MO815/MC861 - Análise de Imagem Orientada a um Problema do Mundo Real

Alexandre Xavier Falção

Instituto de Computação - UNICAMP

afalcao@ic.unicamp.br

Operadores de processamento de imagem

Operações em processamento de imagem que transformam uma ou mais imagens em outra(s), ou extraem vetores de características, podem ser de três tipos.

- Pontuais: o valor do pixel na saída depende apenas de seu valor na entrada.
- Baseadas em adjacência: o valor do pixel na saída depende dos valores dos pixels em uma dada adjacência.
- Baseadas em conexidade: o valor do pixel na saída depende dos valores de pixels em uma dada sequência de pixels adjacentes na imagem.

O histograma h(I) de uma imagem $I = (D_I, I)$ cinza de b bits de profundidade (i.e., com valores $0 \le I(p) \le 2^b - 1$) é um operador pontual.

 O histograma h(I) mede a frequência de cada valor na imagem.

O histograma h(I) de uma imagem $\mathbf{I} = (D_I, I)$ cinza de b bits de profundidade (i.e., com valores $0 \le I(p) \le 2^b - 1$) é um operador pontual.

- O histograma h(I) mede a frequência de cada valor na imagem.
- O histograma associa a cada bin $0 \le l \le 2^b 1$ do vetor, o número de pixels $p \in D_l$ com valor l(p) = l.

O histograma h(I) de uma imagem $\mathbf{I} = (D_I, I)$ cinza de b bits de profundidade (i.e., com valores $0 \le I(p) \le 2^b - 1$) é um operador pontual.

- O histograma h(I) mede a frequência de cada valor na imagem.
- O histograma associa a cada bin $0 \le l \le 2^b 1$ do vetor, o número de pixels $p \in D_l$ com valor l(p) = l.
- No caso de uma imagem colorida, os valores de cada componente de cor são quantizados em um número de intervalos igual à raiz cúbica do número de bins do histograma.

O algoritmo para cálculo do histograma pode ser descrito como:

Entrada: Imagem $\hat{I} = (D_I, I)$.

Saída: Histograma h(I) com 2^b bins.

- Para todo $l = 0, \dots, 2^b 1$, faça $h(l) \leftarrow 0$.
- ② Para todo $p \in D_I$, faça $h(I(p)) \leftarrow h(I(p)) + 1$.

Operações matemáticas entre imagens sao .

Sejam $\hat{I} = (D_I, I)$ e $\hat{J} = (D_J, J)$ duas imagens cinzas de **mesmo** domínio, $D_I = D_J$.

Operações matemáticas entre imagens sao .

Sejam $\hat{I} = (D_I, I)$ e $\hat{J} = (D_J, J)$ duas imagens cinzas de **mesmo** domínio, $D_I = D_J$.

• Uma operação \odot (**lógica ou aritmética**) entre \hat{I} e \hat{J} gera uma imagem $\hat{K} = (D_K, K), D_K = D_I = D_J$, onde $K(p) = I(p) \odot J(p)$ para todo $p \in D_K$.

Operações matemáticas entre imagens sao .

Sejam $\hat{I} = (D_I, I)$ e $\hat{J} = (D_J, J)$ duas imagens cinzas de **mesmo** domínio, $D_I = D_J$.

- Uma operação \odot (**lógica ou aritmética**) entre \hat{I} e \hat{J} gera uma imagem $\hat{K} = (D_K, K), D_K = D_I = D_J$, onde $K(p) = I(p) \odot J(p)$ para todo $p \in D_K$.
- A operação ⊙ pode ser MINIMO (and lógico), MAXIMO (or lógico), +, -, / , *, etc.
- Uma operação **aritmética** \odot entre um escalar s e \hat{I} gera uma imagem $\hat{K} = (D_K, K)$, $D_K = D_I$, tal que $K(p) = I(p) \odot s$ para todo $p \in D_K$.

- A operação \odot pode ser +,-,/,*, . Por exemplo, em $\hat{K}=\hat{I}^{1/2},~K(p)=\sqrt{I(p)}.$
- Um operador matemático \mathbf{O} sobre uma imagem \hat{I} gera uma imagem $\hat{K} = (D_K, K)$, $D_K = D_I$, tal que $K(p) = \mathbf{O}(I(p))$ para todo $p \in D_K$.

- A operação \odot pode ser +,-,/,*, . Por exemplo, em $\hat{K}=\hat{I}^{1/2},~K(p)=\sqrt{I(p)}.$
- Um operador matemático \mathbf{O} sobre uma imagem \hat{I} gera uma imagem $\hat{K} = (D_K, K)$, $D_K = D_I$, tal que $K(p) = \mathbf{O}(I(p))$ para todo $p \in D_K$.
- O operador **O** pode ser o valor absoluto, logaritmo, exponencial, seno, etc. Por exemplo, em $\hat{K} = |\hat{I} \hat{J}|$, K(p) = |I(p) J(p)|.

- A operação \odot pode ser +,-,/,*, . Por exemplo, em $\hat{K}=\hat{I}^{1/2},~K(p)=\sqrt{I(p)}.$
- Um operador matemático \mathbf{O} sobre uma imagem \hat{I} gera uma imagem $\hat{K} = (D_K, K)$, $D_K = D_I$, tal que $K(p) = \mathbf{O}(I(p))$ para todo $p \in D_K$.
- O operador **O** pode ser o valor absoluto, logaritmo, exponencial, seno, etc. Por exemplo, em $\hat{K} = |\hat{I} \hat{J}|$, K(p) = |I(p) J(p)|.

Desta forma podemos ter expressões lógicas e aritméticas envolvendo várias imagens e escalares.

No caso de imagens coloridas $\hat{I}=(D_I,\vec{I})$ em um dado espaço de cor, este espaço pode ser transformado em outro por multiplicação matricial e outras operações matemáticas. Esta também é uma operação pontual.

$$\begin{bmatrix} K_1(p) \\ K_2(p) \\ K_3(p) \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.169 & -0.331 & 0.500 \\ 0.500 & -0.419 & -0.081 \end{bmatrix} \begin{bmatrix} I_1(p) \\ I_2(p) \\ I_3(p) \end{bmatrix} + \begin{bmatrix} 0 \\ 128 \\ 128 \end{bmatrix}$$

Neste exemplo, o operador $\hat{K} = \mathbf{O}(\hat{I})$ transforma a imagem \hat{I} do espaço RGB para uma imagem $\hat{K} = (D_K, \vec{K})$, $D_K = D_I$, no espaço YC_bC_r , onde K_1 é luminância Y, K_2 é crominância C_b e K_3 é crominância C_r .

Os exemplos mais simples de operadores baseados em adjacência são os operadores morfológicos.

 Uma relação de adjacência A pode ser vista como um elemento estruturante planar em morfologia matemática.

Os exemplos mais simples de operadores baseados em adjacência são os operadores morfológicos.

- Uma relação de adjacência A pode ser vista como um elemento estruturante planar em morfologia matemática.
- A dilatação $\hat{J} = \hat{I} \oplus \mathcal{A}$ de uma imagem \hat{I} por um elemento estruturante planar \mathcal{A} é definida por:

$$J(p) = \max_{\forall q \in A(p)} \{I(q)\}.$$

Os exemplos mais simples de operadores baseados em adjacência são os operadores morfológicos.

- Uma relação de adjacência A pode ser vista como um elemento estruturante planar em morfologia matemática.
- A dilatação $\hat{J} = \hat{I} \oplus \mathcal{A}$ de uma imagem \hat{I} por um elemento estruturante planar \mathcal{A} é definida por:

$$J(p) = \max_{\forall q \in A(p)} \{I(q)\}.$$

 A dilatação elimina regiões escuras da imagem, mas aumenta as regiões claras.

O algoritmo da dilatação pode ser descrito por:

Entrada: $\hat{I} = (D_I, I)$ e A.

Saída: $\hat{J} = (\hat{D_J}, \hat{J})$.

Auxiliar: Variável i_{max}.

- Para todo $p \in D_J$, faça
- $i_{\max} \leftarrow -\infty$.
- Para todo $q \in \mathcal{A}(p)$, tal que $q \in D_I$, faça
- Se $I(q) > i_{\text{max}}$, então
- $i_{\mathsf{max}} \leftarrow I(q).$

• A erosão $\hat{J} = \hat{I} \ominus \mathcal{A}$ de uma imagem \hat{I} por um elemento estruturante planar \mathcal{A} é definida por:

$$J(p) = \min_{\forall q \in \mathcal{A}(p)} \{I(q)\}.$$

• A erosão $\hat{J} = \hat{I} \ominus \mathcal{A}$ de uma imagem \hat{I} por um elemento estruturante planar \mathcal{A} é definida por:

$$J(p) = \min_{\forall q \in \mathcal{A}(p)} \{I(q)\}.$$

 A erosão elimina regiões claras da imagem, mas aumenta as regiões escuras.

• A erosão $\hat{J} = \hat{I} \ominus \mathcal{A}$ de uma imagem \hat{I} por um elemento estruturante planar \mathcal{A} é definida por:

$$J(p) = \min_{\forall q \in \mathcal{A}(p)} \{I(q)\}.$$

- A erosão elimina regiões claras da imagem, mas aumenta as regiões escuras.
- Seu algoritmo requer uma variação simples do algoritmo da dilatação.

• A erosão $\hat{J} = \hat{I} \ominus \mathcal{A}$ de uma imagem \hat{I} por um elemento estruturante planar \mathcal{A} é definida por:

$$J(p) = \min_{\forall q \in \mathcal{A}(p)} \{I(q)\}.$$

- A erosão elimina regiões claras da imagem, mas aumenta as regiões escuras.
- Seu algoritmo requer uma variação simples do algoritmo da dilatação.
- Quando combinadas, elas geram vários filtros morfológicos que podem ser usados para realçar detalhes na imagem.

Filtros morfológicos apresentam as seguintes propriedades.

Filtros morfológicos apresentam as seguintes propriedades.

• monoticidade - O filtro Ψ preserva a relação de ordem entre as imagens cinza $\hat{I} = (D_I, I)$ e $\hat{J} = (D_J, J)$, onde $D_I = D_J$.

$$\hat{I} \leq \hat{J} \Rightarrow \Psi(\hat{I}) \leq \Psi(\hat{J}),$$

onde $\hat{I} \leq \hat{J}$ significa que $I(p) \leq J(p)$, para todo pixel $p \in D_I$.

Filtros morfológicos apresentam as seguintes propriedades.

• monoticidade - O filtro Ψ preserva a relação de ordem entre as imagens cinza $\hat{I} = (D_I, I)$ e $\hat{J} = (D_J, J)$, onde $D_I = D_J$.

$$\hat{I} \leq \hat{J} \Rightarrow \Psi(\hat{I}) \leq \Psi(\hat{J}),$$

onde $\hat{I} \leq \hat{J}$ significa que $I(p) \leq J(p)$, para todo pixel $p \in D_I$.

• idempotência - O filtro Ψ aplicado duas vezes à imagem gera o mesmo resultado de quando é aplicado uma única vez.

$$\Psi(\Psi(\hat{I})) = \Psi(\hat{I}).$$

Filtros de fechamento e de abertura morfológicos são exemplos que buscam reduzir as degradações causadas pela dilatação e erosão.

Filtros de fechamento e de abertura morfológicos são exemplos que buscam reduzir as degradações causadas pela dilatação e erosão.

• O fechamento \hat{I} • \mathcal{A} é dado por:

$$\hat{J} = (\hat{I} \oplus \mathcal{A}) \ominus \mathcal{A}$$

Filtros de fechamento e de abertura morfológicos são exemplos que buscam reduzir as degradações causadas pela dilatação e erosão.

• O fechamento \hat{I} • \mathcal{A} é dado por:

$$\hat{J} = (\hat{I} \oplus \mathcal{A}) \ominus \mathcal{A}$$

• A abertura $\hat{I} \circ \mathcal{A}$ é dada por:

$$\hat{J} = (\hat{I} \ominus \mathcal{A}) \oplus \mathcal{A}$$

Filtros de fechamento e de abertura morfológicos são exemplos que buscam reduzir as degradações causadas pela dilatação e erosão.

• O fechamento \hat{l} • \mathcal{A} é dado por:

$$\hat{J} = (\hat{I} \oplus \mathcal{A}) \ominus \mathcal{A}$$

• A abertura $\hat{I} \circ \mathcal{A}$ é dada por:

$$\hat{J} = (\hat{I} \ominus \mathcal{A}) \oplus \mathcal{A}$$

No caso de imagens coloridas, elas podem ser convertidas de RGB para YCbCr, os operadores serem aplicados em Y, e elas serem convertidas de volta para RGB. Vamos codificar e visualizar os resultados desses operadores...

