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Introduction

Recall that image analysis requires to learn models for description,
detection, delineation, and classification.

Object (instance) segmentation results from detection and
delineation.
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Introduction

We have seen how to learn image description models based on
visual dictionaries (with no user annotation) and convolutional
layers (with minimal user annotation).

The descriptor aims to create a feature space <n in which images
from distinct classes are mapped into separated subspaces of <n.
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Introduction

Whenever the classes are linearly separable in <n, one can use a
single hyperplane per class (e.g., a SVM classifier) to isolate its
samples from the others.

Alternatively, a MLP classifier separates them by a collection of
hyperplanes per class (i.e., a hyperpolygon).
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Introduction

Among several classifiers,

Bayesian (parametric) and K-nearest neighbors
(non-parametric) [1],

Optimum-path forest (graph-based) [2, 3, 4],

Decision trees and random forest [5, 6],

Support Vector Machines and Multi-Layer Perceptron [5, 6, 7],

we will focus on Multi-Layer Perceptron (MLP), which can learn
parameters for description based on convolutional layers and
classification, forming a Convolutional Neural Network [8].
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Agenda

Some concepts from Machine Learning.

The perceptron algorithm.

The MLP classifier.

Convolutional Neural Network: construction and use.
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Datasets

Let Z be a dataset – a sample (pixel, superpixel, subimage, image)
collection. Each sample s ∈ Z is represented by a feature vector
x(s) ∈ <n and may come from (a) none, (b) one, or (c) multiple
classes λ(s) ∈ {ωk}ck=1.

Case (a) defines an open-set problem while the others are
closed-set problems.

Case (b) defines a single-label problem while (c) defines a
multi-label problem.

Our focus will be on single-label and closed-set problems.
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Classifier: construction and use

A classifier is built from a training set Ztr ⊂ Z.

The training process may use an auxiliary set Zvl ⊂ Z,
Ztr ∩ Zvl = ∅, named validation set, to optimize the model’s
hyperparameters (e.g., a network architecture).

The final model is then tested on a testing set Zts ⊂ Z,
Ztr ∩ Zvl ∩ Zts = ∅.

The process must be repeated multiple times with random
splits of Z into Ztr ,Zvl and Zts to allow statistical analysis.
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Classifier: construction and use

When the true labels λ(s) are known for all s ∈ Ztr , the
problem is said supervised.

It is semi-supervised when the true labels are known for a
subset of Ztr and unsupervised when the true labels are
unknown for all samples in Ztr .

In any case, the descriptor maps Z → <n and the classifier
maps <n → {ωk}ck=1 such that an error occurs when the
resulting label L(s) ∈ {ωk}ck=1 is different from λ(s), s ∈ Z.
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Sample selection

Random samples are selected from Z to compose the training,
validation, and testing sets.

When the true labels of s ∈ Z are known a priori, if we force a
same number of samples per class, the resulting sets will be
balanced, but this is not usually the real scenario.

Alternatively, a same percentage of samples (stratified
sampling) per class creates imbalanced sets whenever Z is
imbalanced.
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Sample selection

Given that x(s) = (x1(s), x2(s), . . . , xn(s)) ∈ <n changes with
the random choice of s ∈ Z, then x is said a random field
with probability density function ρ(x) : <n → [0, 1] (a manifold
in <n+1).

Likewise, each feature xi (s) ∈ <, i ∈ [1, n], changes with the
random choice of s ∈ Z, then xi is said a random variable.

A standard approach is cross validation and the methods can
be described for training and validation/testing sets as follows.
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Cross validation

Cross validation may be called K -hold-out, K -fold, or
N × K -fold [5].

K -hold-out: Z is split K times into P% of samples for Ztr

and (100− P)% for Zts , 0 < P < 100. The instances of Ztr

and Zts are not statistically independent.

K -fold: Z is split into K parts of approximately equal sizes,
using each of the parts for testing and the rest for training K
times. The instances of Zts are statistically independent, but
not the instances of Ztr .

N × K -fold: K -fold is repeated N times, usually with K = 2.

Alexandre Xavier Falcão MC940/MO445 - Image Analysis



Cross validation

Cross validation may be called K -hold-out, K -fold, or
N × K -fold [5].

K -hold-out: Z is split K times into P% of samples for Ztr

and (100− P)% for Zts , 0 < P < 100. The instances of Ztr

and Zts are not statistically independent.

K -fold: Z is split into K parts of approximately equal sizes,
using each of the parts for testing and the rest for training K
times. The instances of Zts are statistically independent, but
not the instances of Ztr .

N × K -fold: K -fold is repeated N times, usually with K = 2.

Alexandre Xavier Falcão MC940/MO445 - Image Analysis



Cross validation

Cross validation may be called K -hold-out, K -fold, or
N × K -fold [5].

K -hold-out: Z is split K times into P% of samples for Ztr

and (100− P)% for Zts , 0 < P < 100. The instances of Ztr

and Zts are not statistically independent.

K -fold: Z is split into K parts of approximately equal sizes,
using each of the parts for testing and the rest for training K
times. The instances of Zts are statistically independent, but
not the instances of Ztr .

N × K -fold: K -fold is repeated N times, usually with K = 2.

Alexandre Xavier Falcão MC940/MO445 - Image Analysis



Cross validation

Cross validation may be called K -hold-out, K -fold, or
N × K -fold [5].

K -hold-out: Z is split K times into P% of samples for Ztr

and (100− P)% for Zts , 0 < P < 100. The instances of Ztr

and Zts are not statistically independent.

K -fold: Z is split into K parts of approximately equal sizes,
using each of the parts for testing and the rest for training K
times. The instances of Zts are statistically independent, but
not the instances of Ztr .

N × K -fold: K -fold is repeated N times, usually with K = 2.

Alexandre Xavier Falcão MC940/MO445 - Image Analysis



Effectiveness and confusion matrix

Let nij be the number of times test samples from class ωi have
been classified into class ωj for i , j ∈ [1, c] and mts samples. A
confusion matrix is defined as

ω1 ω2 . . . ωc

ω1 n11 n12 . . . n1c
ω2 n21 n22 . . . n2c
...

...
...

...
...

ωc nc1 nc2 . . . ncc



The total of correct classifications is
∑c

i=1 nii , being
mts −

∑c
i=1 nii the total of misclassifications.

Several effectiveness measures can be obtained from the
confusion matrix (sensitivity, accuracy, specificity, precision,
etc). A “good” one is the Cohen’s kappa, which is robust to
imbalanced classes.
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Cohen’s kappa

Cohen’s kappa κ measures the observed Po and
expected-by-chance Pe agreements between two raters, A (rows)
and B (columns) in a confusion matrix.

κ =
Po − Pe

1− Pe
,

Po =
1

mts

c∑
i=1

nii ,

Pe =
1

m2
ts

c∑
i=1

NA(i)NB(i),

where NA(i) =
∑c

j=1 nij and NB(i) =
∑c

j=1 nji are the total of
samples raters A and B assign to class ωi , respectively.
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Statistical tests

Statistical tests provide a formal way to decide if the results of
an experiment are significant or accidental [9].

For example, one can measure the Cohen’s kappa κi (t) of
each execution t = 1, 2, . . . ,T of each classifier Ci , i ∈ [1, n],
on T statistically independent sets during cross validation.

A statistical test starts from a null hypothesis, such as all
classifiers are equivalent, and verify if it can be rejected at
some significance level p (e.g., p = 0.05).
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Statistical tests

First, some measure mo , that indicates differences among the
classifiers, is obtained from the experiment. For example, for
n = 2 classifiers and a 5× 2-fold cross validation, one can
compute the variances s2t of the differences κ1(t)− κ2(t) of
the two folds for t = 1, 2, . . . , 5 and define

mo =
κ1(1)− κ2(1)√

1
5

∑5
t=1 s

2
t

It is shown that mo (a random variable) satisfies some
probability density function ρ(mo) when the null hypothesis is
satisfied. For the example, a t-distribution of five degrees of
freedom.
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Statistical tests

The areas below the curve ρ(mo) are tabulated for each value
of mo , representing the chances p of the null hypothesis be
correct.

If mo is observed above a critical value such that p < 0.05, for
instance, we reject the null hypothesis with less than 5% of
chance of being wrong.

The most popular tests are student’s t-test, Wilcoxon
signed-rank test, analysis of variance (ANOVA), Tukey’s range
test, Nemenyi test, and Friedman test.
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The perceptron algorithm

From a set of discriminant functions {gk(x)}ck=1, a classifier
can be defined by the selection of ωj ∈ {ωk}ck=1 whose
gj(x) = maxk=1,2,...c{gk(x)}.

Classical approaches estimate the posterior probability
gk(x) = P(ωk\x) based on the Bayes Theorem.

P(ωk\x) =
P(ωk)ρ(x\ωk)

ρ(x)
,

where P(ωk) is the prior probability, the conditional density
function ρ(x\ωk) is the likelihood, and ρ(x) is the evidence.

We will focus on one linear discriminat function per class:
gk(x) = 〈wk , x〉+ wk0, where wk ∈ <n is a weight vector
normal to the hyperplane that separates ωk from other classes
and wk0 is the bias.
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The perceptron algorithm

For example, a simplification for two classes (c = 2) in <2 may
adopt a single hyperplane with linear discriminant function
g(x) = 〈w, x〉+ w0, such that g(x) > 0 leads to ω1 and g(x) < 0
leads to ω2.

d =
|w0|
‖w‖

z =
|g(x)|
‖w‖
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The perceptron algorithm

Let w′ = [w0,w]t and x′ = [1, x]t , the optimum extended weight
vector w∗ can be found from x′(s) of training samples s ∈ Ztr

based on the minimization of the criterion function

J(w′) =
∑

x′(s),s∈E

δs ∗ 〈w′, x′(s)〉,

where E ⊂ Ztr contains misclassified samples and δs is defined as

δs =

{
−1 if λ(s) = ω1,
+1 if λ(s) = ω2.

Note that, J(w′) ≥ 0 and the weight vectors can be updated along
with iterations i by

w′(i + 1) = w′(i)− µ(i)
∂J(w′)

∂w′
∣∣
w′=w′(i) ,

where µ(i) ∈ <+ is a variable learning rate.
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The perceptron algorithm

For linearly separable classes, the perceptron algorithm
converges and the choice of µ(i) controls the speed of
convergence.

For instance, one may select µ(i) = c
i , for i > 0, and

0 < µ(0) = c .

The partial derivative ∂J(w′)
∂w′ =

∑
x′(s),s∈E δsx′(s), then

w′(i + 1) = w′(i)− µ(i)
∑

x′(s),s∈E

δsx′(s).

Assuming linearly separable classes, the perceptron algorithm can
be presented as follows.
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The perceptron algorithm

1. Choose w′ randomly and set µ← c , i ← 0, and E ← ∅.

2. Repeat

3. For each s ∈ Ztr do

4. If δs〈w′, x′(s)〉 ≥ 0 then E ← E ∪ {s}.

5. Set w′ ← w′ − µ
∑

x′(s),s∈E δsx′(s).

6. Update i ← i + 1 and µ← µ
i .

7. Until E = ∅.
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The perceptron algorithm

The subsequent adjustments of the weight vector should move the
hyperplane as shown.

For nonlinearly separable classes, it is known that this strategy
requires two hidden layers to separate classes by hyperpolyhedrons.
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Multi-layer perceptron

For c > 2 classes, whenever the classes are nonlinearly separable,
one hidden layer of perceptrons, that activate only for samples
s ∈ Z whose x(s) is on their positive side, may be enough.
However, for a reduced number of perceptrons per layer, more
hidden layers are needed.

The perceptrons for class ωk should define the surfaces of the
hyperpolyhedron that separates samples of ωk from the others.
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Multi-layer perceptron

The hidden layer of perceptrons (e.g., A-D) creates a feature space
of activations (e.g., yi , i = 1, 2, . . . , 4) that is higher and sparser
than the original space (e.g., it went from <2 to <4).

Samples of distinct classes are expected to be mapped into
different subspaces, such that the decision layer of discriminant
functions {gk(x)}ck=1 can solve classification by selecting
ωj ∈ {ωk}ck=1 whose gj(x) = maxk=1,2,...c{gk(x)}.

Alexandre Xavier Falcão MC940/MO445 - Image Analysis



Multi-layer perceptron

The hidden layer of perceptrons (e.g., A-D) creates a feature space
of activations (e.g., yi , i = 1, 2, . . . , 4) that is higher and sparser
than the original space (e.g., it went from <2 to <4).

Samples of distinct classes are expected to be mapped into
different subspaces, such that the decision layer of discriminant
functions {gk(x)}ck=1 can solve classification by selecting
ωj ∈ {ωk}ck=1 whose gj(x) = maxk=1,2,...c{gk(x)}.

Alexandre Xavier Falcão MC940/MO445 - Image Analysis



Multi-layer perceptron

Let wr
j =

[
w r
j0,w

r
j1,w

r
j2, . . . ,w

r
jk , . . . ,w

r
jN(r−1)

]t
be the weight

vector (including bias w r
j0) of a perceptron j at a layer r ∈ [1, L] of

a multi-layer perceptron with L layers, such that w r
jk is the synaptic

weight of the connection between perceptron j and a perceptron k
from layer r − 1.

Layer 0 is the input layer that presents [1, x]t to the perceptrons of
layer 1, v rj = 〈yr−1,wr

j 〉, and layer L is the decision layer with
NL = c perceptrons, one per class.
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Multi-layer perceptron

So far, we have considered the ReLU activation f (the
McCulloch-Pitts neuron).

f (v) =

{
v v > 0,
0 v ≤ 0.

Other options are continuous differentiable functions (e.g., the
family of sigmoid functions and hyperbolic tangent functions). A
common example is the logistic function.

f (v) =
v

1 + exp(−av)
,

where a > 0 is a slope parameter.
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Multi-layer perceptron

For wr
j , each iteration i adjusts its weights by

wr
j (i + 1) = wr

j (i) + ∆wr
j ,

∆wr
j = −µ ∂J

∂wr
j

,

J =
∑
s∈Ztr

E(s)

for a fixed learning rate µ and error function E .

Given the pairs (x(s), y(s)), s ∈ Ztr , with the input and expected
output vectors, one can choose E(s) as

E(s) =
1

2
‖yL(s)− y(s)‖2 =

1

2

c∑
m=1

(yLm(s)− ym(s))2 =
1

2

c∑
m=1

e2m(s),

where yL(s) is the estimated output vector.
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Multi-layer perceptron

For ∆wr
j , we must compute ∂J

∂wr
j

=
∑

s∈Ztr

∂E(s)
∂wr

j
. By the chain rule,

∂E(s)

∂wr
j

=
∂E(s)

∂v rj (s)

∂v rj (s)

∂wr
j

.

Given that v rj (s) =
∑Nr−1

m=0 w
r
jmy

r−1
m (s) = 〈wr

j , y
r−1(s)〉,

∂v rj (s)

∂wr
j

= yr−1(s).

Let us now define ∂E(s)
∂v r

j (s)
= δrj (s), such that

∆wr
j = −µ

∑
s∈Ztr

δrj (s)yr−1(s).
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Multi-layer perceptron

The computation of δrj (s) starts from r = L and propagates
backward for 1 ≤ r < L, deriving the name backpropagation
algorithm.

For r = L and 1 ≤ j ≤ c ,

δLj (s) =
∂E(s)

∂vLj (s)
=
∂
(
1
2

∑c
m=1

(
f (vLm(s))− ym(s)

)2)
∂vLj (s)

δLj (s) = (f (vLj (s))− yj(s))
∂f (vLj (s))

∂vLj (s)
= ej(s)f ′(vLj (s))

δLj (s) = ej(s)f ′(vLj (s)).
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Multi-layer perceptron

For r < L and 1 ≤ j ≤ Nr−1, v r−1j (s) affects all v rk (s),
k = 1, 2, . . . ,Nr . Therefore, the chain rule must be applied.

δr−1j (s) =
Nr∑
k=1

∂E(s)

∂v rk (s)

∂v rk (s)

∂v r−1j (s)
=

Nr∑
k=1

δrk(s)
∂v rk (s)

∂v r−1j (s)

∂v rk (s)

∂v r−1j (s)
=

∂
(∑Nr−1

m=0 w
r
kmy

r−1
m (s)

)
∂v r−1j (s)

=
∂
(∑Nr−1

m=0 w
r
kmf (v r−1m (s))

)
∂v r−1j (s)

∂v rk (s)

∂v r−1j (s)
= w r

kj

∂f (v r−1j (s))

∂v r−1j (s)
= w r

kj f
′(v r−1j (s))

δr−1j (s) =

(
Nr∑
k=1

δrk(s)w r
kj

)
f ′(v r−1j (s))
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Multi-layer perceptron

In summary,

wr
j (i + 1) = wr

j (i) + ∆wr
j ,

∆wr
j = −µ

∑
s∈Ztr

δrj (s)yr−1(s)

δrj (s) =

{
(f (v rj (s))− y rj )f ′(v rj (s)) r = L(∑Nr+1

k=1 δ
r+1
k (s)w r+1

kj

)
f ′(v rj (s)) r < L

For the logistic function,

f ′(v rj (s)) = af (v rj (s))(1− f (v rj (s)))

and for ReLU,

f ′(v rj (s)) =

{
1 v rj (s) > 0,

0 otherwise.
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Backpropagation algorithm

Start from (x(s), y(s)), s ∈ Ztr , a given network architecture with
random weight initialization, learning rate µ, maximum number
T > 0 of iterations (epochs), and minimum error ε > 0.

01. Set i ← 1.

02. Do

03. Set E ← 0.

04. For each s ∈ Ztr do

05. For r = 1 to L and j = 1 to Nr do

06. Compute v rj (s) and y rj (s) = f (v rj (s)).

07. For j = 1 to c do

08. Set E ← E + 1
2(yLj (s)− yj(s))2

09. For r = 1 to L and j = 1 to Nr do

10. Set ∆wr
j ← 0.
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Backpropagation algorithm

11. For each s ∈ Ztr do

12. For r = L to 1 and j = 1 to Nr do

13. Compute δrj (s) and ∆wr
j ← ∆wr

j − µδrj (s)yr−1(s).

14. For r = 1 to L and j = 1 to Nr do

15. Set wr
j ← wr

j + ∆wr
j .

16. Set i ← i + 1.

17. While E > ε and i ≤ T .

This algorithm is also known as Stochastic Gradient Descendant.
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Backpropagation algorithm

The choice of µ is application-dependent and is crucial to
speed-up convergence. Typically, 0.01 ≤ µ ≤ 0.6. One can
also update (reduce) µ at every number X of epochs.

A momentum α, typically in [0.1, 0.8], can also be used to
reduce oscillation in the criterion function and speed up
convergence.

∆wr
j (i) = α∆wr

j (i − 1)− µ
∑
s∈Ztr

δrj (s)yr−1(s)

wr
j (i + 1) = αwr

j (i) + ∆wr
j (i)
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Backpropagation algorithm

Cross-entropy is another commonly used criterion function J.

J = −
∑
s∈Ztr

c∑
m=1

(
ym(s) ln yLm(s) + (1− ym(s)) ln(1− yLm(s))

)
,

where yLm(s) and ym(s) should be in [0, 1]. This is usually done by
using softmax activation in the decision layer L.

yLj (s) =
exp

(
f (vLj )

)
∑c

m=1 exp (f (vLm))
,

j = 1, 2, . . . , c .
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Convolutional Neural Networks

The backpropagation algorithm can estimate the weights of the
MLP classifier as well as the weights of the convolutional layers.

However, δrj (s), j = 1, 2, . . . ,Nr , tend to zero as r → 1 and L
increases (the vanishing-gradient problem), making it difficult to
update the weights of the initial layers.
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Convolutional Neural Networks

Different initialization techniques and activation functions
have been used to address the vanishing-gradient problem.

Another problem is overfitting, to which weight dropout and
data augmentation have been used as regularization
techniques.

For convolutional layers, each pixel j of an image s is a neuron
with output y rj (s) at a layer r and receptive field defined by

the values y r−1m (s), m ∈ A(j), of its adjacent pixels in layer
r − 1. Therefore

∑Nr
m=1 becomes

∑
m∈A(j).
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Convolutional Neural Networks

A max-pooling g after activation f implies to substitute f ′(v rj (s))

by
∂g(f (v r

j (s)))

∂v r
j (s)

=
∂g(f (v r

j (s)))

∂f (v r
j (s))

∂f (v r
j (s))

∂v r
j (s)

= g ′(f (v rj (s)))f ′(v rj (s)). Then

g(f (v rj (s))) = maxm∈A(j){f (v rm(s))} can be rewritten as

g(f (v rj (s))) =
∑

m∈A(j)

urmf (v rm(s)),

urm =

{
1 k = argmaxm∈A(j){f (v rm(s))},
0 otherwise.

Therefore,

g ′(f (v rj (s))) =

{
1 m = k ,
0 otherwise.
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Convolutional Neural Networks

The role of training a CNN is to increase class separation at the
outputs of subsequent convolutional layers.

Feature projections (t-SNE) after layers 10, 11, 12, and 13 for
larvae of helminth and impurities using VGG-16.

Alexandre Xavier Falcão MC940/MO445 - Image Analysis



Convolutional Neural Networks

The role of training a CNN is to increase class separation at the
outputs of subsequent convolutional layers.

Feature projections (t-SNE) after layers 10, 11, 12, and 13 for
larvae of helminth and impurities using VGG-16.

Alexandre Xavier Falcão MC940/MO445 - Image Analysis



Convolutional Neural Networks

The role of training a CNN is to increase class separation at the
outputs of subsequent convolutional layers.

Feature projections (t-SNE) after layers 10, 11, 12, and 13 for
larvae of helminth and impurities using VGG-16.

Alexandre Xavier Falcão MC940/MO445 - Image Analysis



Convolutional Neural Networks

The role of training a CNN is to increase class separation at the
outputs of subsequent convolutional layers.

Feature projections (t-SNE) after layers 10, 11, 12, and 13 for
larvae of helminth and impurities using VGG-16.

Alexandre Xavier Falcão MC940/MO445 - Image Analysis



Convolutional Neural Networks

Since convolutional layers make the feature space high and sparse,
the fully-connected layers must reduce dimensionality by
specializing the neurons that will activate (compose a
hyperpolyhedron) to each class in the last hidden layer.

Neuron projections (MDS, right) colored by their discriminative
power for class 8 versus the others in a digit dataset.
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