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Agenda

A neural network with dense layers only – a Multi-Layer
Perceptron (MLP).

Activation and loss functions.

Stochastic Gradient Descent (SGD) optimizer.

The backpropagation algorithm.
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Neural network with dense layers only

Consider a neural network with L dense layers and Nr neurons at
layer 1 ≤ r ≤ L.

Each neuron j ∈ [1,Nr ] of a layer r has a weight vector
www r

j = (w r
j0,w

r
j1, . . . ,w

r
jNr−1

) with bias w r
j0,

the input of layer r is the vector
yyy r−1 = (1, y r−11 , y r−12 , . . . , y r−1Nr−1

) and

each perceptron j computes v rj = 〈yyy r−1,www r
j 〉 followed by

f (v rj ), where f is a differentiable activation function.

Alexandre Xavier Falcão MO434 - Deep Learning



Examples of activation functions

Rectified Linear Unit (ReLU)

f (v) =

{
v v > 0,
0 v ≤ 0.

Logistic (a > 0)

f (v) =
1

1 + e−av
.

Hyperbolic tangent

f (v) = tanh(v) =
2

1 + e−2v
− 1

SoftPlus

f (v) = loge(1 + ev )

ReLU derivative

f ′(v) =

{
1 v > 0,
0 v ≤ 0.

Logistic derivative

f ′(v) = af (v)(1− f (v)).

Hyperbolic tangent derivative

f ′(v) = 1− f 2(v)

SoftPlus derivative

f ′(v) =
1

1 + e−v
.
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Examples of activation functions

Exponential Linear Unit (ELU)

f (v) =

{
a(ev − 1) v ≤ 0,
v v > 0.

Scaled ELU (SELU)

f (v) = λ

{
a(ev − 1) v ≤ 0,
v v > 0.

Leaky RELU

f (v) = λ

{
av v ≤ 0,
v v > 0.

ELU derivative

f ′(v) =

{
aev v ≤ 0,
1 v > 0.

SELU derivative

f ′(v) =

{
λaev v ≤ 0,
λ v > 0.

Leaky RELU derivative

f ′(v) = λ

{
a v ≤ 0,
1 v > 0.
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Activation functions

RELU might set zero irreversibly to neuron outputs, which
motivated the variants SELU, ELU, and Leaky RELU.

To avoid gradient instabilities, SELU > ELU > Leaky RELU
> RELU > tanh > logistic, but RELU is the most popular.

Let’s play with ACTIVATION FUNCTIONS .
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http://localhost:8888/notebooks/activation-functions.ipynb


Activation functions at the decision layer

At the decision layer, the choice of the activation function depends
on the problem:

Regression.

Binary classification.

Categorical classification.
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Activation functions at the decision layer

Regression: we do not usually want to limit the output of the
NN, then RELU and SoftPlus can be used. Otherwise, we may
limit it within [-1,1] using tanh or within [0,1] using logistic.

Binary classification: it can be solved as a regression problem
with a single output value within [0,1], such that samples with
output 0 ≤ yL < 0.5 are assigned to class ω1 and output
0.5 ≤ yL ≤ 1 to class ω2. Hence, the logistic can be used.

For categorical classification SoftMax is usually adopted. For
each neuron j ∈ [1,NL], where NL is the number of classes,

f (vLj ) =
ev

L
j∑NL

k=1 e
vL
k

.

Then class ωc = arg maxk∈[1,NL]{f (vLk )}, c ∈ [1,NL] is chosen.
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Examples of loss functions

The weights of the NN are optimized based on a loss function,
whose choice also depends on the problem.

For regression, Mean Squared Error (MSE) and Mean
Absolute Error (MAE) are classical loss functions.

Binary cross-entropy (BCE) is used for binary classification.

Categorical cross-entropy (CCE) is commonly used for
multi-class classification.

Let s ∈ Ztr be a sample of a training set with N samples, xxx(s) be
its feature vector (input of the NN), and the desired and estimated
outputs at the decision layer be yyy(s) and yyyL(s), respectively.
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Examples of loss functions

They are all based on 1
|Ztr |

∑
s∈Ztr

E(s), where

for MSE,

E(s) =
1

NL

NL∑
j=1

(yj(s)− yLj (s))2,

for MAE,

E(s) =
1

NL

NL∑
j=1

|yj(s)− yLj (s))|,

for BCE, y(s) and yL(s) must be in [0,1],

E(s) = −(y(s) log(yL(s)) + (1− y(s)) log(1− yL(s))),

and for CCE, yj(s) and yLj (s) must be in [0,1],

E(s) = −
NL∑
j=1

yj(s) log(yLj (s)).
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SGD optimizer

For www r
j , each iteration i adjusts its weights by

www r
j (i + 1) = www r

j (i) + ∆www r
j ,

∆www r
j = −µ ∂J

∂www r
j

,

J =
∑
s∈Ztr

E(s)

for a fixed learning rate µ and error function E .

Given the pairs (x(s),yyy(s)), s ∈ Ztr , with the input and desired
output vectors, one can choose E(s) as

E(s) =
1

2
‖yyyL(s)− yyy(s)‖2 =

1

2

NL∑
m=1

(yLm(s)− ym(s))2 =
1

2

NL∑
m=1

e2m(s),

where yyyL(s) is the estimated output vector.
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SGD optimizer

For ∆www r
j , we must compute ∂J

∂www r
j

=
∑

s∈Ztr

∂E(s)
∂www r

j
. By the chain

rule,

∂E(s)

∂www r
j

=
∂E(s)

∂v rj (s)

∂v rj (s)

∂www r
j

.

Given that v rj (s) =
∑Nr−1

m=0 w
r
jmy

r−1
m (s) = 〈www r

j ,yyy
r−1(s)〉,

∂v rj (s)

∂www r
j

= yyy r−1(s).

Let us now define ∂E(s)
∂v r

j (s)
= δrj (s), such that

∆www r
j = −µ

∑
s∈Ztr

δrj (s)yyy r−1(s).
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SGD optimizer

The computation of δrj (s) starts from r = L and propagates
backward for 1 ≤ r < L, deriving the name backpropagation
algorithm.

For r = L and 1 ≤ j ≤ NL,

δLj (s) =
∂E(s)

∂vLj (s)
=
∂
(
1
2

∑NL
m=1

(
f (vLm(s))− ym(s)

)2)
∂vLj (s)

δLj (s) = (f (vLj (s))− yj(s))
∂f (vLj (s))

∂vLj (s)
= ej(s)f ′(vLj (s))

δLj (s) = ej(s)f ′(vLj (s)).
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SGD optimizer

For r < L and 1 ≤ j ≤ Nr−1, v r−1j (s) affects all v rk (s),
k = 1, 2, . . . ,Nr . Therefore, the chain rule must be applied.

δr−1j (s) =
Nr∑
k=1

∂E(s)

∂v rk (s)

∂v rk (s)

∂v r−1j (s)
=

Nr∑
k=1

δrk(s)
∂v rk (s)

∂v r−1j (s)

∂v rk (s)

∂v r−1j (s)
=

∂
(∑Nr−1

m=0 w
r
kmy

r−1
m (s)

)
∂v r−1j (s)

=
∂
(∑Nr−1

m=0 w
r
kmf (v r−1m (s))

)
∂v r−1j (s)

∂v rk (s)

∂v r−1j (s)
= w r

kj

∂f (v r−1j (s))

∂v r−1j (s)
= w r

kj f
′(v r−1j (s))

δr−1j (s) =

(
Nr∑
k=1

δrk(s)w r
kj

)
f ′(v r−1j (s))
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SGD optimizer

In summary,

www r
j (i + 1) = www r

j (i) + ∆www r
j ,

∆www r
j = −µ

∑
s∈Ztr

δrj (s)yyy r−1(s)

δrj (s) =

{
(f (v rj (s))− y rj )f ′(v rj (s)) r = L(∑Nr+1

k=1 δ
r+1
k (s)w r+1

kj

)
f ′(v rj (s)) r < L

For the logistic function,

f ′(v rj (s)) = af (v rj (s))(1− f (v rj (s)))

and for ReLU,

f ′(v rj (s)) =

{
1 v rj (s) > 0,

0 otherwise.
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Backpropagation algorithm

Start from (x(s),yyy(s)), s ∈ Ztr , a given network architecture with
random weight initialization, learning rate µ, maximum number
T > 0 of iterations (epochs), and minimum error ε > 0.

01. Set i ← 1.

02. Do

03. Set E ← 0.

04. For each s ∈ Ztr do

05. For r = 1 to L and j = 1 to Nr do

06. Compute v rj (s) and y rj (s) = f (v rj (s)).

07. For j = 1 to NL do

08. Set E ← E + 1
2(yLj (s)− yj(s))2

09. For r = 1 to L and j = 1 to Nr do

10. Set ∆www r
j ← 000.
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Backpropagation algorithm

11. For each s ∈ Ztr do

12. For r = L to 1 and j = 1 to Nr do

13. Compute δrj (s) and ∆www r
j ← ∆www r

j − µδrj (s)yyy r−1(s).

14. For r = 1 to L and j = 1 to Nr do

15. Set www r
j ← www r

j + ∆www r
j .

16. Set i ← i + 1.

17. While E > ε and i ≤ T .

Although it can be optimized, lines 4-8 represent a forward pass,
lines 9-10 set gradients to 0, and lines 11-15 represent a backward
pass, in which the weights are updated.

More details about SGD and other tricks to train deep neural
networks will be discussed in the next lecture.
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