algorithm computes
the shortest-paths2 to all nodes from a single node inO(m+nC)
time wherem is the number of arcs,n is the number of nodes,
and C is the maximum cost assigned to any arc in the graph.
In this case, the cost assigned to each arc should be an integer
in the interval [0; C]. Dial’s solution uses a circular queue with
C + 1 buckets of nodes as the priority queue of the Dijkstra’s
algorithm. Since the bottleneck of the Dijkstra’s algorithm is in
maintaining the priority queue, Dial’s solution uses the bucket sort
algorithm to speed up this process. We will come back to this
issue in Section II-B.

2In a weighted graph, customarily the phrase shortest-path is used to
refer to the path with the minimum total weight. We shall use the phrase
minimum cost path to mean the same and use the two interchangeably.

In our problem, the live-wire segment between a selected point (pixel
vertex)vs on the boundary and the point indicated by the current po-
sition ve of the cursor inC is the shortest pathP = (vs ve)
from vs to ve in our graph where the cost ofP , denotedK(P ), is
the sum of the joint costsc(b) of all belsb comprisingP . In fact, the
Dijkstra’s algorithm returns a tree of minimum cost paths (or a tree
of shortest paths) rooted atvs [29], which consists of all minimum
cost paths fromvs to all vertices inC. We will denote this tree by
T (vs) = fP = (vs ve)=ve 2 Cg.

For any real numberk, we denote byTk(vs) the tree of minimum
cost paths rooted atvs such that the cost of any path in this tree is less
thank. That is,Tk(vs) = fP = (vs ve)=ve 2 C; K(P ) < kg.
The algorithm reported in this paper exploits the following properties
of T (vs).

1. To compute the minimum cost pathP = (vs ve) with cost
K(P ), there is no need to computeTk(vs) for k > K(P ).

2. By the time we have found the minimum cost pathP = (vs
ve)with costK(P ), we have actually found the tree of minimum
cost pathsTK(P )(vs).

3. The tree of minimum cost pathsTk(vs) contains the tree of min-
imum cost pathsTK(P )(vs) wheneverk � K(P ).

We use the first property to modify Dial’s implementation of the
Dijkstra’s algorithm to quit optimum path computation by the time
we have found the minimum cost pathP = (vs ve). We call
this algorithm DSP (seeSection II-B). We use the second property
to avoid optimum path computation for any pathP 0 = (vs v0

e)
with costK(P 0) < K(P ). Thus, when the user moves the cursor
to a new positionv0

e such thatK(P 0) < K(P ), and we have
already foundP , the algorithm just displaysP 0 = (vs v0

e)
without requiring its computation. We use the third property to
continue optimum path computation for pathsP 0 = (vs v0

e) with
costsK(P 0) � K(P ) based on the previous result of algorithm
DSP for computingP . For an illustration of this idea,Fig. 3
shows two regionsR1 and R2 in C. Region R1 contains all
minimum cost paths fromvs with costs less thanK(P ) as a
result of the previous computation for findingP = (vs ve).
When the user moves the cursor to a new positionv0

e, he/she
defines regionR2 and all minimum cost paths with costsK 0

such thatK(P ) � K 0 < K(P 0) will end at a vertexv in R2.
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Thus, to findP 0 = (vs v0

e
), we must consider only vertices in

R2. Our new interactive algorithm with all these characteristics
is presented next.

B. Algorithms

Al gor i t hm LWOF
I nput : The joint cost function and an

initial vertex selected on a 2-D
boundary of interest in , and inter-
active input as described in the re-
peat-until loop below.

Out put : A closed, connected, and oriented
contour (made up of bels).

Auxi l i ar y Dat a St r uct ur es: A 2-D cumu-
lative cost array representing the
total cost of the optimal paths found so
far from to the vertices in ; a 2-D
direction array indicating, for each
vertex, to which of its immediate neigh-
boring vertices the optimal path goes;
a circular queue of vertices with

buckets; a list of vertices which
have already been processed; a current
path , where is the current
point selected on the boundary and
is the current position of the cursor
in ; and a list of bels which have
already been identified as belonging to
the boundary of interest in ;

begin
1. set to and to null for
all vertices in , and set and to
empty;
2. , set to 0, and put in

;
repeat

a. determine the vertex in
currently pointed to by the cursor;

b. if is not a vertex of any bel in
then

(i) compute DSP
and display the bels in ;

(ii) if is the vertex selected by
the user then

a. add the bels in to ;
b. set to and to null

for all vertices in ;
c. remove all vertices from ,

and remove from all vertices
which do not belong to any bel

in ;
d. , set to 0, remove

from , and put in ;
endif ;

endif ;
until the user indicates a close opera-
tion;
4. and remove from ;
5. compute DSP and

display the bels in ;
6. add the bels in to and output

the bels in ;
end

Fig. 3. Minimum cost path computation inR based on the previous
computation of all minimum cost paths inR .

Al gor i t hm DSP
I nput : an initial vertex ; a terminal

vertex ; the circular queue ; the cu-
mulative cost array ; the joint cost
function ; the direction array ; and
the list of already processed ver-
tices;

Out put : A set of bels forming an optimal
path from to ;

begin
1. while do

a. remove a vertex from such that
, and put in ;

b. for each vertex such that is
in the set of the four-adjacent
neighbors of and do

(i) compute where
is the bel whose direction
goes from to and is
the joint cost of ;

(ii) if then
a. set to and to

the direction from to ;
b. if then insert in

else update in ;
endif ;

endfor ;
endwhile ;
starting from , trace recursively the
next vertex pointed to by the current
vertex using the direction information
in until is reached, and return
the bels so traced;

end

In the algorithms above,Q is a bucket represented by a circular
vector withC + 1 positions from 0 toC (seeFig. 4). Each position
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i, i = 0; � � � ; C has associated with it a doubly linked list which con-
tains vertices with the same cumulative cost value. The doubly linked
lists inQ are represented by an arrayA of pointers such that each pos-
sible vertexv in C has its corresponding position inA and, at this
position, we indicate the next and the previous vertices fromv in Q.
This data structure is shown inFig. 5. In Step 3.b.(ii).c. of Algorithm
LWOF, we remove all verticesv from Q in O(C) time since we only
have to set tonull the list associated with each positioni, i = 0; � � � ; C
in Q. An index i0 is used to indicate the current initial position in
Q (seeFig. 4). In Step 1.a. of Algorithm DSP, a vertexv in Q with
the minimum cumulative costcc(v) is removed from the beginning
of the doubly linked list at positioni0. If this list is empty,i0 is incre-
mented until the next position in which a nonempty list is found. Taking
the worst case, this operation has a computational time complexity of
O(C). In Step 1.b.(ii).b. of Algorithm DSP, a vertexv0 with cumulative
costcc(v0) is inserted inQ at the beginning of the doubly linked list
at position[cc(v0) mod(C + 1)]. This operation has a computational
time complexity ofO(1). The difference between the maximum and
the minimum cumulative costs of the vertices inQ is always less than
or equal toC. To see why this is so, consider position zero inQ to store
vertices with cumulative costsC+1 or its multiples. Since the cost as-
signed to any edge is in[0; C], a vertex with cumulative costC+1 can
be reached only from vertices with cumulative costs in[1; C+1]. That
is, by the time a vertex with cumulative costC + 1 is inserted at posi-
tion zero, all vertices with cumulative cost zero will have already been
removed from this position. Therefore, position zero will never store
vertices with different cumulative costs at the same time. This obser-
vation is valid for any position inQ. In the same step, a vertexv0 in Q

may have its cumulative cost updated, meaning that we have found a
new path fromvs to v0 with a cost less than the current costcc(v0). In
this case, we have to removev0 from its current position inQ and insert
it into a new position inQ. This process is done with a computational
time complexity ofO(1).

In the worst case, algorithm DSP has the same computational time
complexityO(m+ nC) as in the Dial’s implementation of Dijkstra’s
algorithm, wherem is the number of bels inC, n is the number of
vertices inC, andC is the maximum costc(b) assigned to any bel
b. Other shortest path algorithms exist with computational time com-
plexity less thanO(m+nC) (e.g.,O(m+n log C),O(m+n

p
log C),

andO(m log log C), see [28]). These algorithms use more complex
data structures than our circular queue to reduce the time complexity
for inserting and removing vertices. In our implementation, we have
a time complexity ofO(1) for inserting and updating vertices inQ.
In the worst case, we have a time complexity ofO(C) for removing a
vertex fromQ with minimum cumulative cost, as opposed to a loga-
rithmic complexity obtained by these algorithms. After some experi-
mentation, we have found that the number of increments to reach the
next nonempty position inQ is usually less than 1% ofC. Actually,
evenC is not a big number. Typically, we have used 4095 and 255 for
C in our implementation of live wire. Therefore, it is not clear that the
speed improvement in live wire with other algorithms is really signifi-
cant. This, however, should be investigated further.

III. EVALUATION

In [6], we suggested that the goodness of a segmentation method be
assessed based on three factors—precision, accuracy, and efficiency.
Precision refers to the repeatability of the method and can be measured
by evaluating the variations in the result of segmentation because of
subjective operator input. Accuracy refers to the degree of agreement
with truth. Efficiency refers to the practical viability of the method ex-
pressed as some function of the total user’s time required to complete

Fig. 4. Bucket structure in a circular queue. Each position in the queue has a
doubly linked list associated with it which contains vertices with the samecc

value.

Fig. 5. The vertices with the samecc value inQ stored in a doubly linked list
are represented by a pointer arrayA.

the segmentation process. Based on 2000 tracings in a particular ap-
plication and statistical analysis of the results, we have shown that the
segmentations of the 2-D live-wire method, in general, agree with those
of manual tracing (accuracy) and that the live-wire method is more re-
peatable (precision), with a statistical significance level ofp < 0:03,
and 1.5–2.5 times faster (efficiency), with a statistical significance level
of p < 0:02, than the manual method. In this section, we will show
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the results of comparing live wire and live wire on the fly, taking into
account the efficiency of the methods. Since the delineation of the con-
tours output by live wire on the fly is exactly in the same way as in live
wire, the accuracy and precision of the former will be identical to those
of the latter, and, therefore, they need not be assessed again.

In [6], we have introduced a feature calledf8 in live wire to constrain
the search for optimal paths in the current slice to an annular region
(shell) of widthW centered around the projection onto the current slice
of the contour(s) traced in the previous slice. With featuref8, live wire
yields a fast response even for large images. Of course, we can also
usef8 to further improve the efficiency of live wire on the fly on large
images, but we will consider in this section a comparison between live
wire with f8 and live wire on the fly. Therefore, our experiments will
take into account three methods.

• LW: live wire without f8.
• LWF8: live wire withf8 usingW = 60 pixels. This value ofW

was determined to be adequate in [6].
• LWOF: live wire on the fly.

For our experiments, we have chosen one object [the talus bone of
the human foot, seeFig. 2(a)] in one of our ongoing applications, the
kinematic analysis of the tarsal joints of the foot based on MR images
[10], [11], [12]. This was one of the objects used in the past to eval-
uate the previous live methods [6], [17]. The segmentation task here
is difficult because of the lack of MR signal from bone, the presence
of adjoining bone boundaries, and the tendons and ligaments that at-
tach to the bones. We created a set of 67 2-D scenes from the images
within our database as follows. The images (slices) in our database are
all of size 256� 256 pixels. We chose a set, denotedC256, of 30 slices
from the database pertaining to the data set of one subject. By bilinear
interpolation of each of these slices we created another set, denoted
C128, of 30 128� 128 slices. Analogously, we created a setC512

of five 512� 512 slices and a setC1024 of two 1024� 1024 slices
from the original 256� 256 slices. In all cases, we kept the size of the
object region relative to the scene size roughly the same. That is, the
object occupied roughly the same extent of the scene. The reason for
choosing a fewer number of scenes of size 512� 512 and 1024� 1024
is that the response time of LW in these scenes is prohibitively slow and
conducting experiments on 30 slices in each of these cases would take
too much time. Each of three operatorsO1; O2 andO3 segmented the
talus in each of these 67 scenes using each of the two methods LW and
LWOF. They also segmented the talus inC256 using LWF8. Our evalu-
ation study thus consists of 492 segmentation experiments in total. We
used a 300-MHz Pentium PC for these experiments.

We denote the time taken to complete any segmentation ex-
periment e by Te (expressed in seconds). Consider any fixed
o 2 fO1; O2; O3g, the scene typet 2 fC128; C256; C512; C1024g,
and methodm 2 fLW, LWOF, LWF8g. We define the time taken
Totm (in seconds/slice) for operatoro to segment the talus in a 2-D
scene of typet using methodm to be the average of all timesTe over
all segmentation experimentse involving o andm and all 2-D scenes
of typet. We define the time takenTtm (in seconds/slice) to segment
the talus in a 2-D scene of typet using methodm to be the average
of all timesTotm over all operators involvingm and all 2-D scenes
of type t.

We have done three types of timing measurements. The first type
measures the CPU times for computing the live wire segments inde-
pendent of other supporting processes that are required to conduct live
wire segmentation. This allows us to assess the difference in speed that
exists purely between the old and the new algorithms. The second type
measures the time taken by the user to segment one complete contour
ignoring the time for other processes such as displaying the slice and
the computation of the cost valuesc(b) for all bels. The third type in-
cludes all processes, and, therefore, gives an idea of the comparative

TABLE I
SEGMENTATION TIMES T IN

SECONDS/SLICE FORALL POSSIBLEVALUES OFo, t, AND m. THIS TABLE LISTS

THE FIRST TYPE OFMEASUREMENTTHAT INDICATES THETIME TAKEN BY THE

SHORTEST-PATH ALGORITHMS ONLY INDEPENDENT OFOTHER PROCESSES

TABLE II
SEGMENTATION TIMES T IN SECONDS/SLICE FOR ALL POSSIBLEVALUES

OF o, t, AND m. THIS TABLE LISTS THESECOND TYPE OFMEASUREMENT

THAT INDICATES THETIME TAKEN BY THE USER TOSEGMENT ONE COMPLETE

CONTOUR IGNORING THETIME FOR OTHER PROCESSES

user time required for overall segmentation for the different methods
in an actual application. We note here that, as in the live-wire method
[6], training is required only once for an application and is not needed
on a per study basis. This is typically under 5 min and is not included
in any of the time measurements.

Tables I, II , andIII list the values ofTotm for all possible values of
o, t, andm for the three types of measures.Tables IV, V, andVI list the
values ofTtm for all possible values oft andm corresponding toTa-
bles I, II , andIII , respectively.Tables I, II , andIII show that operatorsO1

andO3 can finish segmentation quicker than operatorO2. The reason
is that, as they become more familiar with the behavior of the algo-
rithms and with the boundary under segmentation, they can react faster
and select less points on the boundary.O2 has considerably less expe-
rience with live wire thanO1 andO3. In Table IV, we see thatLWOF

can find optimum paths about a hundred twenty times faster thanLW .
However,Tables VandVI show that users cannot react with the same
speed.Table VI shows that, from the point of view of actual segmen-
tation, LWOF is about 1.3–31 times faster than LW for images from
128� 128 pixels to 1024� 1024 pixels. Even constraining optimum
path computation into an annular region of width equal to 60 pixels (i.e.,
method LWF8), live wire on the fly is about 1.8 times faster. Note that,
the advantage of live wire on the fly over live wire increases with the
size of the image and with the number of points required per boundary.
In our experiments, the 2-D boundaries of the talus require typically
2–5 points for segmentation.

IV. CONCLUDING REMARKS

We have presented a new user steered image segmentation para-
digm, called live wire on the fly, to segment object boundaries in a
slice-by-slice fashion. The method uses the previously published live
wire framework [6], but utilizes a substantially faster shortest path al-
gorithm for improving speed. Based on 492 segmentation experiments
from an actual medical application, we have shown that the new method
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TABLE III
SEGMENTATION TIMES T IN SECONDS/SLICE FOR ALL POSSIBLEVALUES

OF o, t, AND m. THIS TABLE LISTS THETHIRD TYPE OFMEASUREMENTTHAT

INDICATES THE TIME TAKEN BY THE USER FOROVERALL SEGMENTATION

INCLUDING ALL PROCESSES

TABLE IV
SEGMENTATION TIMES T IN SECONDS/SLICE FORALL POSSIBLEVALUES OF

t, AND m DERIVED FROM TABLE I

TABLE V
SEGMENTATION TIMES T IN SECONDS/SLICE FORALL POSSIBLEVALUES OF

t, AND m DERIVED FROM TABLE II

TABLE VI
SEGMENTATION TIMES T IN SECONDS/SLICE FORALL POSSIBLEVALUES OF

t AND m DERIVED FROM TABLE III

is about 1.3–31 times faster than live wire for actual segmentation, al-
though the pure computational part alone is about a hundred twenty
times faster. For the typically encountered 256� 256 images, the speed
advantage is about 2.7.

The efficiency of the methods, as shown inTables II andV, is re-
duced when we consider the results of overall segmentation, as shown
in Tables III andVI. The reason for this is the additional time taken to
compute edge costsc(b) for every slice. This can be improved if the
edge costs are precomputed for all slices and stored before segmenta-
tion. For a typical medical image data set of 50 256� 256 slices, for
example, considering 2 bytes per pixel and all four orientations for the
bels of our graph, the storage of edge costs would require about 26 MB.
This would bring the total RAM requirement to 96 MB which is cer-
tainly reasonable for modern PC’s and workstations.

A drawback of live wire is the computation time for all possible min-
imum cost paths from each selected point on the boundary to all other
points in the image. This time increases with the size of the image

compromising the interactivity of the method in some practical situ-
ations.Tables I–VIshow that live wire loses efficiency considerably for
images larger than 128� 128 pixels. Our previous solutions for this
problem involved some restrictions such as to constrain live wire into
a shell around the boundary (i.e., methodLWF8) and the live lane
method [6]. The former is dependent on object shape and topology. It
runs into difficulty when the location and shape of contours change
rapidly from slice to slice, especially when contours split and merge.
Live lane requires substantially more user involvement during segmen-
tation. LWOF offers a solution without any restrictions. Further, it is
less dependent on image size and computer power. It computes and
displays live-wire segments in real time, even for large images, even
on low-powered computers. Combined with the application-specific
training facility provided for effectively assigning costs to bels (de-
scribed in detail in [6]), live wire on the fly offers a general very effi-
cient practical solution to image segmentation for applications wherein
more automatic solutions cannot be devised easily.
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Computer-Aided Stereotactic Functional Neurosurgery
Enhanced by the Use of the Multiple Brain Atlas Database

Wieslaw. L. Nowinski*, Guo Liang Yang, and Tseng Tsai Yeo

Abstract—This paper introduces a computer-aided atlas-based func-
tional neurosurgery methodology and describes NeuroPlanner, a software
system which supports it. NeuroPlanner provides four groups of functions:
1) data-related for data reading, interpolation, reformatting, and image
processing; 2) atlas-related for multiple atlases reading, atlas-to-data
global and local registrations, two-way anatomical indexing, and multiple
labeling in two and three dimensions; 3) atlas-data exploration-related for
three-dimensional (3-D) display and real-time manipulation of cerebral
structures, continuous navigation, two-dimensional (2-D), triplanar, 3-D
presentations, and 2-D interaction in four views; and 4) neurosurgery-re-
lated for targeting, trajectory planning, mensuration, simulating the
insertion of microelectrode, and simulating therapeutic lesioning. All
operations, excluding atlas and data reading, are real time. The combined
anatomical index of the multiple brain atlas database containing comple-
mentary 2-D and 3-D atlases has about 1000 structures per hemisphere,
and over 400 sulcal patterns.

Neurosurgical planning with mutually preregistered multiple brain at-
lases in all three orthogonal orientations is novel. The approach is validated
with 24 intraoperative and postoperative datasets for thalamotomies, tha-
lamic stimulations, pallidotomies, and pallidal stimulations.

Its potential benefits include increased accuracy of target definition, re-
duced time of the surgical procedure by decreasing the number of tracts,
facilitated planning of more sophisticated trajectories, lowered cost by re-
ducing the number of microelectrodes used, reduced surgical complica-
tions, and the extra degree of confidence given to the neurosurgeon.

Index Terms—Brain atlases, MRI, pallidotomy, Schaltenbrand–Wahren
atlas, stereotactic functional neurosurgery, Talairach–Tournoux atlas, tha-
lamotomy.

I. INTRODUCTION

We propose to enhance computer-aided stereotactic functional neu-
rosurgery by the simultaneous use of multiple complementary mutually
preregistered brain atlases in multiple orientations, along with a suit-
able environment and tools. For this purpose we have developed Neu-
roPlanner, a software system providing a rich set of functions, such
as multiple atlas and actual patient’s data loading; interactive three-di-
mensional (3-D) atlas-to-data registration; atlas-based anatomical tar-
geting; stereotactic trajectory planning; simulation of the insertion of
the microelectrode; simulation of therapeutic lesioning; mensuration;
3-D display and real-time manipulation of cerebral structures and other
objects such as the stereotactic trajectory and simulated therapeutic le-
sions; continuous navigation in the multiple atlas-data space; two-di-
mensional (2-D), triplanar, and 3-D presentations; two-way anatomical
indexing; multiple labeling in 2-D and 3-D; volume interpolation and
reformatting; and file handling. All operations (excluding atlas and data
loading) are real time. The combined anatomical index of the 2-D and
3-D atlases contains approximately 1000 structures per hemisphere and
over 400 sulcal patterns.

The actual patient’s data, read as DICOM MRI images, are con-
verted into NeuroPlanner’s internal format, interpolated, and their
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