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So far, we have seen that CNNs require fixed-size inputs. We will
see now Recurrent Neural Networks (RNNs).

RNNs can analyze sequences of arbitrary sizes – e.g., time
series data, that can

anticipate car trajectories, avoiding accidents and

stock prices, telling you when to buy or sell, and text data,

predicting the next word of a sentence, translating sentences
from one language to another, and classifying the sentiment
about a movie review.

We will also see extensions, such as Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU), which address the
limited short-term memory problem of RNNs.

Alexandre Xavier Falcão MO434 - Deep Learning



So far, we have seen that CNNs require fixed-size inputs. We will
see now Recurrent Neural Networks (RNNs).

RNNs can analyze sequences of arbitrary sizes – e.g., time
series data, that can

anticipate car trajectories, avoiding accidents and

stock prices, telling you when to buy or sell, and text data,

predicting the next word of a sentence, translating sentences
from one language to another, and classifying the sentiment
about a movie review.

We will also see extensions, such as Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU), which address the
limited short-term memory problem of RNNs.

Alexandre Xavier Falcão MO434 - Deep Learning



Agenda

RNN cells

LSTM cells

GRU cells

Applications in Text Analysis

Alexandre Xavier Falcão MO434 - Deep Learning



Recurrent Neuron

Let x be a feature vector that changes along time. For any instant
t of time, a recurrent neuron (left) receives x and its output in
t − 1 as input and outputs an activation value y .

from Hands-On ML book.

We can unroll (unfold) this process over time as shown on the
right. Activation is usually the hyperbolic tangent.
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Recurrent Layer

Each neuron has two weight vectors, one for x(t) and the other for
y(t−1). For a layer with multiple neurons, these vectors form two
matrices, Wx and Wy .

from Hands-On ML book.

For a bias vector b and activation φ, the output

y(t) = φ
(

Wt
xx(t) + Wt

yy(t−1) + b
)
.
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RNN Cell

We call each recurrent neuron/layer a RNN memory cell.

from Hands-On ML book.

Its output y and hidden state h may also be different.
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Types of RNNs

RNNs can convert one-to-many (image to caption), many-to-one
(movie review to sentiment), and combine many-to-one with
one-to-many to form an encoder-decoder (language translation).

from Hands-On ML book.
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Deep RNN

Multiple layers of cells can also be stacked to form a Deep RNN.

from Hands-On ML book.

However, due to the way data goes through an RNN, information
is lost at every step, loosing trace of the first inputs after a few
steps – short-memory problem.
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Short-Memory Problem

y(t) = h(t) depends on the output from all previous time steps.

y(t) = φ
(

Wt
xx(t) + Wt

hh(t−1) + b
)
.

If the weights in Wt
h are less than 1.0, y(t) will highly depend

on x(t) – i.e., memory loss as the time increases and vanishing
gradient.

If the weights in Wt
h are greater than 1.0, y(t) will depend

much less of x(t) – i.e., input loss as the time increases and
exploding gradient.

Clearly, we have a problem when the prediction of a next word
depends on far away inputs (long-term dependency). For instance,
“I am from England. Bla bla bla ... I speak ”. The next
word English depends on “speak” and “England” – a distant input.
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LSTM cell

LSTM cells introduce a long-term memory state c and gate
controllers to address the problem.

A forgetting gate f(t), with logistic activation, which can set
to zero (forget) part of the information in c(t−1) by the
element-wise multiplication c(t) = c(t−1) ⊗ f(t).

f(t) = ψ
(

Wft
xx(t) + Wft

hh(t−1) + bf
)
.

An ignoring (input) gate i(t), with logistic activation, which
can set to zero (ignore by g(t) ⊗ i(t)) part of the information in
g(t) – the output similar to an RNN cell with tanh activation.

g(t) = φ
(

Wgt
xx(t) + Wgt

hh(t−1) + bg
)
,

i(t) = ψ
(

Witxx(t) + Withh(t−1) + bi
)
.
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LSTM cell

Finally, the long-term state passed to the next time step is
c(t) = (c(t−1) ⊗ f(t)) ⊕ (g(t) ⊗ i(t)), where ⊕ is the element-wise
addition.

In order to define the output y(t) and the hidden state h(t) passed
to the next time step, a selection (output) gate selects by
h(t) = o(t) ⊗ φ

(
c(t)

)
the tanh-activated parts of c(t), where

o(t) = ψ
(

Wot
xx(t) + Wot

hh(t−1) + bo
)
.

Alexandre Xavier Falcão MO434 - Deep Learning



LSTM cell

Finally, the long-term state passed to the next time step is
c(t) = (c(t−1) ⊗ f(t)) ⊕ (g(t) ⊗ i(t)), where ⊕ is the element-wise
addition.

In order to define the output y(t) and the hidden state h(t) passed
to the next time step, a selection (output) gate selects by
h(t) = o(t) ⊗ φ

(
c(t)

)
the tanh-activated parts of c(t), where

o(t) = ψ
(

Wot
xx(t) + Wot

hh(t−1) + bo
)
.

Alexandre Xavier Falcão MO434 - Deep Learning



LSTM

This figure illustrates all operations such that one logistic
activation φ per neuron at the gates can keep parts of them open
with 1’s or closed with 0’s.

from Hands-On ML book.
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GRU

GRU simplifies LSTM and seems to perform just as well.

from Hands-On ML book.

It uses a gate r(t) to select which parts of h(t−1) will be
presented to the main layer.

Another gate z(t) substitutes f(t) and i(t) – it forgets some
parts of h(t−1) and the complementary parts of g(t) to output
h(t) = (h(t−1) ⊗ z(t)) ⊕ (g(t) ⊗ (1 − z(t))).
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Applications in Text Analysis

Let’s see a couple of applications in Text Analysis.

Sentiment Analysis (SENTIMENT ANALYSIS) .

Image Captioning (IMAGE CAPTIONING) .
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http://localhost:8809/notebooks/SentimentAnalysis.ipynb
http://localhost:8809/notebooks/Image_captioning.ipynb

