
acmInternational Collegiate
Programming Contest

event
sponsor2007

ACM International Collegiate Programming Contest

2007

South American Regional Contests

November 9-10, 2007

Contest Session

This problem set contains 10 problems; pages are numbered from 1 to 20.

This problem set is used in simultaneous contests hosted in the following countries:

• Argentina

• Bolivia

• Brazil

• Chile

• Colombia

• Peru

• Venezuela

ACM ICPC2007 – South American Regionals 1

Problem A
Ambiguous Codes

Source file name: ambiguous.c, ambiguous.cpp or ambiguous.java

An extensive area of research in computer science is the field of communications. With computer
networks being part of everyday life of many people, the development of ways for making
networks faster, more reliable and secure is constantly needed. This practical need motivates
an extensive research activity in the theory behind communications.

The very first thing needed to establish any kind of communication is a common code. A code
is a way of changing the form of a piece of information into some other form, in general to make
it possible to convey that piece of information from one place to another. Flag codes used by
boats and the Morse code used in telegraphy are examples of codes for translating letters into
different forms to enable communication over different media.

More formally, a code is a set of strings composed of symbols from one alphabet. Each string
defined in the code is called a code word. A message is then composed concatenating a set
of code words to convey the information needed. For example, in Morse code the alphabet is
composed of the symbols hyphen and dot; letter “S” is represented by the code word “...”,
letter “O” is represented by the code word “---”, and therefore the distress message “SOS” in
Morse code is “...---...”.

Codes for communication can have many desirable and undesirable properties such as ambiguity,
entropy, redundancy, and many more. In this problem we will focus on ambiguity as a key
property.

A code is ambiguous when there exists a message using that code that can be partitioned into
different sequences of code words. In other words, in an ambiguous code a message may have
more than one meaning. For example, consider the binary alphabet, composed of symbols
{0,1}. For the code composed of the words {10, 01, 101} the message 10101 can be understood
as 10-101 or 101-01 and therefore the code is ambiguous. On the other hand, for the code
composed of the words {01, 10, 011} no ambiguous message exists and therefore the code is
unambiguous.

As a part of the computer science community, you are required to develop a tester that checks
if codes are ambiguous. In case a code is indeed ambiguous, you are also required to report the
length (i.e. the number of symbols) of the shortest ambiguous message for that code.

Input

Each test case will consist on several lines. In all test cases the alphabet will be the set of
hexadecimal digits (decimal digits plus the uppercase letters “A” to “F”). The first line of a test
case will contain an integer N (1 ≤ N ≤ 100), the number of code words in the code. Each
of the next N lines describes a code word and contains a different and non-empty string of at
most 50 hexadecimal digits.

Input is terminated by N = 0.

The input must be read from standard input.

ACM ICPC2007 – South American Regionals 2

Output

For each test case, output a single line with the length of the shortest ambiguous message for
the provided code or -1 if the code is unambiguous.

The output must be written to standard output.

Sample input

3

10

01

101

3

AB

BA

ABB

0

Output for the sample input

5

-1

ACM ICPC2007 – South American Regionals 3

Problem B
Ballroom Lights

Source file name: ballroom.c, ballroom.cpp or ballroom.java

The ICPC world finals will be held in a luxurious hotel with a big ballroom. A buffet meal will
be served in this ballroom, and organizers decided to decorate its walls with pictures of past
champion teams.

In order to avoid criticism about favouring some of those teams over others, the organizing
commitee wants to make sure that all pictures are appropiately illuminated. The only direct
way they’ve found for doing this is ensuring each picture has at least one lightbulb that directly
illuminates it.

In this way, the perimeter of the ballroom wall can be divided into illuminated parts (in which
pictures may be placed) and dark parts (which are not suitable for placing the pictures).

The ballroom has the shape of a box and contains several lightbulbs. Each lightbulb emits
light in all directions, but this light can be blocked by columns. All columns in the ballroom
have cylindrical shape and go from the floor to the ceiling, so light cannot pass over or above
them. Columns are of course placed so that its circular section is parallel to the ballroom floor.
Any given point p on the perimeter wall is said to be illuminated if there exists a line segment
(a light ray) which starts on a lightbulb, ends in p and does not touch or pass through any
column.

Top view of 3 ballrooms with their lightbulbs, columns and illuminated and dark areas

Your task as a helper of the ICPC organization is to examine the blueprints of the ballroom
and determine the total length of illuminated sections of the perimeter wall. The blueprint
consist of a rectangle indicating a top view of the ballroom, with the lightbulbs and columns
marked in it.

Input

Each test case will consist on several lines. The first line will contain four integers: L, the
number of lightbulbs, C, the number of columns, X, the size of the ballroom on the x coordinate
and Y , the size of the ballroom on the y coordinate. The lower-left corner of the ballroom is
at (0, 0) while the upper-right corner is at (X, Y).

ACM ICPC2007 – South American Regionals 4

The next L lines will contain two integers each representing the x and y coordinate of each
lightbulb. The last C lines of the test case will contain three integers each, representing the x
and y coordinates of the center of a column and its radius, in that order. You can assume that
1 ≤ L, C ≤ 103 and 4 ≤ X, Y ≤ 106. Also, for all pairs of coordinates (x,y), 0 < x < X and
0 < y < Y , both for lightbulbs and column center locations. All radii of the columns will be
positive. Finally, no two columns will overlap, although they may touch, and no column will
touch or intersect with the border of the ballroom. No lightbulb will be inside a column or in
its boundary and no two lightbulbs will be in the same place.

Input is terminated with L = C = X = Y = 0.

The input must be read from standard input.

Output

For each test case, output a single line with the total length of the illuminated parts of the
perimeter wall. The result must be printed as a real number with exactly four decimal figures,
with the lowest-order decimal figure rounded up.

The output must be written to standard output.

Sample input

2 1 8 8

6 6

2 6

4 4 2

1 4 7 7

3 3

2 4 1

4 2 1

2 2 1

4 4 1

2 2 9 7

1 2

5 5

3 3 2

7 5 1

0 0 0 0

Output for the sample input

28.0000

0.0000

25.8214

ACM ICPC2007 – South American Regionals 5

Problem C
Car Plates Competition

Source file name: carplates.c, carplates.cpp or carplates.java

Martin and Isa are very competitive. The newest competition they have created is about looking
at the plates of the cars. Each time one of them sees a car plate in the streets, he or she sends
to the other an SMS message with the content of that plate; the one who has seen the newest
plate is in the lead of the game. As the Automobile Car Management (ACM) office assigns the
plates sequentially in increasing order, they can compare them and find out who is the winner.

Martin has a very smart eye and he has stayed on the lead for several weeks. Maybe he keeps
looking at the streets instead of working, or maybe he stays all day in front of car selling
companies waiting for new cars to go out with new plates. Isa, tired of being always behind,
has written a program that generates a random plate, so the next time Martin sends a message
to her, she will respond with this generated plate. In this way, she hopes to give Martin a hard
time trying to beat her.

However, Martin has grown suspicious, and he wants to determine if Isa actually saw a car with
the plate she sent or not. This way, he will know if Isa is in the lead of the game.

He knows some facts about the plates assigned by the ACM:

• Each plate is a combination of 7 characters, which may be uppercase letters (A-Z), or
digits (0-9).

• There exists two kinds of plate schemes: the old one, used for several years, and the new
one which has been in use for some months, when the combinations of the old one were
exhausted.

• In the old scheme, the first three characters were letters, and the last four were digits, so
the plates run from AAA0000 to ZZZ9999.

• In the new scheme, the first five characters are letters, and the last two are digits. Un-
fortunately the chief of ACM messed up with the printing system while he was trying
to create a poster for his next campaign for mayor, and the printer is not able to write
the letters A, C, M, I, and P. Therefore, in this new scheme, the first plate is BBBBB00,
instead of AAAAA00.

• The plates are assigned following a sequential order. As a particular case, the last plate
from the old scheme is followed by the first plate from the new scheme.

As Isa is not aware of all of this, she has just made sure that her random generator creates a
combination consisting of seven characters, where the first three characters are always uppercase
letters, the last two characters are always digits, and each one of the fourth and fifth characters
may be an uppercase letter or a digit (possibly generating an illegal combination, but she has
not much time to worry about that).

ACM ICPC2007 – South American Regionals 6

Of course, Martin will not consider Isa the winner if he receives an illegal combination, or if he
receives a legal plate, but equal to or older than his. But that’s not all of it. Since Martin knows
that new plates are not generated too fast, he will not believe that Isa saw a car with a plate
newer than the one he sent, but sequentially too far. For example, if Martin sends DDDDD45,
and receives ZZZZZ45, he will not believe that Isa saw a car with that plate, because he knows
that the ACM couldn’t have printed enough plates to get to ZZZZZ45 in the time he received
that answer.

So, Martin has decided to consider Isa the winner only if he receives a legal plate, newer than
his, and older than or equal to the C-th consecutive plate after the one he sent. He calls C his
confidence number. For example, if Martin sends ABC1234, and his confidence number is 6, he
will think that Isa is the winner only if he receives any plate newer than ABC1234, but older
than or equal to ABC1240.

Input

The input contains several test cases. Each test case is described in a single line that contains
two strings SM and SI , and an integer C, separated by single spaces. SM is the 7-character
string sent by Martin, which is always a legal plate. SI is the 7-character string answered
by Isa, which was generated using her random generator. C is Martin’s confidence number
(1 ≤ C ≤ 109).

The end of input is indicated by SM = SI =“*” and C = 0.

The input must be read from standard input.

Output

For each test case, output a single line with the uppercase character “Y” if, according to Martin,
Isa is the winner, and with the uppercase character “N” otherwise.

The output must be written to standard output.

Sample input

ABC1234 ABC1240 6

ABC1234 ABC1234 6

ACM5932 ADM5933 260000

BBBBB23 BBBBC23 100

BBBBB23 BBBBD00 77

ZZZ9997 ZZZ9999 1

ZZZ9998 BBBBB01 3

ZZZZZ95 ZZZZZ99 10

BBBBB23 BBBBB22 5

* * 0

Output for the sample input

Y

N

N

N

Y

N

Y

Y

N

ACM ICPC2007 – South American Regionals 7

Problem D
Drop the Triples

Source file name: drop.c, drop.cpp or drop.java

The inhabitants of a small Caribbean island in the region known as Bermuda’s Triangle love to
spend their warm summer nights playing cards. As a tribute to the region where they live, all
of their card games have some connection to triangles. One of the most popular games in the
island is known as Triples, and has very simple rules.

The game is played between two players, with a set of standard playing cards. Cards are
distinguished only by their values, from 1 (Ace) to 13 (King). The cards are shuffled and
placed as a pile in the center of the table, face down. This pile is called the stock. The two
players take turns at playing. At each turn, a player

• draws the top card from the stock, adding it to her/his hand; and

• decides whether she/he wants to “drop some triples”.

Dropping a triple consists of choosing three cards (a triple) from the hand and placing them
on the table, face up. The dropped triples stay on the table until the end of the game. Only
some sets of three cards form a valid triple. There are two types of valid triples:

• Perfect triples are made of three cards whose values represent the length of sides of an
equilateral triangle;

• Common triples are made by three cards whose values represent the length of sides of
any other (not equilateral) triangle.

The figure below shows examples of perfect triples (a), common triples (b), and invalid triples
(c).

Only valid triples can be dropped, but a player may drop any number of triples at a given
turn. In particular, since players know the number of cards in the stock at every turn, a player
may decide to drop all triples in her/his last turn. Some players, however, normally drop some
triples during the game, to maintain as few cards in their hands as possible.

The game finishes when the stock is empty. The winner is the player that dropped the largest
number of perfect triples. If both players dropped the same number of perfect triples, the winner

ACM ICPC2007 – South American Regionals 8

is the player that dropped the largest number of common triples. If both players dropped the
same number of perfect triples and the same number of common triples, the result is a tie.

Given the description of the cards in the stock, write a program that determines the winner of
a game of Triples, considering both players play as best as possible.

Input

The input contains several test cases. The first line of a test case contains one integer N
representing the number of cards in the stock (6 ≤ N ≤ 104). The next line contains N
integers Xi, separated by single spaces, representing the cards in the stock (1 ≤ Xi ≤ 13, for
1 ≤ i ≤ N). The cards are given in the order they are drawn by the players: the first card
in the input (X1) is the first card drawn, the second card in the input (X2) is the second card
drawn, and so on. Several cards with the same value may be present in the stock, and not
necessarily all card values are present in the stock. The end of input is indicated by N = 0.

The input must be read from standard input.

Output

For each test case your program must output a single line, containing ‘1’ if the first player to
play wins the game, ‘2’ if the second player wins, or ‘0’ if there is a tie.

The output must be written to standard output.

Sample input

7

5 6 5 6 5 6 8

12

13 13 13 13 13 13 1 3 2 9 3 9

12

1 2 1 2 1 2 3 1 4 2 5 3

0

Output for the sample input

0

2

1

ACM ICPC2007 – South American Regionals 9

Problem E
Emoticons :-)

Source file name: emoticons.c, emoticons.cpp or emoticons.java

Emoticons are used in chat and e-mail conversations to try to express the emotions that printed
words cannot. This may seem like a nice feature for many, but a lot of people find it really
annoying and wants to get rid of emoticons.

George is one of those people. He hates emoticons so bad, that he is preparing a plan to
remove all emoticons from all e-mails in the world. Since you share his visionary plans, you are
preparing a special program to help him.

Your program will receive the list of emoticons to proscribe. Each emoticon will be a string of
characters not including any whitespace. You will also receive several lines of text. What you
need to do is change some characters of the text into spaces to ensure no emoticon is left on
the text. For an emoticon to be considered to appear in the text it has to appear in a single
line and be made of consecutive characters.

To help George’s plan remain secret as long as possible, you need to do your job with the
minimum possible amount of character changes.

Input

The input file contains several test cases. Each test case consists of several lines. The first
line of each test case will contain two integers separated by a single space: N , the number of
emoticons to proscribe, and M , the number of lines the text has. The next N lines contain one
emoticon each, a non-empty string of at most 15 characters. Each of the last M lines of the
test case contains a line of text of at most 80 characters. You can assume 1 ≤ N, M ≤ 100.

Valid input characters for emoticons are uppercase and lowercase letters, digits and the symbols
“!?.,:;-_’#$%&/=*+(){}[]” (quotes for clarity). Each line of the text may contain the same
characters with the addition of the space character.

The input is terminated by N = M = 0.

The input must be read from standard input.

Output

For each test case, output exactly one line containing a single integer that indicates the minimum
number of changes you need to make to the entire text to ensure no emoticon on the list appears
in it.

The output must be written to standard output.

ACM ICPC2007 – South American Regionals 10

Sample input

4 6

:-)

:-(

(-:

)-:

Hello uncle John! :-) :-D

I am sad or happy? (-:-(?

I feel so happy, my head spins

(-:-)(-:-)(-:-)(-:-) :-) (-: :-)

but then sadness comes :-(

Loves you, Joanna :-)))))

3 1

:)

):

))

:):)):)):)):(:((:(((:):)

0 0

Output for the sample input

11

8

ACM ICPC2007 – South American Regionals 11

Problem F
Finding Seats

Source file name: find.c, find.cpp or find.java

A group of K friends is going to see a movie. However, they are too late to get good tickets,
so they are looking for a good way to sit all nearby. Since they are all science students, they
decided to come up with an optimization problem instead of going on with informal arguments
to decide which tickets to buy.

The movie theater has R rows of C seats each, and they can see a map with the currently
available seats marked. They decided that seating close to each other is all that matters, even
if that means seating in the front row where the screen is so big it’s impossible to see it all at
once. In order to have a formal criteria, they thought they would buy seats in order to minimize
the extension of their group.

The extension is defined as the area of the smallest rectangle with sides parallel to the seats
that contains all bought seats. The area of a rectangle is the number of seats contained in it.
They’ve taken out a laptop and pointed at you to help them find those desired seats.

Input

Each test case will consist on several lines. The first line will contain three positive integers R,
C and K as explained above (1 ≤ R,C ≤ 300, 1 ≤ K ≤ R×C). The next R lines will contain
exactly C characters each. The j-th character of the i-th line will be ‘X’ if the j-th seat on
the i-th row is taken or ‘.’ if it is available. There will always be at least K available seats in
total.

Input is terminated with R = C = K = 0.

The input must be read from standard input.

Output

For each test case, output a single line containing the minimum extension the group can have.

The output must be written to standard output.

ACM ICPC2007 – South American Regionals 12

Sample input

3 5 5

...XX

.X.XX

XX...

5 6 6

..X.X.

.XXX..

.XX.X.

.XXX.X

.XX.XX

0 0 0

Output for the sample input

6

9

ACM ICPC2007 – South American Regionals 13

Problem G
Galou is back!

Source file name: galou.c, galou.cpp or galou.java

The famous witch is back. After killing an incredible amount of monsters in order to find a
hidden treasure, Zak Galou decided to buy vineyards in Burgundy and retired. Everything was
calm in his new life, until the day that his farm tractor stopped working.

His tractor’s engine works based on a mechanism of gears. The engine can be represented by
a bidimensional grid. At most one gear can be attached to each position of the grid. All the
gears are identical and can mesh with adjacent gears. In this grid, a gear can have up to six
other adjacent gears, see figure below:

Under normal utilization, when the tractor is started, some of the gears are initially activated
and try to turn clockwise. When a gear tries to turn in one direction, all the adjacent gears try
to turn in the opposite direction.

When Zak Galou opened his engine he noticed that it had been sabotaged (probably by a
jealous treasure hunter who was not able to find the treasure). Some of the gears were removed
from the engine and others have been added to it. As a consequence, some of the gears were
immobile. A gear can be immobile either if it is free or if it is blocked. A gear is free when it is
not an initially activated gear and no adjacent gear is trying to turn. A gear is blocked when it
is trying to turn in both directions at the same time. For example, consider that there are three
gears in the engine as shown in the figure below. If any of the gears is initially activated when
the tractor is started, all of them will be blocked. If none of the gears are initially activated,
all of them will be free.

As a part of the work of fixing his tractor, Zak Galou asks for your help to solve the following
problem. Given the description of the engine and the gears that are initially activated in the
clockwise direction, he wants to know for each gear, what is its state when the tractor is started:
turn clockwise, turn counter-clockwise, free or blocked.

ACM ICPC2007 – South American Regionals 14

Input

The input contains several test cases. The first line of a test case contains two integers R and
C, separated by a single space, representing respectively the number of rows and columns of the
engine grid (1 ≤ R,C ≤ 100). The next R lines describe the engine. The i-th line represents
the i-th row of the engine and contains C characters. The character “.” indicates that there
is no gear in the corresponding position, the character “*” indicates that there is a gear that
is not initially activated when the engine is started and an “I” indicates that there is a gear
that is initially activated when the engine is started. Notice that, for simplicity reasons, the
parallelogram representing the engine grid is described in the input as if it was a rectangle with
each row left aligned. The end of input is indicated by R = C = 0.

The input must be read from standard input.

Output

For each test case, your program must output R + 1 lines. The first line must be empty; each
of the following R lines must have C characters. The characters printed must represent the
state of each position of the grid when the engine is started. Print a “.” if there is no gear in
the position; a “(” if there is a gear turning in the clockwise direction; a “)” if there is a gear
turning in the counter-clockwise direction, an uppercase “F” if there is a gear that is free and
an uppercase “B” if there is a blocked gear.

The output must be written to standard output.

Sample input

4 3

...

.*.

.I.

...

4 4

....

.**.

.I..

..*.

0 0

Output for the sample input

...

.).

.(.

...

....

.BB.

.B..

..F.

ACM ICPC2007 – South American Regionals 15

Problem H
He is offside!

Source file name: he.c, he.cpp or he.java

Hemisphere Network is the largest television network in Tumbolia, a small country located
east of South America (or south of East America). The most popular sport in Tumbolia,
unsurprisingly, is soccer; many games are broadcast every week in Tumbolia.

Hemisphere Network receives many requests to replay dubious plays; usually, these happen
when a player is deemed to be offside by the referee. An attacking player is offside if he is
nearer to his opponents’ goal line than the second last opponent. A player is not offside if

• he is level with the second last opponent or

• he is level with the last two opponents.

Through the use of computer graphics technology, Hemisphere Network can take an image of
the field and determine the distances of the players to the defending team’s goal line, but they
still need a program that, given these distances, decides whether a player is offside.

Input

The input file contains several test cases. The first line of each test case contains two integers
A and D separated by a single space indicating, respectively, the number of attacking and
defending players involved in the play (2 ≤ A, D ≤ 11). The next line contains A integers Bi

separated by single spaces, indicating the distances of the attacking players to the goal line
(1 ≤ Bi ≤ 104). The next line contains D integers Cj separated by single spaces, indicating the
distances of the defending players to the goal line (1 ≤ Cj ≤ 104). The end of input is indicated
by A = D = 0.

The input must be read from standard input.

Output

For each test case in the input print a line containing a single character: “Y” (uppercase) if
there is an attacking player offside, and “N” (uppercase) otherwise.

The output must be written to standard output.

ACM ICPC2007 – South American Regionals 16

Sample input

2 3

500 700

700 500 500

2 2

200 400

200 1000

3 4

530 510 490

480 470 50 310

0 0

Output for the sample input

N

Y

N

ACM ICPC2007 – South American Regionals 17

Problem I
ICPC Scoreboard

Source file name: icpc.c, icpc.cpp or icpc.java

Charles is the contest director for the ICPC Tumbolian regional contest. His responsibility is
ensuring the contest flows smoothly, that the contest rules are applied fairly, and, of course,
announcing the final contest ranking.

According to ICPC rules, a team with more solved problems ranks above a team with less
solved problems. If two teams have the same number of solved problems, the team with the
smaller total penalty ranks above the team with the larger total penalty (in case both teams
have the same number of solved problems and the same penalty, Charles considers them as
tied).

The total penalty for a team is the sum of all the problem penalties of the problems that team
has solved. The problem penalty for a problem is TP +EP×FA, where TP is the time penalty
for that problem, EP is the contest’s error penalty and FA is the number of failed attempts
at solving the problem before submitting a correct solution.

The time penalty for a problem is the time since the start of the contest, in minutes, that the
team needed to solve the problem. The error penalty is a positive integer chosen by the contest
director, designed to reward teams that submit correct solutions on the first attempt.

Charles wants to change the error penalty from the “standard” value of 20 minutes to stir things
up. To study the effects of that change on the final rankings, he wants to know the range of
error penalties that don’t change the final standings.

In other words, if team A is ahead of team B in the original standings, then A should be ahead
of B in the modified standings; if A and B are tied in the original standings, they should also
be tied in the modified standings (the original standings are the ones obtained with an error
penalty of 20 minutes).

Charles has been very busy organizing the Tumbolian regional, so he asked you to make a
program that will compute the range for him.

Input

The input contains several test cases. The first line of each test case contains two integers
T and P separated by a single space, indicating the number of teams and the number of
problems, respectively (2 ≤ T ≤ 100, 1 ≤ P ≤ 10). Each one of the next T lines describes
the performance of a team. A team’s performance description is a line containing P problem
descriptions separated by single spaces. Teams are not necessarily given in order of their final
standings.

Each problem description is a string “A/S”, where A is an integer representing the number of
attempts that the corresponding team made at solving that problem (0 ≤ A ≤ 100), and S
is either “-”, if the team did not solve that problem, or an integer indicating the number of
minutes it took for the team to submit a correct solution (1 ≤ S ≤ 300). Attempts made after
the first correct submission are not counted.

ACM ICPC2007 – South American Regionals 18

The end of input is indicated by T = P = 0.

The input must be read from standard input.

Output

For each test case in the input print two positive integers separated by a single space, indicating
the smallest and largest error penalties that would not change the final ranking. If there is no
upper bound for the error penalty, print a “*” instead of the upper bound.

The output must be written to standard output.

Sample input

5 3

0/- 0/- 0/-

2/- 2/- 1/-

1/60 1/165 1/-

1/80 0/- 2/120

0/- 1/17 0/-

4 2

17/- 5/-

2/7 3/-

3/- 2/-

1/15 0/-

3 2

1/- 2/15

2/53 1/17

1/70 1/20

0 0

Output for the sample input

1 24

9 *

20 20

ACM ICPC2007 – South American Regionals 19

Problem J
Justice League

Source file name: justice.c, justice.cpp or justice.java

Thirty five years ago, a group of super heroes was chosen to form the Justice League, whose
purpose was to protect the planet Earth from the villains. After all those years helping mankind,
its members are retiring and now it is time to choose the new members of the Justice League.

In order to keep their secret identity, let’s say, secret, super heroes usually use an integer number
to identify themselves. There are H super heroes on Earth, identified with the integers from 1
to H. With a brief look at the newspapers anyone can find out if two super heroes have already
worked together in a mission. If this happened, we say that the two heroes have a relationship.

There must be only one Justice League in the world, which could be formed by any number of
super heroes (even only one). Moreover, for any two heroes in the new league, they must have
a relationship.

Besides, consider the set of the heroes not chosen to take part in the Justice League. For any
two heroes on that set, they must not have a relationship. This prevents the formation of
unofficial justice leagues.

You work for an agency in charge of creating the new Justice League. The agency doesn’t know
if it is possible to create the League with the restrictions given, and asked for your programming
skills. Given a set of super heroes and their relationships, determine if it is possible to select
any subset to form the Justice League, according to the given restrictions.

Input

The input is composed of several test cases. The first line of each test case contains two integers
separated by a single space, H (2 ≤ H ≤ 5×104) and R (1 ≤ R ≤ 105), indicating, respectively,
the number of heroes and the number of relationships. Each of the following R lines contains
two integers separated by a single space, A and B (1 ≤ A < B ≤ H), indicating that super
hero A has a relationship with super hero B. Note that if A has a relationship with B, B also
has a relationship with A. A relationship is never informed twice on a test case.

The end of input is indicated by H = R = 0.

The input must be read from standard input.

Output

For each test case in the input print a single line, containing the uppercase letter “Y” if it
is possible to select a subset of heroes to form the Justice League according to the given
restrictions, or the uppercase letter “N” otherwise.

The output must be written to standard output.

ACM ICPC2007 – South American Regionals 20

Sample input

5 5

1 2

2 3

1 3

1 4

3 5

9 8

1 2

2 3

3 4

4 5

5 6

6 7

7 8

8 9

4 3

1 2

2 3

3 4

0 0

Output for the sample input

Y

N

Y

