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RNNs and LSTMs are widely used in sequential tasks, such as
next word prediction, machine translation, and text
generation.

However, they cannot capture long-term dependency.

Transformers appeared to overcome that limitation by getting
rid of recurrence and adopting self-attention [1].

A transformer is a deep architecture to solve
sequence-to-sequence tasks.

Let’s understand how a transformer works with a language
translation task.
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Agenda

The encoder of a transformer.

Positional encoding.

Self-attention mechanism.

Other operations.

The decoder of a transformer.

Masked multi-head attention.

Other operations.
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The encoder of a transformer

The encoder of a transformer is a context-based embedding
model, differently from word2vec which is a context-free
embedding model.

The difference is that the former correlates each word of a
sentence with the others (self-attention), generating a
different representation when they have distinct meanings.

Figures from Getting Started with Google BERT from now on.
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The encoder of a transformer

A transformer may have multiple encoders (left), being the
configuration of each encoder as shown on the right.
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The encoder of a transformer

An input sentence is always converted into a sequence of
token ids (by a tokenizer) when inserted into the model.

By training, a transformer learns an input embedding for each
word in a sentence, forming an input matrix X.

However, before the self-attention mechanism, it is important
to encode the position of each word in the sentence. This
requires a positional encoding matrix P such that X← X + P.

where pos is the position of the word in the sentence: 0 for ’I’,
1 for ’am’ and 2 for ’good’.
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The encoder of a transformer

The self-attention mechanism requires three matrices, Q (query),
K (key) and V (value), such that Q = XWQ , K = XWK and
V = XWV with the weight matrices W∗ learned by training.

A self-attention matrix Z with a new embedding for each word is
then defined by

Z = softmax

(
QKt

√
d

)
V,

where d is the embedding dimension of each word. Matrix

softmax
(
QKt
√
d

)
contains the correlations between each pair of

words in the sentence. Matrix V essentially adapts the correlation
matrix to different tasks.
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The encoder of a transformer

To treat possible ambiguities, we usually use multiple
attention heads and the resulting self-attention matrices are
concatenated and multiplied by another weight matrix to
create the final Z.

The encoder block also contains a feedforward layer with two
dense layers with RELU activation, additive skip connections
and normalization tto speed up convergency.
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How to extract the word embeddings from an encoder?

If you want to use an encoder to simply extract word embeddings
for classical operations, such as matching, clustering or
classification, the following notebook shows how to (REPRESENT.) .
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http://localhost:8809/notebooks/Extracting-embeddings-transformer.ipynb


The decoder of a transformer

Similarly to the encoder, a transformer usually has a stack of
decoders. At each step t, the output of step t − 1 is used as input,
being < sos > and < eos > the start-of-sentence and
end-of-sentence tags.
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The decoder of a transformer

Differences lie on both multi-head attention sublayers.
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The decoder of a transformer

A self-attention matrix of the entire input sentence < sos >
Je vais bien can be computed at each head, but it has to
simulate all four steps: < sos >, < sos > Je, < sos > Je
vais, and < sos > Je vais bien.

Therefore, the elements to the right of each word can be
masked by −∞ in each given self-attention matrix Z.
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The decoder of a transformer

Again, the matrices of each head are concatenated and
multiplied by a weight matrix to obtain a final matrix.

Now, let M be the output of the add&norm sublayer after
masked multi-head attention.

The subsequent multi-head attention must be able to use M
and the output matrix R from the encoder.

At each given head, the query, key and value matrices are
Q = MWQ , K = RWK , and V = RWV .

As described earlier, they are used to obtain one self-attention
matrix per head, which contains the similarities between input
and target words.
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Hands-on with transformers

Training can use cross entropy since the decoder generates a
probability distribution of the words in a vocabulary.

Let’s see how to use transformers (i.e., the BERT model) from
hugging face for several applications (TRANSFORMERS) .

Alexandre Xavier Falcão MO434 - Deep Learning
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[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin.

Attention is all you need, 2017.
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