Filtros Não-Lineares

Alexandre Xavier Falção

Instituto de Computação - UNICAMP

afalcao@ic.unicamp.br

Sejam $\hat{I} = (D_I, I)$ e $\hat{K} = (A, K)$ imagem e kernel.

Sejam $\hat{I} = (D_I, I)$ e $\hat{K} = (A, K)$ imagem e kernel.

• Esta aula aborda uma variedade de operações locais não-lineares envolvendo os valores I(q) dos spels q em uma dada adjacência $\mathcal{A}(p)$ dos spels p.

Sejam $\hat{I} = (D_I, I)$ e $\hat{K} = (A, K)$ imagem e kernel.

- Esta aula aborda uma variedade de operações locais não-lineares envolvendo os valores I(q) dos spels q em uma dada adjacência $\mathcal{A}(p)$ dos spels p.
- Algumas dessas operações consideram também os valores K(q-p) associados a cada par $(p,q) \in \mathcal{A}$.

Sejam $\hat{I} = (D_I, I)$ e $\hat{K} = (A, K)$ imagem e kernel.

- Esta aula aborda uma variedade de operações locais não-lineares envolvendo os valores I(q) dos spels q em uma dada adjacência $\mathcal{A}(p)$ dos spels p.
- Algumas dessas operações consideram também os valores K(q-p) associados a cada par $(p,q) \in \mathcal{A}$.
- Essas operações incluem filtros mediana, moda, e morfológicos, gerando uma imagem $\hat{J} = (D_I, J)$.

Filtro Mediana

O filtro mediana reduz ruído do tipo *speckle*, ordenando os spels $q \in \mathcal{A}(p)$ por I(q) e atribuindo a J(p) o valor mediano da sequência ordenada, para todo $p \in D_J$.

^{*} O filtro mediana tenta também preservar as bordas.

Filtro Mediana: Algoritmo

- Entrada: $\hat{I} = (D_I, I)$ e \mathcal{A} . Saída: $\hat{J} = (D_I, J)$.
- Auxiliar: Lista v(i), i = 0, 1, 2, ..., |A| 1 e variáveis x, $n \in i$.
 - Para todo $p \in D_J$, faça
 - $0 n \leftarrow 0.$
 - ullet Para todo $q \in \mathcal{A}(p)$, tal que $q \in D_I$, faça
 - $v(n) \leftarrow I(q) \ e \ i \leftarrow n.$
 - **5** Enquanto i > 0 e v(i) < v(i-1), faça

 - $0 n \leftarrow n+1.$

Filtro Moda

O filtro moda reduz erros de classificação, atribuindo a J(p) o valor mais frequente de I(q) entre spels $q \in \mathcal{A}(p)$, para todo $p \in D_J$.

Original

Antes da Moda

Depois da Moda

Filtro Moda: Algoritmo

Entrada: $\hat{I} = (D_I, I)$ e \mathcal{A} . Saída: $\hat{J} = (D_I, J)$.

Auxiliar: Frequência $f(i) \leftarrow 0$, $i = 0, 1, \dots, I_{\text{max}}$, onde I_{max} é o maior brilho em \hat{I} , e variáveis i_{max} e f_{max} .

- **1** Para todo $p \in D_J$, faça
- Para todo $q \in \mathcal{A}(p)$, tal que $q \in D_I$, faça
- $i_{\max} \leftarrow nil \ e \ f_{\max} \leftarrow -\infty.$
- Se $f(I(q)) > f_{\text{max}}$, então
- $i_{\mathsf{max}} \leftarrow I(q) \ \mathsf{e} \ f_{\mathsf{max}} \leftarrow f(I(q)).$
- $f(I(q)) \leftarrow 0.$

A morfologia matemática foi criada por Georges Matheron e Jean Serra em 1964 para analisar a geometria dos objetos em imagens binárias, e depois foi estendida para imagens cinzas.

A morfologia matemática foi criada por Georges Matheron e Jean Serra em 1964 para analisar a geometria dos objetos em imagens binárias, e depois foi estendida para imagens cinzas.

 Transformações morfológicas essencialmente comparam uma imagem com outra menor (elemento estruturante), cuja geometria conhecida modifica os objetos da imagem.

A morfologia matemática foi criada por Georges Matheron e Jean Serra em 1964 para analisar a geometria dos objetos em imagens binárias, e depois foi estendida para imagens cinzas.

- Transformações morfológicas essencialmente comparam uma imagem com outra menor (elemento estruturante), cuja geometria conhecida modifica os objetos da imagem.
- Duas operações básicas são dilatação e erosão.

A morfologia matemática foi criada por Georges Matheron e Jean Serra em 1964 para analisar a geometria dos objetos em imagens binárias, e depois foi estendida para imagens cinzas.

- Transformações morfológicas essencialmente comparam uma imagem com outra menor (elemento estruturante), cuja geometria conhecida modifica os objetos da imagem.
- Duas operações básicas são dilatação e erosão.
- A primeira "engorda" os objetos de uma imagem binária (deixa mais clara a imagem cinza) enquanto a segunda "emagrece" os objetos (deixa mais escura a imagem cinza).

Dilatação

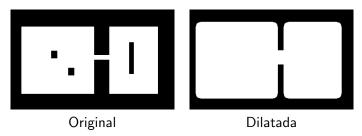
A dilatação $\hat{J} = \hat{I} \oplus \hat{K}$ de uma imagem \hat{I} por um elemento estruturante não-planar \hat{K} (kernel) é definida por:

$$J(p) = \max_{\forall q \in \mathcal{A}(p)} \{I(q) + K(q-p)\}.$$

Frequentemente, os valores de K(q - p) são nulos e o elemento estruturante é dito planar.

Dilatação

A dilatação por um disco (elemento planar) de raio r=10 elimina "bacias" (regiões escuras) de tamanho menor que o disco.



Dilatação: Algoritmo

Entrada: $\hat{I} = (D_I, I)$ e \hat{K} .

Saída: $\hat{J} = (\hat{D_J}, \hat{J})$.

Auxiliar: Variável i_{max}.

- Para todo $p \in D_J$, faça
- $i_{\max} \leftarrow -\infty$.
- ullet Para todo $q \in \mathcal{A}(p)$, tal que $q \in D_I$, faça
- $i_{\mathsf{max}} \leftarrow I(q) + K(q-p).$

Erosão

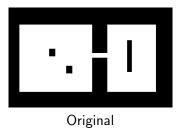
A erosão $\hat{J} = \hat{I} \ominus \hat{K}$ de uma imagem \hat{I} por um elemento estruturante não-planar \hat{K} (kernel) é definida por:

$$J(p) = \min_{\forall q \in \mathcal{A}(p)} \{I(q) - K(q-p)\}.$$

Frequentemente, os valores de K(q - p) são nulos e o elemento estruturante é dito planar.

Erosão

A erosão por um disco (elemento planar) de raio r=10 elimina "domos" (regiões claras) de tamanho menor que o disco.



Erodida

Erosão: Algoritmo

Entrada: $\hat{I} = (D_I, I)$ e \hat{K} .

Saída: $\hat{J} = (\hat{D_J}, \hat{J}).$

Auxiliar: Variável i_{min}.

- **1** Para todo $p \in D_J$, faça
- $i_{\min} \leftarrow +\infty$.
- ullet Para todo $q \in \mathcal{A}(p)$, tal que $q \in D_I$, faça
- $i_{\min} \leftarrow I(q) K(q-p).$

Filtros morfológicos

As operações de dilatação e erosão podem ser combinadas para gerar vários filtros morfológicos, com as seguintes propriedades:

Filtros morfológicos

As operações de dilatação e erosão podem ser combinadas para gerar vários filtros morfológicos, com as seguintes propriedades:

• monoticidade - O filtro Ψ preserva a relação de ordem entre as imagens cinza $\hat{I} = (D_I, I)$ e $\hat{J} = (D_J, J)$, onde $D_I = D_J$.

$$\hat{I} \leq \hat{J} \Rightarrow \Psi(\hat{I}) \leq \Psi(\hat{J}),$$

onde $\hat{I} \leq \hat{J}$ significa que $I(p) \leq J(p)$, para todo pixel $p \in D_I$.

Filtros morfológicos

As operações de dilatação e erosão podem ser combinadas para gerar vários filtros morfológicos, com as seguintes propriedades:

• monoticidade - O filtro Ψ preserva a relação de ordem entre as imagens cinza $\hat{I} = (D_I, I)$ e $\hat{J} = (D_J, J)$, onde $D_I = D_J$.

$$\hat{I} \leq \hat{J} \Rightarrow \Psi(\hat{I}) \leq \Psi(\hat{J}),$$

onde $\hat{I} \leq \hat{J}$ significa que $I(p) \leq J(p)$, para todo pixel $p \in D_I$.

 idempotência - O filtro Ψ aplicado duas vezes à imagem gera o mesmo resultado de quando é aplicado uma única vez.

$$\Psi(\Psi(\hat{I})) = \Psi(\hat{I}).$$

Filtros de fechamento e de abertura morfológicos buscam reduzir as degradações causadas pela dilatação e erosão.

Filtros de fechamento e de abertura morfológicos buscam reduzir as degradações causadas pela dilatação e erosão.

• O fechamento \hat{I} • \hat{K} é dado por:

$$\hat{J} = (\hat{I} \oplus \hat{K}) \ominus \hat{K}$$

Filtros de fechamento e de abertura morfológicos buscam reduzir as degradações causadas pela dilatação e erosão.

• O fechamento \hat{I} • \hat{K} é dado por:

$$\hat{J} = (\hat{I} \oplus \hat{K}) \ominus \hat{K}$$

• A abertura $\hat{I} \circ \hat{K}$ é dada por:

$$\hat{J} = (\hat{I} \ominus \hat{K}) \oplus \hat{K}$$

Filtros alternados sequênciais

 Filtros alternados sequênciais resultam da aplicação alternada de aberturas (O de opening) e fechamentos (C de closing) morfológicos.

Filtros alternados sequênciais

- Filtros alternados sequênciais resultam da aplicação alternada de aberturas (O de opening) e fechamentos (C de closing) morfológicos.
- Por exemplo,

$$CO(\hat{l}, \hat{K}) = (\hat{l} \bullet \hat{K}) \circ \hat{K}$$
 (1)

$$OC(\hat{l}, \hat{K}) = (\hat{l} \circ \hat{K}) \bullet \hat{K}$$
 (2)

$$COC(\hat{l}, \hat{K}) = ((\hat{l} \bullet \hat{K}) \circ \hat{K}) \bullet \hat{K}$$
 (3)

$$OCO(\hat{l}, \hat{K}) = ((\hat{l} \circ \hat{K}) \bullet \hat{K}) \circ \hat{K}$$
 (4)

Filtros alternados sequênciais

- Filtros alternados sequênciais resultam da aplicação alternada de aberturas (O de opening) e fechamentos (C de closing) morfológicos.
- Por exemplo,

$$CO(\hat{l}, \hat{K}) = (\hat{l} \bullet \hat{K}) \circ \hat{K}$$
 (1)

$$OC(\hat{l}, \hat{K}) = (\hat{l} \circ \hat{K}) \bullet \hat{K}$$
 (2)

$$COC(\hat{l}, \hat{K}) = ((\hat{l} \bullet \hat{K}) \circ \hat{K}) \bullet \hat{K}$$
 (3)

$$OCO(\hat{l}, \hat{K}) = ((\hat{l} \circ \hat{K}) \bullet \hat{K}) \circ \hat{K}$$
 (4)

 Esses filtros também podem ser aplicados sucessivas vezes aumentando o tamanho do elemento estruturante a cada passo.

Gradiente morfológico

 Como a erosão é uma operação anti-extensiva (a função resultante é menor que a original) e a dilatação é extensiva, bordas da imagem podem ser realçadas calculando-se o resíduo dessas operações.

Gradiente morfológico

 Como a erosão é uma operação anti-extensiva (a função resultante é menor que a original) e a dilatação é extensiva, bordas da imagem podem ser realçadas calculando-se o resíduo dessas operações.

0

$$\hat{G}_{1} = \hat{I} - (\hat{I} \ominus \hat{K})
\hat{G}_{2} = (\hat{I} \oplus \hat{K}) - \hat{I}
\hat{G}_{3} = (\hat{I} \oplus \hat{K}) - (\hat{I} \ominus \hat{K})$$

Gradiente morfológico

 Como a erosão é uma operação anti-extensiva (a função resultante é menor que a original) e a dilatação é extensiva, bordas da imagem podem ser realçadas calculando-se o resíduo dessas operações.

0

$$\hat{G}_{1} = \hat{I} - (\hat{I} \ominus \hat{K})
\hat{G}_{2} = (\hat{I} \oplus \hat{K}) - \hat{I}
\hat{G}_{3} = (\hat{I} \oplus \hat{K}) - (\hat{I} \ominus \hat{K})$$

 As imagens resultantes são denominadas gradientes morfológicos e podem ser usadas na segmentação. Note que este tipo de gradiente é não-direcional.

Chapéu mexicano

 Outra forma de realçar bordas (WTH de white top-hat) ou objetos escuros (BTH de black top-hat) na imagem é calculando o resíduo com relação à abertura e ao fechamento.

Chapéu mexicano

 Outra forma de realçar bordas (WTH de white top-hat) ou objetos escuros (BTH de black top-hat) na imagem é calculando o resíduo com relação à abertura e ao fechamento.

•

$$WTH(\hat{I}, \hat{K}) = \hat{I} - (\hat{I} \circ \hat{K})$$

$$BTH(\hat{I}, \hat{K}) = (\hat{I} \bullet \hat{K}) - \hat{I}$$

Chapéu mexicano

 Outra forma de realçar bordas (WTH de white top-hat) ou objetos escuros (BTH de black top-hat) na imagem é calculando o resíduo com relação à abertura e ao fechamento.

•

$$WTH(\hat{I}, \hat{K}) = \hat{I} - (\hat{I} \circ \hat{K})$$

$$BTH(\hat{I}, \hat{K}) = (\hat{I} \bullet \hat{K}) - \hat{I}$$

 O volume de resíduo para elementos estruturantes de diferentes tamanhos pode ser utilizado para descrever o conteúdo granulométrico da imagem (análise de textura por granulometria).

 A transformada tudo-ou-nada (HMT de hit-or-miss transform) é usada para encontrar configurações específicas de spels em imagens binárias.

- A transformada tudo-ou-nada (HMT de hit-or-miss transform) é usada para encontrar configurações específicas de spels em imagens binárias.
- Não existe extensão da HMT para o caso de imagens cinza.

- A transformada tudo-ou-nada (HMT de hit-or-miss transform) é usada para encontrar configurações específicas de spels em imagens binárias.
- Não existe extensão da HMT para o caso de imagens cinza.
- Sejam \hat{K}_0 e \hat{K}_1 dois elementos estruturantes planares com mesma origem, onde o primeiro indica a configuração desejada dos spels com valor zero e o segundo indica a configuração desejada dos spels com valor 1.

- A transformada tudo-ou-nada (HMT de hit-or-miss transform) é usada para encontrar configurações específicas de spels em imagens binárias.
- Não existe extensão da HMT para o caso de imagens cinza.
- Sejam \hat{K}_0 e \hat{K}_1 dois elementos estruturantes planares com mesma origem, onde o primeiro indica a configuração desejada dos spels com valor zero e o segundo indica a configuração desejada dos spels com valor 1.

$$\hat{J} = (\hat{I} \ominus \hat{K}_1) \cap (\hat{I}^c \ominus \hat{K}_0)$$

