MO815/MC861 - Análise de Imagem Orientada a um Problema do Mundo Real

Alexandre Xavier Falcão

Instituto de Computação - UNICAMP

afalcao@ic.unicamp.br

 As aulas anteriores ilustraram operadores pontuais e baseados em adjacência. Nesta aula vamos abordar uma terceira categoria, a dos operadores baseados em relações de conexidade.

- As aulas anteriores ilustraram operadores pontuais e baseados em adjacência. Nesta aula vamos abordar uma terceira categoria, a dos operadores baseados em relações de conexidade.
- Seja $\hat{I} = (D_I, I)$ uma imagem, resultante de uma segmentação binária, tal que $I(p) \in \{0, 1\}$ para todo $p \in D_I$ (2D ou 3D), estamos interessados rotular seus **componentes conexos**.

• Para uma dada relação de adjacência \mathcal{A} , um pixel $q \in D_I$ é dito **conexo** a um spel $p \in D_I$, se existe uma sequência de pixels distintos $\langle p_1, p_2, \ldots, p_n \rangle$, onde $p_1 = p$, $p_n = q$, e $(p_i, p_{i+1}) \in \mathcal{A}$.

- Para uma dada relação de adjacência A, um pixel q ∈ D_I é dito conexo a um spel p ∈ D_I, se existe uma sequência de pixels distintos ⟨p₁, p₂,..., p_n⟩, onde p₁ = p, p_n = q, e (p_i, p_{i+1}) ∈ A.
- Um componente conexo é um conjunto $C \subset D_I$ de pixels onde todo par (p, q), $p \in C$ e $q \in C$, é conexo.

- Para uma dada relação de adjacência A, um pixel q ∈ D_I é dito conexo a um spel p ∈ D_I, se existe uma sequência de pixels distintos ⟨p₁, p₂,..., p_n⟩, onde p₁ = p, p_n = q, e (p_i, p_{i+1}) ∈ A.
- Um componente conexo é um conjunto $C \subset D_I$ de pixels onde todo par (p, q), $p \in C$ e $q \in C$, é conexo.
- Dada a definição de componente conexo, vamos considerar apenas relações de adjacência irreflexivas e simétricas.

Considere o exemplo abaixo de uma imagem 2D e responda:

• Para $q \in \mathcal{A}(p)$ se $||q - p|| \le 1$ e I(p) = I(q) = 1, quantos componentes conexos tem a imagem?

- Para $q \in \mathcal{A}(p)$ se $||q p|| \le 1$ e I(p) = I(q) = 1, quantos componentes conexos tem a imagem?
- Para $q \in \mathcal{A}(p)$ se $||q-p|| \le \sqrt{2}$ e I(p) = I(q) = 1, quantos componentes conexos tem a imagem?

- Para $q \in \mathcal{A}(p)$ se $||q p|| \le 1$ e I(p) = I(q) = 1, quantos componentes conexos tem a imagem?
- Para $q \in \mathcal{A}(p)$ se $||q-p|| \le \sqrt{2}$ e I(p) = I(q) = 1, quantos componentes conexos tem a imagem?
- Para $q \in \mathcal{A}(p)$ se $y_p = y_q$, $|x_q x_p| \le 3$ e I(p) = I(q) = 1, quantos componentes conexos tem a imagem?

- Para $q \in \mathcal{A}(p)$ se $||q p|| \le 1$ e I(p) = I(q) = 1, quantos componentes conexos tem a imagem?
- Para $q \in \mathcal{A}(p)$ se $||q-p|| \le \sqrt{2}$ e I(p) = I(q) = 1, quantos componentes conexos tem a imagem?
- Para $q \in \mathcal{A}(p)$ se $y_p = y_q$, $|x_q x_p| \le 3$ e I(p) = I(q) = 1, quantos componentes conexos tem a imagem?
- Para $q \in \mathcal{A}(p)$ se $||q p|| \le \sqrt{2}$, quantos componentes conexos tem a imagem?

Considere agora o problema de associar uma cor para cada componente conexo de uma imagem.

```
Hello! This is a test
to separate letters,
words, and lines.
```

Rotulação dos pixels 1's com adjacência circular de raio $\sqrt{2}$ (letras) e raio 5 (palavras), e com adjacência retangular de tamanho 30×5 pixels (linhas).

Considere agora o problema de associar uma cor para cada componente conexo de uma imagem.

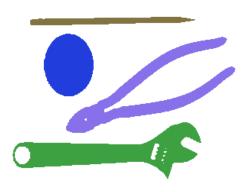
```
Hello! This is a test
to separate letters,
words, and lines.
```

Rotulação dos pixels 1's com adjacência circular de raio $\sqrt{2}$ (letras) e raio 5 (palavras), e com adjacência retangular de tamanho 30×5 pixels (linhas).

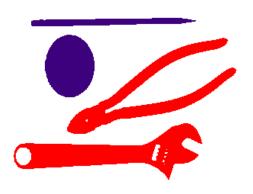
Considere agora o problema de associar uma cor para cada componente conexo de uma imagem.

Hello! This is a test to separate letters, words, and lines.

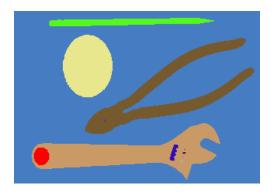
Rotulação dos pixels 1's com adjacência circular de raio $\sqrt{2}$ (letras) e raio 5 (palavras), e com adjacência retangular de tamanho 30×5 pixels (linhas).



Rotulação dos pixels 1's com adjacência circular de raio $\sqrt{2}$, raio 15, e raio $\sqrt{2}$ incluindo os pixels 0's.



Rotulação dos pixels 1's com adjacência circular de raio $\sqrt{2}$, raio 15, e raio $\sqrt{2}$ incluindo os pixels 0's.



Rotulação dos pixels 1's com adjacência circular de raio $\sqrt{2}$, raio 15, e raio $\sqrt{2}$ incluindo os pixels 0's.

• Considere o problema de associar um rótulo $l=1,2,\ldots,n_c$ a cada componente conexo **de mesmo brilho** em uma imagem binária $\hat{l}=(D_I,I)$ com n_c componentes de acordo com uma relação de adjacência \mathcal{A} .

- Considere o problema de associar um rótulo $l=1,2,\ldots,n_c$ a cada componente conexo **de mesmo brilho** em uma imagem binária $\hat{l}=(D_I,I)$ com n_c componentes de acordo com uma relação de adjacência \mathcal{A} .
- Para qualquer pixel $p \in D_I$ ainda não rotulado (L(p) = 0), associamos um rótulo novo $(L(p) \leftarrow I)$ e **propagamos** este rótulo a todos pixels q **conexos** a p usando **busca em largura** (uma fila FIFO First-In-First-Out).

- Entrada: Imagem $\hat{I} = (D_I, I)$ e relação \mathcal{A} .
- Saída: Imagem rotulada $\hat{L} = (D_I, L)$, onde L(p) = 0 inicialmente.
- Auxiliares: FIFO Q e variável inteira I=1.
- **1** Para todo pixel $p \in D_I$, tal que L(p) = 0, faça
- $2 \qquad L(p) \leftarrow l \text{ e insira } p \text{ em } Q.$
- **Solution Solution Solution**
- \bullet Remova p de Q.
- Para todo $q \in \mathcal{A}(p)$, L(q) = 0 e I(p) = I(q), faça
- $I \leftarrow I + 1.$

No exemplo abaixo, o resultado para $q \in \mathcal{A}(p)$ se $\|q-p\| \leq 1$ e I(p) = I(q),

Original (esquerda) e rotulada (direita).