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Agenda

Multichannel images and tensors.

Adjacency relation.

Patches and kernels.

Convolution, activation, pooling and normalization.

Applications to image analysis.
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Multichannel images and tensors

A multichannel image Î = (DI , I) of dimension n consists of an
array DI ∈ Zn of spels (space elements – e.g., pixels in 2D, voxels
in 3D) such that each spel p ∈ DI is represented by m channel
values in a feature vector I(p) = (I1(p), I2(p), . . . , Im(p)) ∈ <m.

(a) n=2 and m=1. (b) n=3 and m=1. (c) n=2 and m=3.

The mappings Ij , j ∈ [1,m], are called channels (nD arrays). Our
focus will be on images with n = 2 and m ≥ 1.
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Multichannel images and tensors

The domain DI ∈ Z2 of image Î forms a matrix with
ncols × nrows cells (i.e., spatial dimensions xsize × ysize).

Since each element of that matrix has m values (channels),
we need a 3D array with xsize × ysize ×m cells.

We can also store N images of the same dimensions in a 4D
array with N × xsize × ysize ×m cells.

Such multidimensional arrays are called tensors and they are
also used to store the weights and biases of the neural
network.
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Multichannel images

As we will see, the convolution between an image and k kernels
(filters), both with dimension n = 2 and m = 3 channels, results
into another image with dimension n = 2 and m = k channels.

(a) n = 2 and m = 3. (b) n = 2 and m = 6.

The output tensor has xsize × ysize × k cells.
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Adjacency relation

An adjacency relation A ⊂ DI × DI is a relation between
pixels that satisfy distance-based properties. For instance,

A = {(p, q) ∈ DI |
√

(xq − xp)2 + (yq − yp)2 ≤ r},

for r ≥ 1, p = (xp, yp) and q = (xq, yq).

We may say that qi ∈ A(p) (adjacency set of p) when

qi − p ∈ {(dxqi , dyqi )}
|A|
i=1 (a set of displacements) – i.e.,

(xqi , yqi ) = (xp, yp) + (dxqi , dyqi ).
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Adjacency relation

By imagining p ∈ DI as a neuron, such displacements usually
define a receptive field in Î of sizes w × h around p, for
w
2 = maxqi∈A{|dxqi |} and h

2 = maxqi∈A{|dyqi |}.

It is also common to define w = h and add (w2 ,
h
2 ) zeros around

the image (padding) to guarantee adjacency sets of the same size
for all pixels p.
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Adjacency relation

One may also increase the receptive field without increasing the
number of adjacents (synaptic connections): qi ∈ A(p), when

qi − p ∈ {(kxdxqi , kydyqi )}
|A|
i=1, with (kx , ky) being dilation factors.
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Patches and kernels

The pair (A, I)p defines a subimage (patch) around any pixel
p ∈ DI with values I(q), q ∈ A(p).

A kernel (filter) is also a pair (A,W) which assigns fixed
synaptic weights W(q), q ∈ A(p), indepent of p ∈ DI .

Note that such fixed synaptic weights considerably reduce the
number of parameters to be estimated, explaining the success
of convolution in DL.

Patches and kernels can also be stored in tensors of sizes
w × h ×m.
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Convolution

The convolution between an image Î = (DI , I) and a kernel (A,W)
results a single-channel image Ĵ = (DJ , J), with

J(p) =

|A|∑
i=1

〈I(qi ),W(qi )〉,

for p ∈ DI .

The convolution with a kernel bank {(A,Wk)}bk=1 of b kernels

results into a multichannel image Ĵ = (DJ , J) with b channels
J(p) = (J1(p), J2(p), . . . , Jb(p)),

Jk(p) =

|A|∑
i=1

〈I(qi ),Wk(qi )〉,

k ∈ [1, b], p ∈ DI .
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Activation

Any activation function can then be applied to an output Jk(p),
k ∈ [1, b]. For instance, the Rectified Linear Unit (ReLU).

From the output Ĵ = (DI , J), ReLU creates an image R̂ = (DI ,R),
R(p) = (R1(p),R2(p), . . . ,Rb(p)),

Rk(p) = max{0, Jk(p)},

for p ∈ DI and k ∈ [1, b].
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Convolution followed by activation

Transitions from dark to bright are enhanced.
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Convolution, bias, and activation

By convolving Î = (DI , I) and the k-th filter {(A,Wk)}, k ∈ [1, b],
adding a bias wk,0 ∈ < to each output Jk(p), and applying a ReLU
operation, we have one perceptron per pixel p ∈ DI (neuron).

Jk(p) =

|A(p)|∑
i=1

〈I (qi ),wk,i 〉

Rk(p) = max{0, Jk(p) + wk,0}
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Convolution, bias, and activation

Let X(p) ∈ <|A(p)|×m be a patch (A, I)p (local feature vector),

X(p) = (I(q1), I(q2), . . . , I(q|A(p)|))

and P be an affine hyperplane 〈X(p),Wk〉+wk,0 = 0 in <|A(p)|×m.

The distance d(X(p),P) from X(p) to the hyperplane is given by

d(X(p),P) =
〈X(p),Wk〉+ wk,0

‖Wk‖
=

Jk(p) + wk,0

‖Wk‖
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Convolution, bias, and activation

The perceptron at p selects Rk(p) as a local feature only when the
activation

〈X(p),Wk〉+ wk,0 = Jk(p) + wk,0 > 0,

meaning that, the bias moves P such that X(p) falls in its positive
side.
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Convolution, bias, and activation

Therefore, convolution, bias, and activation — a neuronal layer
(layer of perceptrons p ∈ DI ) — should extract and select pixel
features in parts that best represent the object characteristics for
image analysis.

Output of activation for four random kernels: some kernels may be
better than others and some may be redundants.
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Pooling

The activations Rk(p) related to an object of interest might also
appear at nearby positions within and across images.

Max-pooling can aggregate them by transforming R̂ = (DI ,R) into
P̂ = (DP ,P), P(p) = (P1(p),P2(p), . . . ,Pb(p)),

Pk(p) = max
q∈B(p)

{Rk(q)},

where B is an adjacency relation.

The widest component among the proposed regions is the plate.
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Pooling with stride

It is also common to apply padding and down-sampling on the
input image with displacements sx ≥ 1 and sy ≥ 1, called strides.

For a w × h rectangular adjacency and image domain DI with
nx × ny pixels, the image domain DP will have b2nx−w2sx

c × b2ny−h2sy
c

pixels without padding and dnxsx e × d
ny
sy
e pixels with padding.
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Pooling

Other examples that create P̂ = (DI ,P) by pooling are
min-pooling and average pooling.

Min-pooling:

Pk(p) = min
q∈B(p)

{Rk(q)}.

Average pooling:

Pk(p) =
1

|B(p)|
∑

q∈B(p)

Rk(q).

Indeed, any other image filtering could be used here to eliminate
undesirable features and/or aggregate the desirable ones for better
image analysis.
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Normalization

Normalizations may be applied to any image Î = (DI , I) or to a
batch I = {Îj}Bj=1 with B images.

They are important to avoid discrepancies among local features
along the network.

They create a new image N̂ = (DI ,N) or a new batch
N = {N̂j}Bj=1 with the same number of channels per image.
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Linear normalization

For N̂ = (DI ,N), N(p) = (N1(p),N2(p), . . . ,Nm(p)),

Nk(p) =
Ik(p)−minq∈DI

{Ik(q)}
maxq∈DI

{Ik(q)} −minq∈DI
{Ik(q)}

,

Nk(p) =
Ik(p)−minB

j=1{Ij ,k(p)}
maxBj=1{Ij ,k(p)} −minB

j=1{Ij ,k(p)}
,

k ∈ [1,m] and p ∈ DI , we have a linear normalization.

Alexandre Xavier Falcão MO434 - Deep Learning



Divisive normalization

Divisive normalization can enhance subtle and isolated activations
within an adjacency C, creating N̂ = (DI ,N), with
N(p) = (N1(p),N2(p), . . . ,Nm(p)). For k ∈ [1,m] and p ∈ DI ,

Nk(p) =
Ik(p)√∑
q∈C(p) I

2
k (q)

.

Images P̂ (left) and N̂ (right) – divisive normalization of P̂ using C
with w = 25 and h = 5.
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Divisive normalization

To be useful, we are interested in reducing spurius regions and
enhancing the plate by applying ReLU activation on the residue
P̂ − N̂ (right).

When thresholding the image on the right, it should facilitate the
detection of the plate.
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Batch normalization

Batch normalization is very useful to standardize local features and
eliminate the need of bias learning by creating an image
N̂ = (DI ,N), N(p) = (N1(p),N2(p), . . . ,Nm(p)),

Nk(p) =
Ik(p)− µk(p)

σk(p) + ε
γk + βk ,

µk(p) =
1

n

n∑
j=1

Ij ,k(p),

σ2k(p) =
1

n − 1

n∑
j=1

(Ik(p)− µk(p))2,

for k ∈ [1,m], p ∈ DI , ε = 10−5, and γk , βk ∈ < are parameters
that can be learned and even undo the operation. We set γk = 1
and βk = 0, for all k ∈ [1,m], by default.
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Batch normalization

Batch normalization affects the local feature space with points
X j(p) from an image set I = {Îj}nj=1 for all pixels p ∈ DI .

Just the centralization of the point cloud already shows that
training can adjust a kernel to select more features from a given
class with no need of bias.
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Applications to image analysis

By concatenating all channels Ij , j = 1, 2, . . . ,m, of an image
(flattening), one creates a global feature vector x as image
representation.

Unfortunately, such representation is not usually suitable for
image classification, as it was the case for the fashion mnist
dataset.

In the next lecture, we will see how Convolutional Neural
Networks (CNNs) use sequence of layers containing
convolution, activation, pooling and normalization to create
image feature spaces suitable for MLP classifiers.

The applications go much beyond image classification – image
synthesis, object detection, semantic/instance segmentation.
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