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Text Representation

We are interested in text representations for machine learning.

ML algorithms require numeric representations (feature
vectors, embeddings) as input.

In this context, feature engineering plays a crucial role to
convert text into numbers.

Even if you use a model that learns features from textual data,
you still need to understand the concepts behind this process.

This module then covers some popular feature engineering
techniques.
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Agenda

Concept of vector space model.

Bag of words, Bag of N-Grams and TF-IDF.

Word2Vec: CBOW and Skip-Gram.

GloVe and FastText.
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Vector space model

Let D be a set of documents (corpus). One can create a vector
space (vocabulary) VS = {W1,W2, . . . ,Wn} as the set of all words
present in all documents from D.

A document D (text with one or more sentences) can then be
numerically represented by a weight vector D = (w1,w2, . . . ,wn)
where wi is a value related to the presence of the word Wi in
document D.

For instance, wi ∈ {0, 1} may indicate absence/presence of Wi in
D (one-hot key) or wi may indicate the number of occurrences
(frequency) of Wi in D.

This concept is adopted in feature engineering techniques.
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Traditional feature engineering techniques

Bag of words – it creates a sparse feature vector with the
number wi of occurrences of the word (term) Wi in D.

Bag of N-Grams – it creates a sparse feature vector with the
frequency of sequences with N words in D.

TF-IDF – it accounts for relevant words that are not very
frequent in the documents.

wi = tf (Wi )× idf (Wi ),

idf (Wi ) = 1 + log
|D|

1 + df (Wi )
,

where tf (Wi ) is the term frequency of Wi in D (wi in BOW),
idf (Wi ) is the inverse document frequency with df (Wi ) being
the number of documents in D in which Wi occurs.
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Traditional feature engineering techniques

Let’s see the following notebook with traditional feature
engineering techniques (TRADITIONAL FEATURE ENGINEERING) .
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Advanced feature engineering techniques

Traditional techniques generate long and sparse feature vectors.
Advanced methods can create dense embeddings, considerably
shorter, by exploring unsupervised neural networks and capturing
contextual and semantic similarity. We will see the following
examples.

Word2Vec – it is divided into two strategies:

Skip-Gram and

Continous-Bag-Of-Words (CBOW).

GloVe.

FastText.
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Word2Vec

Let Wi−k ,Wi−k+1, . . . ,Wi+k−1,Wi+k be the surrounding words of
a given central word Wi within an observation window of size
2k + 1 in a document D of our vocabulary D.

For instance, D =“the brown fox jumped over the lazy dog”,
Wi =“fox”, k = 1, Wi−1 =“brown” and Wi+1=“jumped”.

A Skip-Gram model learns to predict the surrounding words, brown
and jumped, from the input word, fox.

By sliding that window along all documents, a neural network is
trained with (source, target) pairs: (Wi ,Wi−1) and (Wi ,Wi+1).

A CBOW model learns to predict Wi from the input [Wi−1,Wi+1]
– i.e., it predicts the central word from the surrounding ones.
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Skip-Gram model

Skip-Gram: the input is the one-hot key of a central word (source)
Wi and a hidden layer with n neurons with no activation
transforms it into an embedding 1× n for Wi , while the output
layer with |D| neurons and softmax creates the one-hot key of the
surrounding word used as target.
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Skip-Gram model

Skip-Gram: another possibility is to input pairs [Wi ,Wj ] of words
with a target label equal to 1, when Wj is a surrounding word of
Wi , and 0, otherwise. The one-hot keys of Wi and Wj pass
through one hidden layer each and the inner product between their
1× n embeddings passes through a sigmoid to estimate the target.
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Word2Vec

CBOW: The one-hot keys of all surrounding words pass through a
hidden layer with no activation each, creating one embedding per
surrounding word. Those embeddings are averaged, creating an
embedding 1× n for Wi and the output layer with softmax
transforms it into the one-hot key of Wi .
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GloVe

Note that Skip-Gram and CBOW explore context (sequence of
surrounding words) and semantics, when they relate
surrounding words with a central word.

Glove first creates a huge word-context co-occurrence matrix
WC consisting of (word,context) pairs, in which the elements
store the frequency a word occurs with the context (one or all
surrounding words).

The idea is to apply matrix factorization to compute
WC = WF × FC , where WF is a word-feature matrix and FC
is a feature-context matrix.

The SGD algorithm is used to minimize the error and, finally,
WF provides the embeddings for all words in D.
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FastText

FastText uses Word2Vec models, but it adds to the
representation of a word the representation of its n-grams.

For instance, for n = 3, the word < where > is represented by
itself and its subwords < wh,whe, her , ere, re >.

The boundary symbols “<” and “>” are used to distinguish
the word < her > from the subword “her” in
< wh,whe, her , ere, re >.

This helps preserve the meaning of shorter words that may
show up as n-grams of other words. Inherently, this also
allows you to capture meaning for suffixes/prefixes.

Finally, advanced feature engineering techniques are illustrated
in (ADVANCED FEATURE ENGINEERING) .
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