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Agenda

Preparing data for training, validation, and test.

Selecting a DNN architecture and its hyperparameters.

Dealing with loss gradient instabilities.

Further speeding up convergence.

Scheduling the learning rate and avoiding under/overfitting

Training and evaluating NNs in practice.
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Data preparation

A dataset Z = (X ,Y ) must be randomly divided into training
(Xtr ,Ytr ), validation (Xvl ,Yvl), and test (Xts ,Yts) sets by
simulating the real distribution of samples.

While (Xtr ,Ytr ) is used to train the DNN, its validation on
(Xvl ,Yvl) provides insights about training that guide the
choice of the DNN’s hyperparameters.

(Xts ,Yts is reserved to evaluate how well the DNN performs
on unseen data.

One may use a k-fold cross validation by dividing Z into k
parts, holding each part per time for (Xts ,Yts) and using the
remaining samples for (Xtr ,Ytr ) ∪ (Xvl ,Yvl).
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Data preparation

Since the network weights are updated during a backward
pass after each forward pass (one epoch), it is crucial to set a
suitable number of updates per epoch by dividing (Xtr ,Ytr )
into batches and updating weights per batch.

The batch size (e.g., [2, 32]) has great influence on the
training process.

Data augmentation is another data preparation trick that
speeds up convergence by coping with the lack of training
samples.

Let’s see a simple example of data preparation DATA PREPARATION
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Selecting a DNN architecture and its hyperparameters

A shallow network with one hidden layer and one decision
layer can alreay solve many problems.

However, more complex problems require too many neurons
per hidden layer to be solved by shallow networks.

Deep neural networks can be created with three or more
hidden layers, but those dense layers with too many weights
are difficult to be optimized.

Convolutional layers have considerably reduced that number
of weights, making viable and successful the use of DNNs.
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Selecting a DNN architecture and its hyperparameters

Classical DNNs may have tens to hundreds of convolutional
layers followed by two or three dense layers - a Convolutional
Neural Network (CNN).

Grid search and heuristic optimization can be applied to select
suitable numbers of layers and neurons per layer.

However, other types of operations (e.g., dropout, pooling,
batch normalization) increase the number of hyperparameters
and of possible combinations.

We have also seen the choice of suitable activation and loss
functions for regression and classification.

Ironically, architecture learning is still a feature engineering task.
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Selecting a DNN architecture and its hyperparameters

The simplification of existing architectures, pretrained on the
ImageNet, have been actively pursued [1, 2].

However, efficiency is not the only problem.

We need methods to build effective DNNs with minimum
human effort in data annotation [3, 4] and, ideally,

from scratch guided by data visualization, optimization
criteria, and user intervention [5, 6].
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Dealing with loss gradient instabilities

The loss gradients may either reduce to zero towards the
initial layers (vanishing gradient) or increase too much
towards the last layers (exploding gradient).

Concatenation or addition of a previous layer input to the
output of a subsequent layer is a way to avoid the vanishing
gradient problem.
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Dealing with loss gradient instabilities

Indeed, a suitable choice of weight initialization and activation
function can reduce gradient variations along the layers,
amending both types of gradient problems.

The weights of each layer may be randomly generated by a
normal distribution with mean 0 and variance σ2 or by a
uniform distribution from −r to +r , with r =

√
3σ2.

Initialization activation function σ2

Xavier/Glorot None, tanh, logistic, softmax 1/fanavg
He ReLU and variants 2/fanin
LeCun SELU 1/fanin

where fanin and fanout are the numbers of input and output
channels, fanavg = fanin+fanout

2 .
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Dealing with loss gradient instabilities

Batch normalization can additionally treat gradient
instabilities during the training process, speeding up
convergence.

Let xxx (i) be the i-th feature vector of a batch B ⊂ Xtr .

Batch normalization creates a new feature vector zzz(i) as
follows.

µµµB ← 1

|B|

|B|∑
i=1

xxx (i)

σσσ2B ← 1

|B|

|B|∑
i=1

(
xxx (i) −µµµB

)2
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Dealing with loss gradient instabilities

zzz(i) ← γγγ ⊗ xxx (i) −µµµB√
σσσ2B + ε

+ βββ

where

γγγ is a scale parameter vector for the layer, with one scale
value per input.

⊗ is element-wise multiplication.

βββ is a shift parameter vector for the layer, with one shift value
per input.

ε is typically 10−5 to avoid division by zero.

obs: all operations are element-wise from now on.
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Dealing with loss gradient instabilities

Gradient clipping is another possibility to maintain the values
within a given interval (e.g., [−1, 1]).

Using pretrained layers (backbone) from another network to
generate an input to the current network with the remaining
layers for training is another way to treat gradient instabilities
and speed up convergence (transfer learning).

Finally, momentum and faster optimizers than SGD can be
used to speed up convergence.
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Further speeding up convergence

A momentum α (e.g., 0.9) can reduce oscillation in the loss values
as follows.

∆www r
j (i) ← α∆www r

j (i − 1)− µ
∑

s∈B⊂Ztr

δrj (s)yyy r−1(s),

www r
j (i + 1) ← www r

j (i) + ∆www r
j (i).

For the sake of simplicity, these equations may be rewritten as

mmm ← αmmm − µ∇θθθJ(θθθ),

θθθ ← θθθ +mmm.

where µ is the learning rate, mmm, θθθ and ∇θθθJ(θθθ) represent updates,
weights and the gradient of the loss function during training.
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Further speeding up convergence

Faster optimizers essentially estimate and correct the gradient
vector towards a local minimum of the loss function.

Nesterov Accelerated Gradient (NAG).

mmm ← αmmm − µ∇θθθJ(θθθ + αmmm),

θθθ ← θθθ +mmm.

RMSProp.

sss ← ρsss + (1− ρ)∇θθθJ(θθθ)⊗∇θθθJ(θθθ),

θθθ ← θθθ − µ∇θθθJ(θθθ)�
√
sss + ε.

where ⊗ and � are element-wise multiplication and division,
respectively, ρ = 0.9, ε = 10−10, mmm and sss initialized with
zeros.
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Further speeding up convergence

Adam, Nadam, and AdaMax.

mmm ← β1mmm − (1− β1)∇θθθJ(θθθ),

sss ← β2sss + (1− β2)∇θθθJ(θθθ)⊗∇θθθJ(θθθ),

m̂mm ← mmm

1− βt1
,

ŝss ← sss

1− βt2
,

θθθ ← θθθ + µm̂mm �
√
ŝss + ε.

where β1 = 0.9, β2 = 0.999, ε = 10−7, t ≥ 1 is the iteration,
first mmm and second sss momenta are initialized with zeros.
Nadam is Adam with the Nesterov trick ∇θθθJ(θθθ + β1mmm) and
AdaMax replaces the second equation by
sss ← max{β2sss,∇θθθJ(θθθ)}.
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Scheduling the learning rate and avoiding under/overfitting

The learning rate µ (e.g., 10−3) is the most important
parameter to avoid underfitting and overfitting.

Strategies to change the learning rate during training are
called learning schedules – e.g., µ(t) = µ(0)0.1t//s drops it by
a factor of 10 at every s iterations.

By starting from a very low learning rate µ(0) (e.g., low
accuracy on Ztr - underfitting) and increasing it at every s
iterations until µ(t), when we observe high accuracy on Ztr

and low accuracy on Zvl (overfitting), we may estimate the
best learning rate as µ(t−δ) (e.g., δ = 1).
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Scheduling the learning rate and avoiding under/overfitting

Recall our loss J =
∑

s∈B⊂Ztr
E(s) per batch. Overfitting can be

avoided by regularization techniques.

L1 and L2.

E(s) = −
NL∑
j=1

yj(s) log(yLj (s)) + 0.01
L∑

r=1

Nr∑
j=1

‖www r
j ‖,

E(s) = −
NL∑
j=1

yj(s) log(yLj (s)) + 0.0001
L∑

r=1

Nr∑
j=1

‖www r
j ‖2.

Max-Norm, which rescales by s ∈ (0, 1] (lower s, more
regularization) the weights after each update – i.e.,

www r
j ← s

www r
j

‖www r
j ‖

.

Dropout, which before any layer r ∈ [1, L] sets its weights
www r

j ← 0 with probability p ∈ [0.1, 0.5] at every training step.
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Training and evaluating NNs in practice

To fix all we have learned, let’s project and evaluate our first
neural network with images.

FirstDeepNeuralNetwork .

We will understand the role of the validation set – it allows
you to avoid underfitting and overfitting.

The next step is an introduction to image analysis, so we can
understand the success of DNNs in this field.

We will then see that convolutional layers play a crucial role to
make feasible the training of DNN models for image analysis.
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