
MO434 - Deep Learning
Fundamentals of (Deep) Neural Networks II

Alexandre Xavier Falcão

Institute of Computing - UNICAMP

afalcao@ic.unicamp.br

Alexandre Xavier Falcão MO434 - Deep Learning

Agenda

A neural network with dense layers only – a Multi-Layer
Perceptron (MLP).

Activation and loss functions.

Stochastic Gradient Descent (SGD) optimizer.

The backpropagation algorithm.

Alexandre Xavier Falcão MO434 - Deep Learning

Neural network with dense layers only

Consider a neural network with L dense layers and Nr neurons at
layer 1 ≤ r ≤ L.

Each neuron j ∈ [1,Nr] of a layer r has a weight vector
www r

j = (w r
j0,w

r
j1, . . . ,w

r
jNr−1

) with bias w r
j0,

the input of layer r is the vector
yyy r−1 = (1, y r−11 , y r−12 , . . . , y r−1Nr−1

) and

each perceptron j computes v rj = 〈yyy r−1,www r
j 〉 followed by

f (v rj), where f is a differentiable activation function.

Alexandre Xavier Falcão MO434 - Deep Learning

Examples of activation functions

Rectified Linear Unit (ReLU)

f (v) =

{
v v > 0,
0 v ≤ 0.

Logistic (a > 0)

f (v) =
1

1 + e−av
.

Hyperbolic tangent

f (v) = tanh(v) =
2

1 + e−2v
− 1

SoftPlus

f (v) = loge(1 + ev)

ReLU derivative

f ′(v) =

{
1 v > 0,
0 v ≤ 0.

Logistic derivative

f ′(v) = af (v)(1− f (v)).

Hyperbolic tangent derivative

f ′(v) = 1− f 2(v)

SoftPlus derivative

f ′(v) =
1

1 + e−v
.

Alexandre Xavier Falcão MO434 - Deep Learning

Examples of activation functions

Exponential Linear Unit (ELU)

f (v) =

{
a(ev − 1) v ≤ 0,
v v > 0.

Scaled ELU (SELU)

f (v) = λ

{
a(ev − 1) v ≤ 0,
v v > 0.

Leaky RELU

f (v) = λ

{
av v ≤ 0,
v v > 0.

ELU derivative

f ′(v) =

{
aev v ≤ 0,
1 v > 0.

SELU derivative

f ′(v) =

{
λaev v ≤ 0,
λ v > 0.

Leaky RELU derivative

f ′(v) = λ

{
a v ≤ 0,
1 v > 0.

Alexandre Xavier Falcão MO434 - Deep Learning

Activation functions

RELU might set zero irreversibly to neuron outputs, which
motivated the variants SELU, ELU, and Leaky RELU.

To avoid gradient instabilities, SELU > ELU > Leaky RELU
> RELU > tanh > logistic, but RELU is the most popular.

Let’s play with ACTIVATION FUNCTIONS .
Alexandre Xavier Falcão MO434 - Deep Learning

http://localhost:8888/notebooks/activation-functions.ipynb

Activation functions at the decision layer

At the decision layer, the choice of the activation function depends
on the problem:

Regression.

Binary classification.

Categorical classification.

Alexandre Xavier Falcão MO434 - Deep Learning

Activation functions at the decision layer

Regression: we do not usually want to limit the output of the
NN, then RELU and SoftPlus can be used. Otherwise, we may
limit it within [-1,1] using tanh or within [0,1] using logistic.

Binary classification: it can be solved as a regression problem
with a single output value within [0,1], such that samples with
output 0 ≤ yL < 0.5 are assigned to class ω1 and output
0.5 ≤ yL ≤ 1 to class ω2. Hence, the logistic can be used.

For categorical classification SoftMax is usually adopted. For
each neuron j ∈ [1,NL], where NL is the number of classes,

f (vLj) =
ev

L
j∑NL

k=1 e
vL
k

.

Then class ωc = arg maxk∈[1,NL]{f (vLk)}, c ∈ [1,NL] is chosen.

Alexandre Xavier Falcão MO434 - Deep Learning

Activation functions at the decision layer

Regression: we do not usually want to limit the output of the
NN, then RELU and SoftPlus can be used. Otherwise, we may
limit it within [-1,1] using tanh or within [0,1] using logistic.

Binary classification: it can be solved as a regression problem
with a single output value within [0,1], such that samples with
output 0 ≤ yL < 0.5 are assigned to class ω1 and output
0.5 ≤ yL ≤ 1 to class ω2. Hence, the logistic can be used.

For categorical classification SoftMax is usually adopted. For
each neuron j ∈ [1,NL], where NL is the number of classes,

f (vLj) =
ev

L
j∑NL

k=1 e
vL
k

.

Then class ωc = arg maxk∈[1,NL]{f (vLk)}, c ∈ [1,NL] is chosen.

Alexandre Xavier Falcão MO434 - Deep Learning

Activation functions at the decision layer

Regression: we do not usually want to limit the output of the
NN, then RELU and SoftPlus can be used. Otherwise, we may
limit it within [-1,1] using tanh or within [0,1] using logistic.

Binary classification: it can be solved as a regression problem
with a single output value within [0,1], such that samples with
output 0 ≤ yL < 0.5 are assigned to class ω1 and output
0.5 ≤ yL ≤ 1 to class ω2. Hence, the logistic can be used.

For categorical classification SoftMax is usually adopted. For
each neuron j ∈ [1,NL], where NL is the number of classes,

f (vLj) =
ev

L
j∑NL

k=1 e
vL
k

.

Then class ωc = arg maxk∈[1,NL]{f (vLk)}, c ∈ [1,NL] is chosen.

Alexandre Xavier Falcão MO434 - Deep Learning

Examples of loss functions

The weights of the NN are optimized based on a loss function,
whose choice also depends on the problem.

For regression, Mean Squared Error (MSE) and Mean
Absolute Error (MAE) are classical loss functions.

Binary cross-entropy (BCE) is used for binary classification.

Categorical cross-entropy (CCE) is commonly used for
multi-class classification.

Let s ∈ Ztr be a sample of a training set with N samples, xxx(s) be
its feature vector (input of the NN), and the desired and estimated
outputs at the decision layer be yyy(s) and yyyL(s), respectively.

Alexandre Xavier Falcão MO434 - Deep Learning

Examples of loss functions

The weights of the NN are optimized based on a loss function,
whose choice also depends on the problem.

For regression, Mean Squared Error (MSE) and Mean
Absolute Error (MAE) are classical loss functions.

Binary cross-entropy (BCE) is used for binary classification.

Categorical cross-entropy (CCE) is commonly used for
multi-class classification.

Let s ∈ Ztr be a sample of a training set with N samples, xxx(s) be
its feature vector (input of the NN), and the desired and estimated
outputs at the decision layer be yyy(s) and yyyL(s), respectively.

Alexandre Xavier Falcão MO434 - Deep Learning

Examples of loss functions

The weights of the NN are optimized based on a loss function,
whose choice also depends on the problem.

For regression, Mean Squared Error (MSE) and Mean
Absolute Error (MAE) are classical loss functions.

Binary cross-entropy (BCE) is used for binary classification.

Categorical cross-entropy (CCE) is commonly used for
multi-class classification.

Let s ∈ Ztr be a sample of a training set with N samples, xxx(s) be
its feature vector (input of the NN), and the desired and estimated
outputs at the decision layer be yyy(s) and yyyL(s), respectively.

Alexandre Xavier Falcão MO434 - Deep Learning

Examples of loss functions

The weights of the NN are optimized based on a loss function,
whose choice also depends on the problem.

For regression, Mean Squared Error (MSE) and Mean
Absolute Error (MAE) are classical loss functions.

Binary cross-entropy (BCE) is used for binary classification.

Categorical cross-entropy (CCE) is commonly used for
multi-class classification.

Let s ∈ Ztr be a sample of a training set with N samples, xxx(s) be
its feature vector (input of the NN), and the desired and estimated
outputs at the decision layer be yyy(s) and yyyL(s), respectively.

Alexandre Xavier Falcão MO434 - Deep Learning

Examples of loss functions

The weights of the NN are optimized based on a loss function,
whose choice also depends on the problem.

For regression, Mean Squared Error (MSE) and Mean
Absolute Error (MAE) are classical loss functions.

Binary cross-entropy (BCE) is used for binary classification.

Categorical cross-entropy (CCE) is commonly used for
multi-class classification.

Let s ∈ Ztr be a sample of a training set with N samples, xxx(s) be
its feature vector (input of the NN), and the desired and estimated
outputs at the decision layer be yyy(s) and yyyL(s), respectively.

Alexandre Xavier Falcão MO434 - Deep Learning

Examples of loss functions

They are all based on 1
|Ztr |

∑
s∈Ztr

E(s), where

for MSE,

E(s) =
1

NL

NL∑
j=1

(yj(s)− yLj (s))2,

for MAE,

E(s) =
1

NL

NL∑
j=1

|yj(s)− yLj (s))|,

for BCE, y(s) and yL(s) must be in [0,1],

E(s) = −(y(s) log(yL(s)) + (1− y(s)) log(1− yL(s))),

and for CCE, yj(s) and yLj (s) must be in [0,1],

E(s) = −
NL∑
j=1

yj(s) log(yLj (s)).

Alexandre Xavier Falcão MO434 - Deep Learning

SGD optimizer

For www r
j , each iteration i adjusts its weights by

www r
j (i + 1) = www r

j (i) + ∆www r
j ,

∆www r
j = −µ ∂J

∂www r
j

,

J =
∑
s∈Ztr

E(s)

for a fixed learning rate µ and error function E .

Given the pairs (x(s),yyy(s)), s ∈ Ztr , with the input and desired
output vectors, one can choose E(s) as

E(s) =
1

2
‖yyyL(s)− yyy(s)‖2 =

1

2

NL∑
m=1

(yLm(s)− ym(s))2 =
1

2

NL∑
m=1

e2m(s),

where yyyL(s) is the estimated output vector.

Alexandre Xavier Falcão MO434 - Deep Learning

SGD optimizer

For www r
j , each iteration i adjusts its weights by

www r
j (i + 1) = www r

j (i) + ∆www r
j ,

∆www r
j = −µ ∂J

∂www r
j

,

J =
∑
s∈Ztr

E(s)

for a fixed learning rate µ and error function E .

Given the pairs (x(s),yyy(s)), s ∈ Ztr , with the input and desired
output vectors, one can choose E(s) as

E(s) =
1

2
‖yyyL(s)− yyy(s)‖2 =

1

2

NL∑
m=1

(yLm(s)− ym(s))2 =
1

2

NL∑
m=1

e2m(s),

where yyyL(s) is the estimated output vector.
Alexandre Xavier Falcão MO434 - Deep Learning

SGD optimizer

For ∆www r
j , we must compute ∂J

∂www r
j

=
∑

s∈Ztr

∂E(s)
∂www r

j
. By the chain

rule,

∂E(s)

∂www r
j

=
∂E(s)

∂v rj (s)

∂v rj (s)

∂www r
j

.

Given that v rj (s) =
∑Nr−1

m=0 w
r
jmy

r−1
m (s) = 〈www r

j ,yyy
r−1(s)〉,

∂v rj (s)

∂www r
j

= yyy r−1(s).

Let us now define ∂E(s)
∂v r

j (s)
= δrj (s), such that

∆www r
j = −µ

∑
s∈Ztr

δrj (s)yyy r−1(s).

Alexandre Xavier Falcão MO434 - Deep Learning

SGD optimizer

For ∆www r
j , we must compute ∂J

∂www r
j

=
∑

s∈Ztr

∂E(s)
∂www r

j
. By the chain

rule,

∂E(s)

∂www r
j

=
∂E(s)

∂v rj (s)

∂v rj (s)

∂www r
j

.

Given that v rj (s) =
∑Nr−1

m=0 w
r
jmy

r−1
m (s) = 〈www r

j ,yyy
r−1(s)〉,

∂v rj (s)

∂www r
j

= yyy r−1(s).

Let us now define ∂E(s)
∂v r

j (s)
= δrj (s), such that

∆www r
j = −µ

∑
s∈Ztr

δrj (s)yyy r−1(s).

Alexandre Xavier Falcão MO434 - Deep Learning

SGD optimizer

For ∆www r
j , we must compute ∂J

∂www r
j

=
∑

s∈Ztr

∂E(s)
∂www r

j
. By the chain

rule,

∂E(s)

∂www r
j

=
∂E(s)

∂v rj (s)

∂v rj (s)

∂www r
j

.

Given that v rj (s) =
∑Nr−1

m=0 w
r
jmy

r−1
m (s) = 〈www r

j ,yyy
r−1(s)〉,

∂v rj (s)

∂www r
j

= yyy r−1(s).

Let us now define ∂E(s)
∂v r

j (s)
= δrj (s), such that

∆www r
j = −µ

∑
s∈Ztr

δrj (s)yyy r−1(s).

Alexandre Xavier Falcão MO434 - Deep Learning

SGD optimizer

The computation of δrj (s) starts from r = L and propagates
backward for 1 ≤ r < L, deriving the name backpropagation
algorithm.

For r = L and 1 ≤ j ≤ NL,

δLj (s) =
∂E(s)

∂vLj (s)
=
∂
(
1
2

∑NL
m=1

(
f (vLm(s))− ym(s)

)2)
∂vLj (s)

δLj (s) = (f (vLj (s))− yj(s))
∂f (vLj (s))

∂vLj (s)
= ej(s)f ′(vLj (s))

δLj (s) = ej(s)f ′(vLj (s)).

Alexandre Xavier Falcão MO434 - Deep Learning

SGD optimizer

The computation of δrj (s) starts from r = L and propagates
backward for 1 ≤ r < L, deriving the name backpropagation
algorithm.

For r = L and 1 ≤ j ≤ NL,

δLj (s) =
∂E(s)

∂vLj (s)
=
∂
(
1
2

∑NL
m=1

(
f (vLm(s))− ym(s)

)2)
∂vLj (s)

δLj (s) = (f (vLj (s))− yj(s))
∂f (vLj (s))

∂vLj (s)
= ej(s)f ′(vLj (s))

δLj (s) = ej(s)f ′(vLj (s)).

Alexandre Xavier Falcão MO434 - Deep Learning

SGD optimizer

For r < L and 1 ≤ j ≤ Nr−1, v r−1j (s) affects all v rk (s),
k = 1, 2, . . . ,Nr . Therefore, the chain rule must be applied.

δr−1j (s) =
Nr∑
k=1

∂E(s)

∂v rk (s)

∂v rk (s)

∂v r−1j (s)
=

Nr∑
k=1

δrk(s)
∂v rk (s)

∂v r−1j (s)

∂v rk (s)

∂v r−1j (s)
=

∂
(∑Nr−1

m=0 w
r
kmy

r−1
m (s)

)
∂v r−1j (s)

=
∂
(∑Nr−1

m=0 w
r
kmf (v r−1m (s))

)
∂v r−1j (s)

∂v rk (s)

∂v r−1j (s)
= w r

kj

∂f (v r−1j (s))

∂v r−1j (s)
= w r

kj f
′(v r−1j (s))

δr−1j (s) =

(
Nr∑
k=1

δrk(s)w r
kj

)
f ′(v r−1j (s))

Alexandre Xavier Falcão MO434 - Deep Learning

SGD optimizer

In summary,

www r
j (i + 1) = www r

j (i) + ∆www r
j ,

∆www r
j = −µ

∑
s∈Ztr

δrj (s)yyy r−1(s)

δrj (s) =

{
(f (v rj (s))− y rj)f ′(v rj (s)) r = L(∑Nr+1

k=1 δ
r+1
k (s)w r+1

kj

)
f ′(v rj (s)) r < L

For the logistic function,

f ′(v rj (s)) = af (v rj (s))(1− f (v rj (s)))

and for ReLU,

f ′(v rj (s)) =

{
1 v rj (s) > 0,

0 otherwise.

Alexandre Xavier Falcão MO434 - Deep Learning

Backpropagation algorithm

Start from (x(s),yyy(s)), s ∈ Ztr , a given network architecture with
random weight initialization, learning rate µ, maximum number
T > 0 of iterations (epochs), and minimum error ε > 0.

01. Set i ← 1.

02. Do

03. Set E ← 0.

04. For each s ∈ Ztr do

05. For r = 1 to L and j = 1 to Nr do

06. Compute v rj (s) and y rj (s) = f (v rj (s)).

07. For j = 1 to NL do

08. Set E ← E + 1
2(yLj (s)− yj(s))2

09. For r = 1 to L and j = 1 to Nr do

10. Set ∆www r
j ← 000.

Alexandre Xavier Falcão MO434 - Deep Learning

Backpropagation algorithm

11. For each s ∈ Ztr do

12. For r = L to 1 and j = 1 to Nr do

13. Compute δrj (s) and ∆www r
j ← ∆www r

j − µδrj (s)yyy r−1(s).

14. For r = 1 to L and j = 1 to Nr do

15. Set www r
j ← www r

j + ∆www r
j .

16. Set i ← i + 1.

17. While E > ε and i ≤ T .

Although it can be optimized, lines 4-8 represent a forward pass,
lines 9-10 set gradients to 0, and lines 11-15 represent a backward
pass, in which the weights are updated.

More details about SGD and other tricks to train deep neural
networks will be discussed in the next lecture.

Alexandre Xavier Falcão MO434 - Deep Learning

Backpropagation algorithm

11. For each s ∈ Ztr do

12. For r = L to 1 and j = 1 to Nr do

13. Compute δrj (s) and ∆www r
j ← ∆www r

j − µδrj (s)yyy r−1(s).

14. For r = 1 to L and j = 1 to Nr do

15. Set www r
j ← www r

j + ∆www r
j .

16. Set i ← i + 1.

17. While E > ε and i ≤ T .

Although it can be optimized, lines 4-8 represent a forward pass,
lines 9-10 set gradients to 0, and lines 11-15 represent a backward
pass, in which the weights are updated.

More details about SGD and other tricks to train deep neural
networks will be discussed in the next lecture.

Alexandre Xavier Falcão MO434 - Deep Learning

